
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

Using Hopfield Neural Networks to
Solve DEA Problems

Shing-Cheng Hu, Yun-Kung Chung, Yun-Shiow Chen
Department of Industrial Engineering and Management

Yuan Ze University
Chung Li, Taiwan

ieychung@saturn.yzu.edu.tw

Abstract—Theory and application of both artificial neural
networks (ANNs) and data envelopment analysis (DEA) have
gone through major growth over the past three decades;
nevertheless, using ANN as an optimal algorithm for finding the
DEA solution has been limited. In this paper, a Hopfield neural
network is applied as a solution tool to DEA models. An
illustrative example from a known DEA problem helps to gain
insight into the proposed alternative DEA solution method,
including its capability and limitations.

Keywords—data envelopment analysis, Hopfield neural
networks, optimization, Lagrange function.

I. INTRODUCTION
DEA was first developed by Charnes, Cooper and

Rhodes in 1978 [1], and since then it has mostly been used to
benchmark or evaluate the relative operating efficiencies of
DMUs (decision-making units) composed of a unified system
being assessed. The major advantages of DEA are its allowing
the relative efficiency to change over time and requiring no
prior assumption on the best solution frontier; therefore, lots of
businesses or organizations have applied DEA to find their
operating performances for further making decisions on the
efficiency improvement. Those inefficient DMUs can be
identified and proposed to make up their input resources
and/or generated benefits. The identification has been
performed widely by linear programming (LP) technique [2, 3,
4]; yet, the serious dependence on the number of DMUs
causes the LP technique to a longer DEA computation time.
To overcome this limitation, an alternative approach seems to
be needed.

It has been well known that ANN is a better
optimization technique than a classical optimal search method
because of its virtues of inherent parallelism, fault tolerance,
robust solution, learning ability and fast real-time solution.
Using Hopfield neural networks (HNNs) to perform an LP
procedure exactly is one of such examples of taking advantage
of the ANN’s optimal training procedure to solve classical
optimization problems effectively [5, 6, 7]. This ANN-based
LP method inspired this paper to conceive the conception of
solving a DEA problem by means of the HNN optimal
learning algorithm.

The paper is organized as follows. A brief review of
previous works about using ANN to DEA is given in the
following section. Sections 3 and 4 respectively provide a
summary of DEA and HNN approaches. Development of

HNN-based DEA using the Lagrange function is described in
Section 5. A numerical DEA example is the focus of Section
6. Conclusions and thoughts for future research are addressed
in Section 7.

II. PREVIOUS STUDIES ON DEA WITH ANN
There have been several articles presenting the

combination of DEA and ANN to solve efficiency evaluation
problems. Wu et al. [8] employed back-propagation neural
networks (BPNs) to learn the data generated by DEA
formulated, and then the trained BPN predicted the bank
efficiency. Their method was impractical because the
efficiency solutions had been obtained by DEA, there was
unnecessary for sending them to BPN to do the efficiency
prediction again. Like Wu et al. [8], Wang [9] also took BPN
to learning the data of frontier obtained from CCR model, and
then the trained BPN was used to predict DMU efficiency.
Both papers were done with similar idea and similar
discussions and conclusions on the BPN-based DEA solution.
Still, they are impractical for performing the DEA evaluation
because the BPN training data acquisition was tedious and the
optimal DMU solution had been firstly found by CCR for a
certain DEA problem. Using the trained BPN to predict the
same DEA problem for estimating its approximated efficiency
seems to be unnecessary. Also, different DEA problems may
not be tackled by the same trained BPN, and the generalized
DEA solution may not be an exact value of one for an efficient
DMU. Pendharkar and Rodger [10] did the similar comparison
of BPN to DEA as both Wu et al. [8] and Wang [9], but their
DEA functioned as the data pre-processing for BPN training.
The data first classified efficiency and inefficiency ones via
DEA, then the two classified data were presented into BPN for
its learning and efficiency classification. The solution quality
of the both models was paralleled.

