
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE                             RAM 2008 

Research on Resource Access Control Protocol Based 
on Layered Scheduling Algorithm  

 

Xibo Wang1,2 , Fenmei Wang2 , Ge Yu1 
1.College of Information science and Engineering, Northeastern University, Shenyang, China 

2.School of Information Science and Engineering, Shenyang University of Technology, Shenyang , China 
 

wangxb@sut.edu.cn  wangfenmei205@126.com yuge@mail.neu.edu.cn 
 
 

Abstract—Complicated real-time application needs operating 
system providing layered scheduling mechanism to realize two 
layers scheduling for disjoint tasks subset. For satisfying the 
running predictability of real-time task under circumstance of 
layered scheduling, operating system should have corresponding 
resource access control protocol to avoid infinite priority 
inversion and deadlock phenomenon while multi-task sharing 
resource. Aiming at the problems, a new resource access control 
protocol based on layered scheduling algorithm is proposed. The 
protocol expands and redefines the priority inheritance protocol 
and the priority ceiling protocol, distributes resource control lock 
for each sub-modules, cross-sub-module resource contention is 
prohibited. Inside a sub-module, priority of task and priority of 
resource are set respectively, and priority ceiling protocol is 
realized by dual priority control approach. This protocol controls 
layered multi-task accessing critical resource effectively and 
reasonably, meet the demand of schedulable constraint condition 
for real-time task in layered sub-module situation, improves real-
time performance of layered scheduling algorithm. Theoretical 
analysis and experimental results indicate that layered resource 
access control protocol has the ability of inhibiting priority 
inversion and avoiding deadlock phenomenon effectively, 
enhanced resource access control ability while supporting real- 
time application. 

Keywords—real-time system, critical resource, dual priority, 
layered protocol 

I.  INTRODUCTION 
Real-time system not only needs to satisfy function demand 

of application, but also needs to satisfy real-time requirement 
put-forwarded by the application. However, real-time 
requirement of various real-time tasks are different. Besides, 
some complex correlation and synchronous relations between 
real-time tasks may exist, such as tasks executing order 
restriction, mutual exclusion access of sharing resource etc. 
This has brought great difficulty for assurance real-time 
performance and real-time task running predictability in real-
time system. The optimal scheme to solve the problems is 
designing suitable scheduling algorithm and corresponding 
resource access control protocol in real-time operating system 
to ensure real-time tasks behavioral predictability. The real-
time system is not paying attention to average behavior of 
scheduling algorithm and resource access control protocol, it 
requires each real-time task to meet the real-time demand in 
worst cases, i.e., the real-time system pay attention to 

individual behaves, more accurately, individual's worst 
situation behaves [1, 2 ]. 

While tasks in a real-time system can not satisfy their 
deadline by RM scheduling algorithm and resource access 
control protocol, choosing another processor with quicker 
processing speed is an inferior approach for improve system 
real-time performance. The optimal method is improving 
scheduling algorithm and resource access control protocol 
which has little system expenses and higher CPU handling 
capacity utilization ratio [3, 4]. Otherwise, some complicated 
real-time application needs operating system providing layered 
scheduling mechanism for function disjoint tasks subset. 
Aiming at the above problem, layered scheduling algorithm 
based on priority preemptive real kernel µC/OS-II is developed. 
The fixed round-robin time is set to realize sub-module 
scheduling, tasks in the sub-module also schedule in 
preemptive manner. Layered priority inheritance protocol 
(LPIP) and layered priority ceiling protocol (LPCP) are 
proposed on the basis of analyzing typical resource access 
protocol in layered scheduling environment. The proposed 
protocol can not only guarantee task deadline in sub-module, 
but also can avoid deadlock phenomenon and inhibit the 
priority reversion phenomenon. Theoretic analysis and 
experimental verification show that the layered scheduling 
algorithm is feasible and the layered resource access control 
protocol is correct. 

II. DEFINITION OF LAYER ALGORITHM AND PROTOCOL 
Definition 1: In case of not consider release jitter, tasks set 

is Τ ={τ1,τ2, …,τn}, time attribute of task τi is described by a 
five-tuple (Mi, Фi, Pi, Di, Ei). Among them, Mi is module ID; 
Фi show phase; Pi is task cycle, as to aperiodic task, Pi is   
minimum interval of the aperiodic task; Di shows the deadline 
of the task; Ei shows the biggest request running time of the 
task. 

The definition of task is expended from four-tuple [5] to 
five-tuple so as to realize layered management. Module ID is 
added to indicate which module the task belongs to and provide 
a sign point to sub-module index. 

