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Abstract—This paper has used a series of back-progation neural 
networks (BPNs) to form a hierarchical framework adequate for 
the implementation of an intelligent FMEA (failure modes and 
effects analysis) system. Its aim is to apply this novel system as a 
tool to assist the reliability design required for preventing failures 
occurred in the operating periods of a system The hierarchical 
structure upgrades the classical statistic off-line FMEA 
performance. From the simulated experiments of the proposed 
BPN-based FMEA system (N-FMEA), it has found that the 
accuracy of the failure modes classification and the reliability 
calculation are knowledgeable and potential for performing 
pragmatic preventive maintenance activities. As a result, this 
paper conducts an effective FMEA process and contributes to 
help FMEA working teams to reduce their working loading, 
shorten design time and ensure system operating success.  

Keywords—back-propagation neural networks, failure modes 
and effects analysis, preventive maintenance, reliability design.  

I. INTRODUCTION  
FMEA (Failure Modes, Effects and Analysis) has been 

addressed over the past four decades. Its analysis procedure is 
based on FMEA guidelines described in QS-9000 standard 
regulated by teams working under the Automotive Division of 
the American Society for Quality Control (ASQC) and the 
Automotive Industry Action Group (AIAG) located at 
Chrysler, Ford, and General Motors. The QS-9000 standard 
requires suppliers to the automotive industry to conduct the 
FMEAs of product design and manufacturing process in an 
effort to eliminate failures (defects) before they happen. Thus, 
it needs a systematically proactive approach for performing 
the identification and prevention of the occurrences of system 
failure problems, further to advance safety, extend warranty, 
and then increase customer satisfaction. Also, FMEA is 
conducted, in principle, in the product (reliability) design or 
process (quality) development stages, but conducting an 
FMEA on an existing system (product or process) may create 
great benefits [1, 2].  

Brainstorming used in an FMEA team is one of such a 
proactive way to identify potential failure modes that could 
affect a system’s process or its quality; then the affecting 
severity degree, RPN (risk priority number), is calculated and 
classified for each failure mode to determine its corresponding 
causalities and select failure corrective actions. These 
associative tasks involving with failure corrections and 
reliability improvement make FMEA be a mechanism to know 

where, what and why a system’s functions may fail, and how 
they can be corrected reliably, before its related failures occur. 
Since its failure preventions can be done before a system 
works, FMEA can not only continuously improve product 
and/or process reliability and quality, but also reduce cost and 
shorten time required for the research and development (R&D) 
of a system, e.g., product, equipment or process [3]. 
Additionally, for the CMMI (Capability Maturity Model 
Integration) quality management needed in the process of a 
software product development, FMEA is also creditable for 
preventing those problems of the software’s malfunctions prior 
to the software’s release. The software quality accreditation 
process may be affected with a certain degree if a failure (bug) 
hidden in the software could not be found in advance [4, 5].  

Yet, at present, it has become clear that the functional 
requirements of operating all factors or parameters in the 
reliability and quality design, such as on-line failure modes 
identification and real-time computation of reliability 
parameters, might not be simultaneously taken into account 
with a classical statistic FMEA technique, thus a better 
approach is required to make ascent in the ability of 
performing FMEA tasks. Fortunately, the approaches based on 
artificial neural networks (ANNs) for the fault identification, 
classification and computation have been put forward and 
proved effectively [6, 7], and these ideas inspired this paper to 
develop an alternative FMEA system with ANNs, called back-
propagation neural networks (BPNs), which has been used 
widely in various applications [8, 9, 10]. This paper will 
present the performance and the stable BPN learning behavior 
applied to FMEA situation considered, and from the 
implementation experiences, the suitability and superiority of 
the proposed hierarchical framework composed of BPNs for 
performing FMEA tasks are striking.  