Costa and Markellos [11] depicted that both BPN and
DEA were used to predict the public transport productive
efficiency in which BPN was able to provide more
information on the production function evaluation than DEA
since BPN gets fault-tolerance structure and seldom statistical
data assumptions. This paper, however, did not seem to
analyze the DMU efficiency and inefficiency problems which
is DEA essential, but to model a production function for the
solution quality comparisons. Apart from the unclear DEA
formulation, BPN training data definition was also not

presented. Athanassopoulos and Curram [12] compared BPN
with DEA and found that BPN predicted the relative DMU
ranks very well, whilst DEA was good at estimating empirical
production functions. The comparisons were made with two
experiments: one was based on simulated data from a known
production function with different levels of inefficiencies and
random noise, another on a multiple-input multiple-output data
set of 250 commercial bank branches. Liao [13] did the similar
comparison work as Athanassopoulos and Curram [12]. Three
frontier methods, DEA, ANN and stochastic frontier analysis,
were compared with the performance of DMUs. The result
shown that BPN was a promising alternative to traditional
approaches since it approximated production functions more
accurately and evaluated efficiency and productivity under
non-linear space with minimum assumptions.

To sum up, there are two sorts of combining ANN with
DEA literatures, one focuses on the comparisons of the
solution quality of production function of different frontier
methods to BPN, which means that BPN is regarded as an
individualized approach; another aims to use the laborious
systematic DEA generating solutions to train BPN for
generalizing an approximated DEA efficiency. The criticism on
the both sorted methodologies was briefly presented above. A
pragmatic idea of using ANN as an alternative to find the DEA
solution may be to take advantage of ANN training algorithm
to find DEA optimal solution, not to use the trained ANN to
generate approximated DEA solutions. This paper will present
such an idea of using HNN optimal algorithm to get DEA
solution.

III. INTRODUCTION TO DEA
As aforementioned, DEA is an LP-based technique to

measure the relative efficiency of DMUs constituting a system
being evaluated. Since the initiated DEA model, called CCR,
named with the first letter of its developers’ last names,
Charnes, Cooper and Rhodes [1], was formulated in 1978,
DEA has been widely applied to assess performance in diverse
businesses and industries such as educational learning,
hospital management, service process, manufacturing and
production operations, personnel productivity, and so on. The
reasons why DEA has been employed as a so popular tool
include its ability of dealing with multiple (resources) inputs
and multiple (production) outputs allowed to be expressed in
different DMUs of measurement, and another is its capability
of comparing a virtual DMU which is formed by linearly
combining all original DMUs to a single original DMU by
means of finding an optimal efficiency score of each original
DMU. These efficiency scores (the points at the coordination
of input and output) define the production possibility set of
which a subset of its boundary points forms the efficient
frontier and the remaindering inefficient DMUs are enveloped
by this frontier where possesses substantial information on
their inefficiency improvement potential. The degree of the
improvement potential is determined by comparing a single
original DMU to the linear combination of all DMUs located
on the efficient frontier that utilize the same degree of inputs
and produce the same or a higher degree of outputs [14].

There are various kinds of DEA model. In principle,
they can be classified by two conceptions. One is based on
whether the consideration of all DMU efficiencies is a type of
input or output. An input-oriented DEA model thinks of
efficiency as the least resources input for the same amount of
production output, whereas an output-oriented DEA model
regards efficiency as the most production output for the same
amount of resources input. If the relative DMU is better than
an assessing DMU by either making more output with the
same input or making the same output with less input, then the
assessing DMU is inefficient.

