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Abstract—Theory and application of both artificial neural 
networks (ANNs) and data envelopment analysis (DEA) have 
gone through major growth over the past three decades; 
nevertheless, using ANN as an optimal algorithm for finding the 
DEA solution has been limited. In this paper, a Hopfield neural 
network is applied as a solution tool to DEA models. An 
illustrative example from a known DEA problem helps to gain 
insight into the proposed alternative DEA solution method, 
including its capability and limitations.  
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I.  INTRODUCTION  
DEA was first developed by Charnes, Cooper and 

Rhodes in 1978 [1], and since then it has mostly been used to 
benchmark or evaluate the relative operating efficiencies of 
DMUs (decision-making units) composed of a unified system 
being assessed. The major advantages of DEA are its allowing 
the relative efficiency to change over time and requiring no 
prior assumption on the best solution frontier; therefore, lots of 
businesses or organizations have applied DEA to find their 
operating performances for further making decisions on the 
efficiency improvement. Those inefficient DMUs can be 
identified and proposed to make up their input resources 
and/or generated benefits. The identification has been 
performed widely by linear programming (LP) technique [2, 3, 
4]; yet, the serious dependence on the number of DMUs 
causes the LP technique to a longer DEA computation time. 
To overcome this limitation, an alternative approach seems to 
be needed.  

It has been well known that ANN is a better 
optimization technique than a classical optimal search method 
because of its virtues of inherent parallelism, fault tolerance, 
robust solution, learning ability and fast real-time solution. 
Using Hopfield neural networks (HNNs) to perform an LP 
procedure exactly is one of such examples of taking advantage 
of the ANN’s optimal training procedure to solve classical 
optimization problems effectively [5, 6, 7]. This ANN-based 
LP method inspired this paper to conceive the conception of 
solving a DEA problem by means of the HNN optimal 
learning algorithm.  

The paper is organized as follows. A brief review of 
previous works about using ANN to DEA is given in the 
following section. Sections 3 and 4 respectively provide a 
summary of DEA and HNN approaches. Development of 

HNN-based DEA using the Lagrange function is described in 
Section 5. A numerical DEA example is the focus of Section 
6. Conclusions and thoughts for future research are addressed 
in Section 7.  

II. PREVIOUS STUDIES ON DEA WITH ANN   
There have been several articles presenting the 

combination of DEA and ANN to solve efficiency evaluation 
problems. Wu et al. [8] employed back-propagation neural 
networks (BPNs) to learn the data generated by DEA 
formulated, and then the trained BPN predicted the bank 
efficiency. Their method was impractical because the 
efficiency solutions had been obtained by DEA, there was 
unnecessary for sending them to BPN to do the efficiency 
prediction again. Like Wu et al. [8], Wang [9] also took BPN 
to learning the data of frontier obtained from CCR model, and 
then the trained BPN was used to predict DMU efficiency. 
Both papers were done with similar idea and similar 
discussions and conclusions on the BPN-based DEA solution. 
Still, they are impractical for performing the DEA evaluation 
because the BPN training data acquisition was tedious and the 
optimal DMU solution had been firstly found by CCR for a 
certain DEA problem. Using the trained BPN to predict the 
same DEA problem for estimating its approximated efficiency 
seems to be unnecessary. Also, different DEA problems may 
not be tackled by the same trained BPN, and the generalized 
DEA solution may not be an exact value of one for an efficient 
DMU. Pendharkar and Rodger [10] did the similar comparison 
of BPN to DEA as both Wu et al. [8] and Wang [9], but their 
DEA functioned as the data pre-processing for BPN training. 
The data first classified efficiency and inefficiency ones via 
DEA, then the two classified data were presented into BPN for 
its learning and efficiency classification. The solution quality 
of the both models was paralleled.  