 In what follows, the outline of this paper is described. 
Section II gives an introduction to FMEA. For readers who are 
not proficient with FMEA, this section serves as a foundation 
of the subject. Then, the background in BPN is reviewed, 
including its mechanism used to perform the optimal learning 
process and further applied to FMEA. Subsequently, some of 
the previous published work done on the application of ANN 
to fault identification and classification, which will be 
extended to develop the intelligent FMEA system proposed in 
this paper, is briefly reviewed. In Section V, the details of the 
newly hierarchical structure for performing FMEA tasks are 



proposed, and the solution accuracy of its simulated numerical 
experiments are conduced in the penultimate section for 
evaluating the performance of the proposed hierarchical BPN 
network. The final section concludes the findings of this paper. 
The contributions of this paper will be described and some of 
the ways that this paper can be extended in the future are 
pinpointed in this section.  

II. FMEA INTRODUCTION  
As aforementioned, FMEA can identify the potential 

failures of each of the constituent functions performing the 
whole correct operation of a reliability system (a process or a 
product), and then associate those identified failures’ types 
(modes) with the causes and the effects which may influence 
on the whole process (product); also, it is frequently used as a 
primary tool for system reliability improvement and 
maintenance planning before they are functioned and operated. 
By means of its performing FMEAs, a company is benefited 
both with significant cost and time saving in its product 
development and process maintenance and with the reduction 
of potential risk of costly liability that does not perform as 
promised. Thereafter, FMEA often is considered as the first 
step of designing the reliability and quality required in a system 
study. Figure 1 shows a progress of FMEA performed in the 
course of a process (product) development [11]. As shown in 
the figure, each of the five phases has its own FMEA tasks, 
from the initial conceptual prototype design to the final 
maintenance management through the design of interface with 
the prototyped system, the upgrade system design for more 
practices and the verification of the upgraded system. The 
successful verification makes the system useful and this usage 
has been kept by correct maintenance until its usage life 
reaches.   

 
Figure 1 A general progress of FMEA tasks for a system life cycle 

 
TABLE 1. AN FMEA FORM 

 
 
Table 1 is a form of FMEA process used to record the 

status of system usage during its life cycle. The heading of 
each column can be modified or more information can be 
added into the form for the necessity of practical FMEA tasks. 
It should be noticed that one of the main FMEA tasks is to 
calculate the risk number RPN for each failure mode. The 

higher the risk number is, the more serious the failure could 
be, and the more cautious the failure mode is. For a detailed 
description of the FMEA process, see [12, 13]. It is usually 
advisable to determine the RPN value of each failure mode 
before completing the last columns of the table because in this 
way the corrective actions required against each item can be 
judged in the light of he ranked severity and the resources 
available. Technically, an FMEA process contains the 
following tasks [14]:  

 Assign a label to each process’s component.  
 Describe the functions of each component.  
 Identify potential failures for each function.  
 Assess the effects of the failures.  
 Find the causes of the failures.  
 Estimate the probability of failure occurrence.  
 Calculate the servility of the failure.  
 Rank a priority for a severity.  
 Address the highest severities.  
 Determine the likelihood of detecting the failure  
 Update the FMEA as corrected and improved actions are 

taken.  
 Document historical FMEAs for future reference to aid 

in analysis of field failures and deliberation of process 
design changes.  
These FMEA tasks will be logically and hierarchically 

mapped onto the intelligent N-FMEA architecture proposed in 
this paper. Generally, a traditional procedure used to perform 
the above FMEA tasks can be summarized as follows [13, 15].  
Step1. Review systematically the component or constituent 

functions to ensure that any failure produces less 
damage to the entire system.  

Step2. List all possible failure modes of each constituent 
reviewed via brainstorm process.  

Step3. Observe the effects that each mode of failure would 
have on other constituents in the system and their 
functions.  

Step4. Find all the possible causes of each failure mode.  
Step5. Scale numerically the failure modes on a range of 1 to 

10. Expert experience and reliability data should be 
used together to determine [16, 17]:  
Step5-1. occurrence (O) of each failure mode, i.e., 

frequency of failure mode happens, (1 = very 
rare, 10 = very often). 

Step 5-2. severity (S) of a failure, i.e., how serious is a 
failure occurrence impact (effect) on the 
system function. (1 = the least effect, 10 = the 
highest effect). 

Step 5-3. detectability (D) of a failure occurrence, i.e., 
the difficulty of detecting a failure before the 
system is used. (1 = very easy, 10 = very 
difficult).  

Step6. Compute RPN = O × S × D, for each failure mode. 
RPN indicates the relative priority of each mode in the 
failure prevention activities.  