Another conception is according to the scale of optimal
DMU score. This optimal score scale, called returns to scale
(RTS) referring to increasing or decreasing efficiency based
on size in terms of output/input ratio, discriminates DEA
models into four types. If a DMU’s production increases, its
efficiency could be increased, remained constantly, decreased
or varied, thus, creating Increasing Returns to Scale (IRS),
Constant Returns to Scale (CRS), Decreasing Returns to Scale
(DRS) or Variable Returns to Scale (VRS), respectively. VRS
refers to a situation where both an increase and a decrease in
RTS are observed at different degrees of production output,
which means that not all DMUs operate on an optimal scale.
CRS means that DMU is able to scale its inputs and outputs
without increasing or decreasing efficiency; in other words, if
the scale is up (increased) or down (decreased) with the DMU
inputs and outputs, the DEA model respectively is IRS or
DRS. In this paper, an input-oriented CCR model is
demonstrated as a LP-based DEA of which formulation is
solved by Hopfield neural network (HNN). This alternative
solution method to CCR is presented later. As for more
discussions about DEA, two textbooks are worthy of reading,
Cooper, et al. [15] and Charnes, et al. [16], and a good survey
paper described by Avkiran [17]. Certain computational
numeric comparisons of the DEA solutions based on various
LP algorithms were investigated in [18] and [19]. In what
follows, CCR is depicted for the preparation of its HNN
optimal training process.

CCR is an efficiency assessment tool that assumes non-
negative of all inputs and outputs. The CCR model given the
following (1) enables the search of efficient points on the
frontier of DMUo being assessed.

1

1

1 1

m i n i m i z e

s u b j e c t t o 1

 0 , 1 , 2 , ,

 0 , 1 , 2 , , ,
 0 , 1 , 2 , , ,

n
o

i i o
i

s

r r o
r

n s

i i j r r j
i r

i

r

E v x

u y

v x u y j m

v i n i
u r s r

=

=

= =

=

=

− ≥ = …

≥ = … ∀
≥ = … ∀

∑

∑

∑ ∑

(1)

where Eo represents CCR efficiency of objective DMUo,

ijx and rjy represent the observed inputs (1, 2, , i n= …)

and outputs (1, 2, , r s= …) of DMUs, 1, ,j m= … .
(* *)v , u obtained as an LP-based optimal solution for (1)
results in a set of optimal weights for the distributed
proportions of resource inputs and production outputs of DMUo
, respectively..

IV. INTRODUCTION TO HNN
There have been a great number of published papers

taking advantage of ANN to formulate and solve optimization
problems over the past 15 years. The earliest one could be
presented in 1986 when a pioneer work was performed by
Tank and Hopfield [20], who created the theoretical
foundation of his neural networks with formulating and
solving LP problems; a couple of years later, Kennedy [21, 22]
extended Hopfield’s LP model to nonlinear programming, and
Maa [23] substantiated the theoretical foundation of the
pioneered Hopfield neural network. Since then, a lot of HNN
theory and applications have been developed to now. Wang et
al. [24] extended HNN to a stochastic high-order HNN that
possesses stronger approximation property, faster convergence
rate, greater storage capacity, and higher fault tolerance than
lower-order HNN. Linear matrix inequalities were solved with
the high-order HNN to demonstrate its global asymptotic
convergence of the equilibrium point.

Guo et al., [25] applied HNN to solve an optimization
problem of power partitioning of real-time computer operating
system which is a critical component in the system-on-a-chip.
The power partitioning optimization is to minimize the energy
consumption of the chip. HNN was formulated with a new
energy function, operating equation and coefficients based on
the power consumption factors and performed by its optimal
learning algorithm. The HNN simulation showed the better
optimal solution than other optimization methods. Readers
who are interested in ANN can refer to [26, 27, 28]. The
following HNN introduction was copied from Cochicki and
Unbehauen [29] for the preparation of HNN-based DEA
development later. They detailed HNN approaches for
optimization problems in their particular and professional
textbook addressing and developing the theory and
applications of HNN-based optimization.