Costa and Markellos [11] depicted that both BPN and 
DEA were used to predict the public transport productive 
efficiency in which BPN was able to provide more 
information on the production function evaluation than DEA 
since BPN gets fault-tolerance structure and seldom statistical 
data assumptions. This paper, however, did not seem to 
analyze the DMU efficiency and inefficiency problems which 
is DEA essential, but to model a production function for the 
solution quality comparisons. Apart from the unclear DEA 
formulation, BPN training data definition was also not 



         

presented. Athanassopoulos and Curram [12] compared BPN 
with DEA and found that BPN predicted the relative DMU 
ranks very well, whilst DEA was good at estimating empirical 
production functions. The comparisons were made with two 
experiments: one was based on simulated data from a known 
production function with different levels of inefficiencies and 
random noise, another on a multiple-input multiple-output data 
set of 250 commercial bank branches. Liao [13] did the similar 
comparison work as Athanassopoulos and Curram [12]. Three 
frontier methods, DEA, ANN and stochastic frontier analysis, 
were compared with the performance of DMUs. The result 
shown that BPN was a promising alternative to traditional 
approaches since it approximated production functions more 
accurately and evaluated efficiency and productivity under 
non-linear space with minimum assumptions.  

To sum up, there are two sorts of combining ANN with 
DEA literatures, one focuses on the comparisons of the 
solution quality of production function of different frontier 
methods to BPN, which means that BPN is regarded as an 
individualized approach; another aims to use the laborious 
systematic DEA generating solutions to train BPN for 
generalizing an approximated DEA efficiency. The criticism on 
the both sorted methodologies was briefly presented above. A 
pragmatic idea of using ANN as an alternative to find the DEA 
solution may be to take advantage of ANN training algorithm 
to find DEA optimal solution, not to use the trained ANN to 
generate approximated DEA solutions. This paper will present 
such an idea of using HNN optimal algorithm to get DEA 
solution. 

III. INTRODUCTION TO DEA 
As aforementioned, DEA is an LP-based technique to 

measure the relative efficiency of DMUs constituting a system 
being evaluated. Since the initiated DEA model, called CCR, 
named with the first letter of its developers’ last names, 
Charnes, Cooper and Rhodes [1], was formulated in 1978, 
DEA has been widely applied to assess performance in diverse 
businesses and industries such as educational learning, 
hospital management, service process, manufacturing and 
production operations, personnel productivity, and so on. The 
reasons why DEA has been employed as a so popular tool 
include its ability of dealing with multiple (resources) inputs 
and multiple (production) outputs allowed to be expressed in 
different DMUs of measurement, and another is its capability 
of comparing a virtual DMU which is formed by linearly 
combining all original DMUs to a single original DMU by 
means of finding an optimal efficiency score of each original 
DMU. These efficiency scores (the points at the coordination 
of input and output) define the production possibility set of 
which a subset of its boundary points forms the efficient 
frontier and the remaindering inefficient DMUs are enveloped 
by this frontier where possesses substantial information on 
their inefficiency improvement potential. The degree of the 
improvement potential is determined by comparing a single 
original DMU to the linear combination of all DMUs located 
on the efficient frontier that utilize the same degree of inputs 
and produce the same or a higher degree of outputs [14].  

There are various kinds of DEA model. In principle, 
they can be classified by two conceptions. One is based on 
whether the consideration of all DMU efficiencies is a type of 
input or output. An input-oriented DEA model thinks of 
efficiency as the least resources input for the same amount of 
production output, whereas an output-oriented DEA model 
regards efficiency as the most production output for the same 
amount of resources input. If the relative DMU is better than 
an assessing DMU by either making more output with the 
same input or making the same output with less input, then the 
assessing DMU is inefficient.  