Definition 2: As to task τi, response time of task instance is 
the time interval from reaching to finishing of the task instance, 
the maximum value Ri is called the biggest response time of 
task τi, if Ri≤ Di, claim task τi can be scheduled. 



         

Definition 3: If Ri≤ Di, claims task τi can be scheduled. If at 
a certain time point, all tasks in a certain real-time system can 
be scheduled, claims tasks set of the system can be scheduled at 
this moment. 

Definition 4: If system can ensure each sub-module task 
finished within deadline, claim tasks set of the system can be 
layered scheduled at this moment. 

Definition 5: Task section from initial critical resource 
locked to eventual matching unblocked is called critical section 
of the task. In addition, release of resources carry out according 
to the order of last in first out. So, overlapped critical section is 
strictly nested. 

Definition 6: When execution time in the critical section 
and nested way are all related with discussion, use the square 
bracket [R, n, e] to express critical section. R is resource 
accessed by task in critical section; n is number of the resource; 
e is biggest execution time of the task in the critical section. If 
number of resource R is only one, the value n is omitted, uses 
simple symbol [R, e] for replacement. 

Definition 7: Ω is priority ceiling. Its initial value is the 
lowest task priority of the system. If task apply resource, 
priority of resource become present priority ceiling П(t) . 

III. DESIGNATION OF LAYED MODEL 

A. Schedulable analysis for layered scheduling algorithm  
Assume: There are n independent and preemptive tasks in 

system, and task relative deadline is equal to its cycle. If the 
total utilization ratio U of the system satisfies (1), then, the task 
set and can be scheduled on the single processor according to 
RM scheduling algorithm [6]. 

 ( )1( ) 2 1 ln 2n
RMU n n= − ≤  (1) 

Deadline of each task must meet the conditions shown in 
(2). 

 ( )
( )

i i k
kk H

tw t e e
pT T i

 
≤ +  

 ∈
∑  (2) 

(Among them ( )HT i Show the task set in which task’s 
priority is higher than task Ti) 

While scheduling adopts layered model, sub-module is 
scheduled according to fixed time slice round-robin scheme, 
task in the sub-module scheduled according to RM algorithm, 
the effective supply time supply (t) of the sub-module task must 
meet  (3). 

supply(t) max 0,t tRL t RL
RL RL

τ τ    ≤ + − + −        
 (3) 

Among them RL is round-robin cycle of sub-

module,
RL
n

τ = , n is number of sub-module. Deadline 

threshold values of task i in sub-module j must satisfy (4). 

, ( )
( )

i j i k
kk H

tw t e b j e
pT T i

 
= + +  

 ∈
∑  (4) 

Where, bj is switching time of sub-module. Only expiration 
is small or equal to threshold value, system could realize 
correctly scheduling function. 

B. Designation of layered priority inheritance protocol 
In order to solve the problem of priority inversion in 

layered model, layer priority inheriting protocol is extended 
and used in layered scheduling algorithm. Assuming the 
number of each kind of resource is only one. The protocol rule 
is defined as follows: 

1) Scheduling rules:  
• Resources allocated for one sub-module can't be shared 

with other sub-module, i.e., the resources that a sub-
module occupied can't be applied by tasks in different 
sub-module before releasing, so it is necessary to try 
hard to dispose suitable resources for each sub-module. 

• On the processor, the ready task in sub-module can be 
scheduled in priority drive preemptive way according 
to its present priority. The present priority of each task 
J at the time of releasing is equal to its distributional 
priority. The tasks will always keep this priority 
unchanging except in case of rule 3). 

2) Distributional rules:  
When task J of a sub-module asks a resource R at moment t: 

• If R is idle, distributes it to task J, resource-lock is 
added to ensure other sub-module no longer has the 
ability to apply resource R before J releases it, but can 
be applied by other task in the same sub-module. 

• If R is not idle, check whether it lock by other sub-
module or not, if it is locked by other sub-module, task 
J turns into ready queue to wait next time slices, then 
applies once again. If R is used in this module, J insert 
into block queue. 

3) Priority inheritance rules: 
When higher priority task J apply for resources occupied by 

lower priority task Jl, j block and  Jl will inherit the present 
priority π(t) of J, the task Jl will carry out according to its 
inherited priority π(t) until it releases the resource R; After Jl 
withdraw critical section, priority of task Jl return back to its 
original priority. 