The architecture of HNN differs from BPN. Its structure
is a class of recurrent one in which the dynamics are non-
trivial and plays an important role. The dynamics of HNN is
described by a system of nonlinear ordinary differential
equations and by their corresponding computation energy,
named Lyapunov function, which is minimized during the
computation process. Figure 1 shows that HNN can be
implemented by interconnecting an array of resistors,
nonlinear amplifiers with symmetrical outputs, external bias
current sources and n fully interconnected artificial neurons.
The black dots at the current intersections stand for the
interconnection weights between inputs and outputs. These
weights are summed by superimposition of the resistor
currents at the input onto each nonlinear amplifier.
Mathematically, the HNN model can be derived from
Kirchhoff’s Current Law applied to each artificial neuron of
the amplifier as:

∑
=

++−=
n

i
jiji

j

jj
j IxG

R
u

t
u

C
1 d

 d

(2)
(),ψ jjj ux = ()nj ,,2,1 …=

(3)
where

Cj > 0 is the capacitance,
uj and xj are the internal and output voltages of the

neuron j, respectively,
Gji is the conductance representing the synaptic weight

from neuron i to neuron j defined as










∞=<−

∞=>
=

+
−

−
+

, with 0 if 1

, with 0 if 1

jiji
ji

jiji
ji

ji

RG
R

RG
R

G
 (4)

∑
=

−+











++=

n

i jijijj RRRR 10

1111

(5)
and ()jj uψ is the nonlinear, differentiable, monotonically
increasing activation function; typically it is defined as

() [] 1
1ψ

−−+= jj u
jj eu γ or () ()jjjj uu γtanhψ = .

(6)

Figure 1. HNN architecture (G±

ij = 1/R±
ij , weight R+

ij or R-
ij and R+

ii = R-
ii = ∞)

The above system of differential equations can be

written in the more convenient normalized form:

() ji

n

i
ijijj

j
j uwu

t
u

Θ++−= ∑
=1

ψ
 d

 d
ατ ()nj ,,2,1 …= (7)

where

, j
j j j j

j

r
r C

R
τ α= =

,

, j i j j i j j jw r G r I= Θ = ,

jr is the scaling resistance (1=jα in the special case

jj Rr =).

In HNN, the interconnection weights jiw is

symmetrical, i.e., jiw = ijw , with diagonal elements which

equal zero, iiw = 0. The set of equilibrium points of HNN is
determined form the system of differential equations (7) by
taking 0 d d =tu j , i.e. from the set of nonlinear equations:

 ()
1

ψ = 0
n

j j ji i i j
i

u w uα
=

− + + Θ∑

(8)
 HNN has shown that a sufficient condition for its
optimization stability, namely its convergence to a stable state.
This stable state is the local minimum of HNN computational
energy function

() () xxxxxwE jx

j

n

j j

j
n

j
jj

n

j

n

i
jiji d

2
1

0

1

111 1
∫∑∑∑ ∑ −

=== =

Ψ+Θ−−=
γ
α

x
(9

)

Simplifying this computational energy function can obtain the
form

() ΘxWxxx T
T −−=

2
1E

(10)
The optimal (equilibrium or stable) points correspond

exactly to the local minimum of the HNN’s computational
energy function. The operation of HNN can be regarded as a
minimization computation process of the energy function E(x).
Lyapunov stability requires the E(x) to be monotonically
decreasing in time. Consider the time derivative of E(x) given
in (9)

()

j j

1 1 1

2
j j j j

1 1 j

2
j1

1

d d d
d d d

d d d d

d d d d

d

d

n n n

j i i j j j
j j ij

n n

j j
j j

n

j j j
j

x xE E w x u
t x t t

x u u x
t t x t

x
x

t

α

τ τ

τ

= = =

= =

−

=

∂  − = = − + Θ − ∂  

 
= − −  

 

′   = − Ψ     

∑ ∑ ∑

∑ ∑

∑

 (11)

Since the time constant jτ is positive for all j and the nonlinear

inverse function ()jj x1−Ψ is monotonically increasing (i.e.,
greater than zero), (11) can be rewritten as

0
 d

 d ≤
t
E .