Another conception is according to the scale of optimal 
DMU score. This optimal score scale, called returns to scale 
(RTS) referring to increasing or decreasing efficiency based 
on size in terms of output/input ratio, discriminates DEA 
models into four types. If a DMU’s production increases, its 
efficiency could be increased, remained constantly, decreased 
or varied, thus, creating Increasing Returns to Scale (IRS), 
Constant Returns to Scale (CRS), Decreasing Returns to Scale 
(DRS) or Variable Returns to Scale (VRS), respectively. VRS 
refers to a situation where both an increase and a decrease in 
RTS are observed at different degrees of production output, 
which means that not all DMUs operate on an optimal scale. 
CRS means that DMU is able to scale its inputs and outputs 
without increasing or decreasing efficiency; in other words, if 
the scale is up (increased) or down (decreased) with the DMU 
inputs and outputs, the DEA model respectively is IRS or 
DRS. In this paper, an input-oriented CCR model is 
demonstrated as a LP-based DEA of which formulation is 
solved by Hopfield neural network (HNN). This alternative 
solution method to CCR is presented later. As for more 
discussions about DEA, two textbooks are worthy of reading, 
Cooper, et al. [15] and Charnes, et al. [16], and a good survey 
paper described by Avkiran [17]. Certain computational 
numeric comparisons of the DEA solutions based on various 
LP algorithms were investigated in [18] and [19]. In what 
follows, CCR is depicted for the preparation of its HNN 
optimal training process.  

CCR is an efficiency assessment tool that assumes non-
negative of all inputs and outputs. The CCR model given the 
following (1) enables the search of efficient points on the 
frontier of DMUo being assessed.  
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where Eo represents CCR efficiency of objective DMUo, 

ijx  and rjy  represent the observed inputs ( 1,  2,  ,  i n= … ) 

and outputs ( 1,  2,  ,  r s= … ) of DMUs, 1, ,j m= … . 
( * *)v , u obtained as an LP-based optimal solution for (1) 
results in a set of optimal weights for the distributed 
proportions of resource inputs and production outputs of DMUo 
, respectively.. 



         

IV. INTRODUCTION TO HNN  
There have been a great number of published papers 

taking advantage of ANN to formulate and solve optimization 
problems over the past 15 years. The earliest one could be 
presented in 1986 when a pioneer work was performed by 
Tank and Hopfield [20], who created the theoretical 
foundation of his neural networks with formulating and 
solving LP problems; a couple of years later, Kennedy [21, 22] 
extended Hopfield’s LP model to nonlinear programming, and 
Maa [23] substantiated the theoretical foundation of the 
pioneered Hopfield neural network. Since then, a lot of HNN 
theory and applications have been developed to now. Wang et 
al. [24] extended HNN to a stochastic high-order HNN that 
possesses stronger approximation property, faster convergence 
rate, greater storage capacity, and higher fault tolerance than 
lower-order HNN. Linear matrix inequalities were solved with 
the high-order HNN to demonstrate its global asymptotic 
convergence of the equilibrium point.  

Guo et al., [25] applied HNN to solve an optimization 
problem of power partitioning of real-time computer operating 
system which is a critical component in the system-on-a-chip. 
The power partitioning optimization is to minimize the energy 
consumption of the chip. HNN was formulated with a new 
energy function, operating equation and coefficients based on 
the power consumption factors and performed by its optimal 
learning algorithm. The HNN simulation showed the better 
optimal solution than other optimization methods. Readers 
who are interested in ANN can refer to [26, 27, 28]. The 
following HNN introduction was copied from Cochicki and 
Unbehauen [29] for the preparation of HNN-based DEA 
development later. They detailed HNN approaches for 
optimization problems in their particular and professional 
textbook addressing and developing the theory and 
applications of HNN-based optimization.  