C. Designation of layed priority ceilinge protocol 
Because of layered priority inheritance protocol can not 

solve deadlock problem [7], layered priority ceiling-protocol is 
proposed for avoiding deadlock phenomenon while multi-task 



         

sharing resource at circumstance of layered scheduling. 
Layered priority ceiling-protocol is defined as following: 

1) Scheduling rules:  
• For each task Jij in sub-module, priority π(t) is equal to 

its distribution priority at release moment t. The tasks 
will keep this priority unchanging except in case of 
rule 3). 

• Each ready task J in sub-module is scheduled in the 
way of priority driven preemption according to its 
present priority π(t). 

2) Distributional rules:  
If task J of a sub-module asks a resource R in moment t, 

one of the three cases will occur. 

a) R is being occupied by another task in the same 
sub-modul:  the request of J fails, and J turns into blocks state. 

b) R is being occupied by another task of different 
sub-module: the request of J fails, and J enters the ready queue 
and waits for next time slice and apply once again. 

c) R is idle: 
• If priority π(t) of task J is higher than present priority 

ceiling П(t), then R is distributed to task J. 

• If priority π(t) of  task J is not higher than present 
priority ceiling П(t), could distribute R to task J only 
when J occupy the resource that its priority equal to 
priority ceiling П(t), otherwise, the request of J will be 
refused, J will turn into block state. 

3) Priority inheritance rules: 
When higher priority task J apply for resources occupied by 

lower priority task jl, j block and  Jl will inherit the present 
priority π(t) of J, the task Jl will carried out according to its 
inherited priority π(t) until it releases the resource R; After Jl 
withdraw critical section, priority of task Jl return back to its 
original priority. 

IV. ANALYSIS AND IMPLEMENTATION OF LAYERED 
PROTOCOL MODEL  

A. Implementation of layered priority inheritance protocol  
Non-preemptive scheduling is the prerequisite of priority 

inversion. Because critical resources has the property of non-
preemption, resource competition among multi-task may lead 
to priority inversion, even execution of tasks can be preempted, 
task of higher priority may be blocked by task of lower priority 
[8]. The priority inversion situation is demonstrated as 
following. 

Observe an example firstly. There are three sub-modules in 
one system, sub-module schedule based on round-robin time 
slice. The time of one round RL is 3 time units, length of time 
slice is 1 unit. Each sub-module can get one time slice in a 
round. Suppose there are three tasks J11, J12, J13 in sub-module 
1, feasible section of them are respectively (6, 14], (3, 17], (0, 
18]. Every vertical line on the time line marks releasing time 
and deadline for each task. These tasks are scheduled on the 
processor based on strategy of fixed priority algorithm RM 
(The period is equal to deadline). So, the priority of J11 is the 

highest, the priority of J13 is the minimum. Among them, task 
J11 and task J13 ask for same resource R. Critical section of 
J11 and task J13 are respectively J11 [R、1] and J12 [R、1.5]. 
The task scheduling diagram shown in Fig. 1, the black 
rectangle shows the time of task in its critical section. From the 
scheduling diagram, it can be seen that the priority of J11 
decrease to the level of J13, priority inversion occurs. If J12 
need long execution time, J11 will delay very long time. Most 
serious, if there are more medium priority task exists, J11 can 
be delay execution unrestricted long, the system scheduling 
may be collapse. 

 
Figure 1.  Priority inversion in layered scheduling algorithm 

The tasks of this sub-module are scheduled again by 
employ the layered priority inheritance protocol. Scheduling 
diagram shown in Fig. 2. It can be seen that while task J11 ask 
for critical resource occupies by task J13, task J13 inherit the 
priority of J11, task J13 will run at high priority level, use the 
critical resource as soon as possible, and then, withdraw its 
critical section. In this way, task J12 has no chance to preempt 
task J13, infinite priority inversion is inhibited. After J13 
withdraw its critical section, its priority return back to its 
original priority. While resource distribute to task in certain 
sub-module, it lock in the sub-module, tasks in other sub-
module can not apply the locked resource before the sub-
module release it. Resource cross-sub-module competition is 
not allowed. Resource control power could only transfer to 
other sub-module after current sub-module release it. 

 
Figure 2.  Priority inversion being inhibited by layered priority inheritance 

protocol 

It can be seen from the example that layered resource 
access control protocol can dispel priority infinite inversion 
behavior caused by critical resource competition. But the 



         

protocol can not avoid deadlock while two kinds of resources 
are applied concurrently by multi-tasks. Deadlock is a serious 
calamity in real-time application, suitable measures must be 
consider for solve deadlock problem. On basis of analysis 
typical protocol, layered priority ceiling protocol is proposed to 
resolve deadlock problem in layered scheduling case. 