Step7. Rank RPN for each failure mode  
Step8. Select the corrective actions required and record 

expected reliability and quality data.  



Step9. Drive continuous risk assessment to reduce RPN of 
each failure mode for increasing the system usage 
safety.  

Table 2 readies these steps of carrying out an FMEA 
process.  

TABLE 2.  A GENERAL PRROCEDURE PERFORMING FMEA 

Step FMEA Tasks 
1 review the constituent functions 
2 brainstorm possible failure modes 
3 observe possible effects on the failure modes 
4 find possible causes to the effects 

scale risk parameters (1 to 10) 
determine the frequency of failure occurrence 
determine the severity of each failure mode 

5 
5 - 1 
5 - 2 
5 – 3 determine detectability of each failure mode 

6 compute risk priority number (RPN) 
7 rank RPN for each failure mode 
8 take corrective actions to reduce RPN 
9 drive continuous risk assessment (go back to step 1) 
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Figure 2. A standard BPN structure  

III. ANN INTRODUCTION 
An ANN structure is variously defined by several layers of 

artificial neurons, interconnections between layer neurons and 
an activation function of each neuron. A typical ANN has three 
sequentially combined layers, input, hidden and output layers, 
in each of them a neuron has its own summed up inputs that 
result in a different activation level for itself. The layered 
neurons may be fully or partially interconnected. Figure 2 
draws a standard ANN structure with the three layers. The 
training method used the ANN is called supervised training 
because the target values are the supervisor that functions as to 
correct the errors between them and output values. Another 
type of an ANN training is unsupervised. The un-supervision 
means that there are no target values, and its training process is 
performed by self-organizing its own weights. A supervised 
ANN training algorithm, called back-propagation network 
(BPN) algorithm, used in Figure 2 is briefly addressed below, 
which was taken from the authors’ previous paper [18]. 
Detailed introduction to ANN can be found in [9, 10, 19, 20].  

 
A.   Standard BPN  

A typical BPN consists of a number of neurons organized 
into three layers. The first layer is called an input layer with 
one neuron for each variable or feature Xi of a pattern or a 
vector (X1, X2, …, Xn) in a training data set in the form of pairs 

of (Xi,
oNŶ ); 

oNŶ is the external known feature used as a target 
value to supervise the BPN output response YNo for monitoring 
whether the BPN learning process is optimal. Similarly, the 
third layer functions as an output layer consisting of neurons 
in which each YNo represents for a specified feature meaning to 
be analyzed. In between, there is a hidden layer also formed by 
a number of neurons accountable for activating and learning 
the input features. Neurons in one layer are fully connected to 
neurons of a succeeding layer. The BPN propagates its input 
vectors, which can be any multivariate data series, to its output 
layer through the hidden layer, so that each connection with 
quantified with a real number called a weight (w) can be 
adapted (trained) to be optimal value by means of minimizing 

the MSE between YNo and 
oNŶ ; thus, the weights are thought 

of as the BPN’s memorization or connection strength of the 
input vectors.  

Mathematically, neth , the input to neuron h is a 
collected signal come from each input neuron i, is given by:  
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where hiw is the weight associated with the connection from 
input neuron i to hidden neuron h; oi is the input-layer’s output 
value which is the same as its own input feature Xi. Unlike oi, 
oh, the neuron output of the hidden layer, is determined by 
both the activation function f and neth, the collected signal of 
neuron h. One common f is the sigmoid as follows:  

( ) ( )[ ]  exp1
1

θ+−+
==

h
hh net

netfo          

(2) 
where θ  is a bias term or threshold value of neuron h 
responsible for accommodating non-zero offsets in the data. 
The computation of the input values onet  and output values 
oo of the neurons in the output layer are similar with (1) and 
(2), respectively.  

Once the output value oo (=Yo) estimated by the BPN has 
been obtained, the MSE can be calculated by:  
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Equation (3), the objective function of the training 

procedure, is used to find a set of optimal weights (and biases) 
that permit the BPN to estimate its output values (Y ) as close 
as possible to the external known targets ( Ŷ ), in order to 
minimize their error function MSE(w). The adaptation of the 
weights completes when the MSE(w) satisfies the previously 
regulated convergence criteria. At this point, the BPN is 



considered trained, and then the trained BPN may be used to 
evaluate its generalization or solution capability (solvability) 
by using other un-training sets, known as the validation set.  
 