The architecture of HNN differs from BPN. Its structure 
is a class of recurrent one in which the dynamics are non-
trivial and plays an important role. The dynamics of HNN is 
described by a system of nonlinear ordinary differential 
equations and by their corresponding computation energy, 
named Lyapunov function, which is minimized during the 
computation process. Figure 1 shows that HNN can be 
implemented by interconnecting an array of resistors, 
nonlinear amplifiers with symmetrical outputs, external bias 
current sources and n fully interconnected artificial neurons. 
The black dots at the current intersections stand for the 
interconnection weights between inputs and outputs. These 
weights are summed by superimposition of the resistor 
currents at the input onto each nonlinear amplifier. 
Mathematically, the HNN model can be derived from 
Kirchhoff’s Current Law applied to each artificial neuron of 
the amplifier as:  
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(3) 
where  

Cj > 0 is the capacitance,  
uj and xj are the internal and output voltages of the 

neuron j, respectively,  
Gji  is the conductance representing the synaptic weight 

from neuron i to neuron j defined as 
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and ( )jj uψ  is the nonlinear, differentiable, monotonically 
increasing activation function; typically it is defined as  

( ) [ ] 1
1ψ

−−+= jj u
jj eu γ  or ( ) ( )jjjj uu γtanhψ = . 

(6)  
 

 
Figure 1. HNN architecture  (G±

ij = 1/R±
ij , weight R+

ij or R-
ij and R+

ii = R-
ii = ∞) 

 
The above system of differential equations can be 

written in the more convenient normalized form:   
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,  j i j j i j j jw r G r I= Θ = ,     

jr  is the scaling resistance ( 1=jα  in the special case 

jj Rr = ).  

In HNN, the interconnection weights jiw  is 

symmetrical, i.e., jiw = ijw , with diagonal elements which 

equal zero, iiw = 0. The set of equilibrium points of HNN is 
determined form the system of differential equations (7) by 
taking 0 d d =tu j , i.e. from the set of nonlinear equations:  
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(8)  
 HNN has shown that a sufficient condition for its 
optimization stability, namely its convergence to a stable state. 
This stable state is the local minimum of HNN computational 
energy function  
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Simplifying this computational energy function can obtain the 
form  

( ) ΘxWxxx T
T −−=

2
1E

           

(10)  
The optimal (equilibrium or stable) points correspond 

exactly to the local minimum of the HNN’s computational 
energy function. The operation of HNN can be regarded as a 
minimization computation process of the energy function E(x). 
Lyapunov stability requires the E(x) to be monotonically 
decreasing in time. Consider the time derivative of E(x) given 
in (9)  
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Since the time constant jτ is positive for all j and the nonlinear 

inverse function ( )jj x1−Ψ  is monotonically increasing (i.e., 
greater than zero), (11) can be rewritten as  

0
 d

 d ≤
t
E .              

(12) 
dE/dt = 0 implies dxj/dt = 0 for all j. Combining this with the 
fact that the energy E(x) is bounded, HNN can converge to a 
stable state at the minimum of its E(x) It should be noted that 
the computational energy function is constructed as the first 
integral of the dynamic differential equations of (7); in other 
words, HNN is a gradient-like system described by the matrix 
differential equation  
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These energy (Lyapunov) functions are invaluable tools 
since they can be used to express complex ANN dynamics in 
the form of optimization process.      

 

V. DEVELOPMENT OF LAGRANGE HNN-BASED DEA APPROACH  

There a number of published papers have been 
addressed about HNN-based LP techniques, such as Grippo 
[30], Huang [31] and Wang [32]; however, there is a major 
weakness of using HNN to an optimization problem. A 
penalty function used in their HNNs possibly causes not to 
ensure the convergence of an optimal point and not to tackle a 
large number of variables for its optimality. Fortunately, 
Cichocki and Bargiela [33] proposed a Lagrange-based HNN 
optimization approach for solving the LP problem. In the 
earlier time, Zhang and Constantinides [34] also showed a 
Lagrange multiplier method-based HNN approach, but for a 