B. Implementation of layered priority ceiling protocol  
Take tasks in sub-module 2 as an example to describe the 

implementation approach of layered priority ceiling protocol, 
tasks parameters described in Tab.1. 

TABLE I.  PARAMETERS OF TASKS IN SUB-MUDLE M2 

Task Ri Ei π Critical  secton 

J21 12 1 1 [Shaded;0.5] 
J22 8 1 2 [Black;0.5] 

J23 5 1 3  

J24 2 2 4 [Shaded;1[Black;0.5]] 

J25 0 3 5 [Black;2] 

 

Scheduling method based on layered priority ceiling 
protocol is described as follows: 

• At time point 1, task J25 gets time slice and run at 
distributed priority 5. Especially, priority ceiling of the 
sub-module is Ω at 1.5 time point. When J25 asks for 
Black resource, resource is allocated according to first 
case of part of c) in layered priority ceiling protocol 
rule 2). After distribut Black resource, the priority 
ceiling of the system is prompted to 2, i.e., priority 
ceiling of Black resource. 

• At time point 4, task J24 has already been released, it 
preempt task J25 and execute. At time point 4.5, task J24 
asks for Shaded resource. Shaded is idle at this 
moment, but because of the priority ceiling of the 
system П(4.5) is equal to 2, it is higher than the priority 
of task J24, the request of task J24 is refused according 
to second part of c) in layered priority ceiling protocol 
rule 2). J24 is blocked, thus J25 inherits the priority of 
J24 and carries out with priority 4. 

• At time point 7 , task J23 preempte J25, at moment 8, 
task J23 finished, in the moment 10, J22 preempte J25, 
after execute 0.5 time slice, J22 asks for Black resource 
and is blocked directly by task J25, task J25 inherits the 
priority of J22 and execute with priority of J22 until task 
J21 is ready and preempte it. During this period, the 
priority ceiling of the system keeps in 2.  

• When task J21 applies for Shaded resource, its priority 
higher than ceiling of system. So, the request of task 
J21 is accepted according to first part of c) in layered 
priority ceiling protocol rule 2). J21 can enter its critical 
section and finish at moment 14, at moment 16, J25 
resumes execution.  

• Task J25 releases Black resource at moment 6.5, the 
priority resumes 5 and priority ceiling of system 

dropped to Ω, task J22 is not in blocked state, assign 
Black resource to it according to first part of c) in 
layered priority ceiling protocol rule 2), accept request 
of J22 and finishes at time point 17. 

• At time point 19, running task J24 applys Shaded 
resource, because priority of J24 is higher than priority 
ceiling of the system at this moment, therefore the 
Shaded resource can assigned to it and it begin to 
access critical resource. The priority ceiling of the 
system rises to 1. J24 Release the resource Shaded after 
0.5 time slice, then applys for Black resources. J24 is 
the only task of applying for resource at present, 
resources is distributed to it.  

• At moment 22, task J24 and J25 finish execution.  

According to the priority ceiling protocol algorithm 
describes above, scheduling diagram is shown in Fig. 3, where, 
black rectangle shows the critical section of task that occupy 
Black resource, shade rectangle shows critical section of task 
that occupy Shaded resource. 

 
Figure 3.  Scheduling diagram by using priority-ceiling protocol in module 2 

As describe previously, priority ceilings of resource Black 
and Shaded are 2 and 1 respectively. In module M2, the 
priority ceiling П(t) changes with tasks access critical resource. 
Priority ceiling diagram of the above example is shown in Fig. 
4. It can be seen from Fig. 3 and Fig. 4 that task J24 is blocked 
at 4.5 time point based on rule of second part of c) in layered 
priority ceiling protocol rule 2). As a result, task J24 with lower 
priority is sacrificed, so as to make task J21, J22, J23 with higher 
priority finish earlier. This is just the effect the protocol 
provided. 

 
Figure 4.  Priority-ceiling diagram of layered protocol 



         

Priority inheritance protocol is greedy, but priority ceiling 
protocol is not, that is the most fundamental difference between 
them. Compared with inheritance protocol, the ceiling protocol 
can prevent occurrence of deadlock, but inheritance protocol is 
unable to prevent deadlock. According to layered inheritance 
protocol, scheduling diagram of tasks in Table 1 is shown in 
Fig. 5. It can be seen from Fig. 5 that task J25 ask for Shaded 
resource after Shaded resource has already distributed to task 
J24 at a certain time point (for instance, at 4.5 moment), then 
these two tasks will be both blocked, deadlock phenomenal 
occurs. Such a situation will not appear by using layered 
priority ceiling protocol. 