B.   Why ANN for FMEA  

There are many classical and standard FMEA systems 
available to correlate the causality and severity among system 
features (parameters). They all have their own advantages and 
disadvantages but an obvious weakness is that they cannot 
tackle an unknown or unforeseen failure event, which means 
they can only identify what has already saved in their data 
base. This significant weakness causes a classical FMEA 
system not to  
(1) easily integrate with other reliability design systems,  
(2) promptly associate failure modes, effects, causes with 

corrections,  
(3) appropriately interpret a defect process,  
(4) necessarily memorize the newly occurred failures, and  
(5) competently predict future failures.  
These disadvantages, fortunately, can be made up by a modern 
machine learning technique, such as ANN.  

IV. LITERATURE REVIEW  
It has been not a novel idea of taking advantage of ANN to 

fault identification and classification. Watanabe,. Hou and 
Himmelblau [7] presented a hierarchical ANN system to 
recognize the faults of a chemical reactor. The system 
diagnosed faults and classified based on the known operating 
data. Its hierarchy divided a large number of data patterns into 
several smaller subsets so that the classification could be 
carried out more accurately. One of its advantages was that 
multiple faults can be detected in unseen data even if the 
system was trained with data representing single faults. Kurd 
and Kelly [21] applied a fuzzy ANN to a FMEA problem. A 
fuzzy self-organizing map was developed to deal with the 
qualitative and quantitative features. The fuzzy ANN map 
enabled the association of the features for mitigation of 
potential failure modes and was used for approximating the 
value of criticality. Failure modes associated with functional 
properties were systematically identified using HAZOP guide 
words. This approach ensured that a wide range of potential 
hazardous failures for specific applications were discovered. 
Sharma et al. [22] applied fuzzy methodology (FM) combined 
with Petri net, as an approximate reasoning tool to deal with the 
imprecise, uncertain and subjective information related to 
system performance. Various reliability parameters, e.g., repair 
time, failure rate, mean time between failures, availability and 
expected number of failures, are computed to quantify the 
uncertain behavior of system; further, the FM was 
demonstrated to rank RPN values of a traditional FMEA where 
the uncertain parameters cannot be treated with. Tian and 
Noore [23] took ANN trained by genetic algorithm to predict 
the cumulative failure time of software, the predictability was 
increased because of the non-differential optimization method.  

Su and Huang [24] also demonstrated that a probability of 
software reliability of a system can be predicted for estimating 
software reliability growth trend. The last two papers imply 
that ANN can be used to estimate the probability of a failure 
mode occurrence in an FMEA. Boyd et al. [6] addressed an 

expert system (ES) method, and supported with NASA Ames 
Research Center, to build up a computerized diagnosis system 
for real-time systems that was based on the integration of a 
knowledge base derived from design-phase FMEA with the 
inference engine embedded in a real-time data parameter 
monitoring program. An example system from the commercial 
automotive industry was demonstrated the ES method. This 
real-time ES for dealing with FMEA problems was one of the 
inspirations on developing the N-FMEA system described 
below.   

 
Figure 3. Conceptual N-FMEA hierarchy  

 

V. IMPLEMENTATION OF INTELLIGENT N-FMEA  

Based on the authors’ practice experience of implementing 
real-case of an automatic statistic FMEA system [25] and 
inspired by the ideas described in the previous section of the 
literature review, this section will depict N-FMEA as an 
automatic FMEA system structured with a hierarchical BPN. 
Figure 3 conceptualizes the workflow of the N-FMEA 
functional performing. The first BPN block functions the 
classification of failure modes whose features or signals come 
from the simulated FMEA database being examined and 
tested. The FMEA database stored a lot of experiences and 
experimental information of reliability experts. It was set up 
with the results of the expert brainstorming colloquium. Both 
system features and FMEA experienced data are presented to 
N-FMEA for its training. The trained N-FMEA can be used to 
identify the unseen features for checking that their mode(s) is 
(are) normal or failure. The subsequent BPN block associates 
the identified failure modes with the corresponding causes that 
made the failure occurrences. The effects resulted from the 
cause occurrences are then respectively related each other. 
These respective relations are accomplished by the third BPN 
block. After the three risk parameters, D, O and S, were 
obtained from the previous three BPN blocks, the failure risk 
(RPN) of the whole system being tested can be calculated, and 
the corrective actions corresponding to the failure modes 
identified can be taken from the FMEA database.  