non-linear programming problem. These Lagrange-based 
HNN methods do not encounter the problems of infeasibility 
and physical implementation occurred in penalty-based HNN 
optimizations, and can always give a feasible solution. In this 
section, the development of Lagrange HNN-based for DEA is 
discussed.  
 The Lagrange function ( ), , , ,L αv u s β  of CCR 
formulated in (1) can be established using the Lagrange 
multiplier method as follows. 
Let  
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whereα is an individual parameter and ( )T
1 mβ  β= …β  is a 

parameter matrix. Taking partial derivate of equation (14) with 
respect to time, the following dynamic differential equations 
of (1), i.e., (13), can be derived:   
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These dynamic differential equations can be solved by the 
fourth-order Runge-Kutta numeric method [35].   

 

VI.   A NUMERICAL LAGRANGE HNN-BASED DEA EXAMPLE 

To illustrate the solution performance of the proposed 
HNN-based DEA method, a commercial DEA package, DEA-
Solver, was used to get a traditional LP-based DEA solution; 
meanwhile, the fourth-order Runge-Kutta implemented in 
MATLAB utility functions was utilized to solve the same DEA 



         

example. Table 1 shows the example. Figure 2 shows a 
simplified HNN-based DEA network of the example.  
 

TABLE 1. INPUT/OUTPUT DATA FOR EXAMPLE  

DMU 1x  2x  y  

A 1 1 1 

B 2 1 1 

C 3 2 1 

 
The derivatives of HNN-based DEA for each DMU of the 
example are as follows.  
1) case 1 for DMUA:  

a) the CCR original formulation for DMUA:  
1 2

1 2

1 2

1 2

1 2

m i n i m i z e    
s u b j e c t  t o    1
                      0
                  2   0
                  3 2 0
                   , , 0

A v v
u

v v u
v v u
v v u

v v u

φ = +
=

+ − ≥
+ − ≥
+ − ≥

≥

 

b) the standard LP formulation for DMUA:  
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c) energy function for DMUA:  
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Figure 2. A simplified Lagrange HNN-based DEA network 

 
A system of dynamic differential equations of HNN 

for DMUA can be shown as:  
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The derivatives for both DMUB and DMUC cases are similar 
with the above case 1 (DMUA) and are not depicted here since 
the limited pages of the paper length regulation. The 
convergence trajectory of the HNN for DMUA is shown in 
Figures 3, similar trajectory also happened to both DMUB and 
DMUC cases. Table 2 summarizes the optimal DEA solution 
obtained from the both methods and shows that the same 
solution was for the two methods.   
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Figure 3. Trajectory line of DMUA convergence to its stable state  

after 5500 iterations  
 

TABLE 2. COMPARISON OF LAGRANGE HNN-BASED DEA TO  
LP-BASED DEA 

Method LP-based CCR 
solution 

Lagrange HNN-based 
solution 

Weight 1v  2v  u  ψ (1)
1v  (1)

2v  (1)
1u  ψ 

DMUA 0.5 0.5 1 1 0.5 0.5 1 1 
DMUB 0 1 1 1 0 1 1 1 
DMUC 0 0.5 0.5 0.5 0 0.5 0.5 0.5 

 
VII.  CONCLUSIONS 

Seldom is a discussion given on the trials and issues of 
HNN optimal training for DEA optimization. This work aimed 
to demonstrate a feasible method of utilizing HNN to find the 
optimal relative efficiency among multiple DMUs of a DEA 
problem. The approach was exemplified for substantiating the 
solution quality of Lagrange HNN-based DEA; while, it 
compared with the one of the DEA-Solver package, the two 
solutions were the same. The compared results presented 
primarily discussed on the application and the end results 
obtained when applying HNN to DEA. In the future, HNN will 
be extended to deal with a DEA model that exhibits complex 
uncertain characteristics and cannot be treated satisfactorily by 
the traditional LP technique. The ability to learn the 
sophisticated uncertain relationships and to tolerate the data 
fault makes HNN provide an ideal way to overcome the 
complicated stochastic DEA data.      
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