 
Figure 5.  Scheduling diagram of priority inheritance protocol 

V. EXPERIMENT EMULATION AND RESULT ANALYSIS 
Layered scheduling algorithm needs real-time kernel 

supporting same priority task scheduling. But, µC/OS-II real-
time kernel which being selected for verifying the proposed 
protocol does not support same priority task scheduling. 
Therefore, µC/OS-II kernel structure must modify and round-
robin time slice scheduling schemes should add in µC/OS-II 
scheduler to support same priority scheduling before 
experiment. Above problems has already solved by author’s 
previous research work [9, 10]. 

In experiment, mutual exclusion signal is employed for 
imitating application and release of critical resources. 
Execution diagrams of layered sub-modules scheduling are 
shown in Fig. 6-8. Fig. 6 shows effect diagram of priority 
inversion in module M2; Fig. 7 is effect diagram adopting 
layered inheritance protocol to control priority inversion; Fig. 8 
is effect diagram adopting layered ceiling protocol to control 
priority inversion and avoid deadlock. 

 
Figure 6.  Task23 priority inversion in M2 

 
Figure 7.  Priority inversion inhibited by priority inheritance protocol 

 
Figure 8.  Priority inversion inhibited and deadlock avoided by priority-

ceiling protocol 

It can be found out from Fig.6 that task J23 with higher 
priority is blocked by task J24 with lower priority and appear 
the phenomenon of priority inversion. Like Fig. 7, task J23 is 
blocked while applying for resources, task J25 inherits the 
priority of task J23, priority inversion is inhibited after using the 
priority ceiling protocol. Result illustrated in Fig 8 shows that 
not only priority inversion can be controlled but also prevented 
deadlock. 

VI. CONCLUSION 
Through reconstructing µC/OS-II kernel and improving its 

scheduler, its function of scheduling has been expanded and 
strengthened, the aim of layered scheduling that supporting 
complex application can realize. Under circumstance of layered 
scheduling, resource access control protocol was studied and 
extended, layered priority inheritance and ceiling protocol rules 
are proposed for inhibiting priority inversion and avoiding 
deadlock. The proposed protocol is verified on improved 
µC/OS-II real-time platform. Theoretical analysis and 
experiment result show that the proposed protocol is feasible 
and effective. Next step of research will be multiply processors 
resource access control protocol. 

REFERENCES 
[1] G. Xu, F. M. Yang. Review of embed operation system. Application 

research of Computer):4-9. 
[2] J. Sauermann, M. Thelen. Real-time operating system department of 

computer Engineering. Malardalen University,2003,7-10. 
[3] G. J. Huang, Z. G. Hu. A Threshold Based Scheduling Algorithm for 

Embedded Real-time System. Computer Engineering. 2006,32(3): 68-70. 



         

[4] E. Bini, G. Buttazzo. Rate monotonic analysis: The hyperbolic bound. 
IEEE Trans. on Computers, 2003,52(7): 933-942. 

[5] J. Y-T Leung, J. Whitehead. On the complexity of fixed-priority 
scheduling of  periodic, real-time tasks. Performance Evaluation, 2:237-
250, 1982. 

[6] Mok, A. K-L., D. Chen. A multiframe model for real-time. Proceedings 
of IEEE Real-time Systems Symposium,December, 1996. 

[7] L. Sha, R. Rajkumar, and C. H. Chang. A real-time locking protocol. 
IEEE Transactionson Computers, 40(7):793-800, Jul 1991. 

[8] J. X. Liu, Y. J. Wang, Y. Wang. Real-Time System Design Based on 
Logic OR Constrained Optimization . Journal of Software, Vol.17, No.7, 
July 2006, pp.1641-1649. 

[9] C. S. Xie, J. D. Ma, H. Huang. Research on Task Scheduling Policies 
Based on µC/OS-II. Computer Engineering & Science, 2004, 26(8): 70-
73. 

[10] X. B. Wang, B. H. Zhou, G. Yu，Q. Li. Homology Priority Task 
Scheduling in µC/OS-Real-time Kernel.Wuhan University Journal of 
Natural Sciences,2007,12(1):167-171.. 

[11] Y. Qiao, H. A. Wang, G. Z. Dai. Developing a New Dynamic 
Scheduling Algorithm for Real-Time Multiprocessor Systems. Journal of 
Software, 2002,13(1):51-58. 

 