Figure 4 details the hierarchy of N-FMEA. The hierarchy 
formed by BPNs is one sort of an effective problem-solving 
structure composed of several levels in which each level 
contains a number of BPNs used to do the FMEA classification 
tasks. Usually, it clarifies a sophisticate FMEA problem, which 
a single BPN difficultly solves, into a number of sub-problems 



or of specified problems and outclasses the result of a single 
BPN done.   

 
Figure 4. Detailed N-FMEA hierarchical structure 

 

In the figure, the first level has only a single BPN used to 
discriminate failure modes from a normal mode in terms of 
testing signals generated from a simulated process. The FMEA 
data base was set up with the results of brainstorming 
colloquium. For doing the experiments of the proposing N-
FMEA system, the FMEA database was [25] built up with 
Execl tool. The number of BPNs within the second level is the 
same as the number of failure modes defined in the first level. 
Each second-level BPN will be subsequently used to determine 
the cause(s) or factor(s) of each failure occurred in the previous 
level. After the failure cause(s) was determined, each cause’s 
corresponding effect(s) is associated by the respective BPN in 
the third level. This hierarchical BPN-based FMEA system 
disaggregates a complex statistic FMEA procedure and 
correlates the super- and sub-ordination between the separated 
subsystems; that is, the top level is allowed to set targets to its 
subordinated level for associating causes with effects. BPN of 
the lowest level functions as a mechanism for the RPN 
computation. Detailed training and testing data will be shown 
in the next section for the demonstration of N-FMEA.   

 
Figure 5. The N-FMEA training and testing procedure  

VI. SIMULATED EXPERIMENTS OF N-FMEA 
Figure 5 shows the workflow of the N-FMEA training and 

testing. After the FMEA database was brainstormed and 
established by the experienced reliability experts, the examples 

for the N-FMEA training can be performed, and then carries 
out the testing phase. The solution phase examines the system 
to get its FMEA information and N-FMEA can be implemented 
for real-case study. Partial portion of training and testing data 
are shown in Tables 3 to 8. Table 3 has two examples for 
training possible failure modes and their corresponding FMEA 
data collected from the brainstorming FMEA database. The 
entry values in the table can be obtained from Table 4 to Table 
8 in which each table describes the data needed to do the 
FMEA tasks. These data were made hundreds of combinations 
or correlations for the simulated failure modes, causes, effects 
and their respective RPN values. The combinations were 
partitioned so that 85% of them were used to train N-FMEA, 
while the remaining 15% was reserved for the testing of 
validation. Training of the local BPNs was achieved using 
back-propagation of error (0.001). One combination is to a 
single failure mode and its relative FMEA data. Table 9 and 
Table 10 are the examples of such combinations. Lots of other 
various combinations can be found in [26], and more N-FMEA 
performance experiments can be available in it as well. There 
30 BPN networks were trained to learn the simulated FMEA 
data. Table 11 is one of N-FMEA outputs for RPN 
computation. The error between the N-FMEA estimated and 
the manual RPNs are shown in the table.  

TABLE 3. AN EXAMPLE USED TO TRAIN N-FMEA 

 
TABLE 4. TRAINING DATA OF FAILURE OCCURRENCE 

 

TABLE 5. TRAINING DATA OF DETECTABILITY 

 
TABLE 6. TRAINING DATA OF SEVERITY 

 
TABLE 7. TRAINING DATA OF D, O AND S 

 
 

TABE 8. TRAINING DATA OF RPN 



 
TABLE 9. TRAINING SAMPLES FOR FAILURE MODES CLASSIFICATION 

 
TABLE 10. TRAINING SAMPLES FOR FAILURE SEVERITY CLASSIFICATION 

 

TABLE 11. TRAINING SAMPLES FOR RPN COMPUTATION 
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