(12)
dE/dt = 0 implies dxj/dt = 0 for all j. Combining this with the
fact that the energy E(x) is bounded, HNN can converge to a
stable state at the minimum of its E(x) It should be noted that
the computational energy function is constructed as the first
integral of the dynamic differential equations of (7); in other
words, HNN is a gradient-like system described by the matrix
differential equation

()xµu
x E

t
∇−=

 d
 d , (13)

where
[]T

21 ,,, nuuu …=u ,

()11
2

1
1 ,,,diag −−−= nτττ …µ ,

()
T

21

,, 







∂
∂

∂
∂

∂
∂=∇

nxxx
E EEExx …

.

These energy (Lyapunov) functions are invaluable tools
since they can be used to express complex ANN dynamics in
the form of optimization process.

V. DEVELOPMENT OF LAGRANGE HNN-BASED DEA APPROACH

There a number of published papers have been
addressed about HNN-based LP techniques, such as Grippo
[30], Huang [31] and Wang [32]; however, there is a major
weakness of using HNN to an optimization problem. A
penalty function used in their HNNs possibly causes not to
ensure the convergence of an optimal point and not to tackle a
large number of variables for its optimality. Fortunately,
Cichocki and Bargiela [33] proposed a Lagrange-based HNN
optimization approach for solving the LP problem. In the
earlier time, Zhang and Constantinides [34] also showed a
Lagrange multiplier method-based HNN approach, but for a

non-linear programming problem. These Lagrange-based
HNN methods do not encounter the problems of infeasibility
and physical implementation occurred in penalty-based HNN
optimizations, and can always give a feasible solution. In this
section, the development of Lagrange HNN-based for DEA is
discussed.
 The Lagrange function (), , , ,L αv u s β of CCR
formulated in (1) can be established using the Lagrange
multiplier method as follows.
Let

()u 1- 0
1

ryu
s

r
ror =∑

=

[] mjrsyu - xv jj

s

r
rjr

n

i
iji ,,2 ,1 , -

11

…== ++

==
∑∑ s u, v,

The Lagrange (HNN energy) function of (1) can be
()

()()

0
1 1

1 1 1

0 0
1

ˆ , 1

n s

i io r ro
i r

m n s

j i ij r r j j
j i r

n

i io
i

L v x β G u y -

β G v x - u y - s

v x β G r

+

= =

+

= = =

=

 = + ⋅  
 

 + ⋅  
 

= + ⋅

∑ ∑

∑ ∑ ∑

∑

v , u , s β

u

()()
1

m

j j
j

β G r +

=

+ ⋅∑ v , u , s

(14)

whereα is an individual parameter and ()T
1 mβ β= …β is a

parameter matrix. Taking partial derivate of equation (14) with
respect to time, the following dynamic differential equations
of (1), i.e., (13), can be derived:

()
i

v
i

v
Lµ

t
v

∂
∂=

+ β ,ˆ
-

d
d s u, v,

() ()()
()

()

()()

()() ()()
()

1

1

,

w h e re

m j ii i
io j

ji ii

m

io j i i j
j

j i
i

i

G rv r
 x β

v vr

x β r x

G r
r

r

β

ψ

ψ

++ +

+
=

+

=

+

+
+

∂∂ ∂
= + ⋅ ⋅

∂ ∂∂

= + ⋅ ⋅

∂
≈

∂

∑

∑

v , u , sv , u , s v , u , s

v , u , s

v , u , s

v , u , s
v , u , s

v , u , s

 ()()







⋅⋅+= +

=
∑ s u, v,iij

m

j
jioi

i rxβxµ
t

v ψ
1

-
d

d

()() ()()







⋅⋅⋅⋅= +

=
∑ s u, v,u irj

m

j
jror

r ryβryβµ
t

u ψψ
1

00 --
d

d

 ()()







⋅= +

=

+

∑ s u, v,i

m

j
jj

j rβµ
t

s
ψ

1
--

d
d

()() , 2, 1, , -
d

d
mjrGµ

t
β

jβ
j

j
…=⋅= +s u, v,

()()u0
0

0
-

d
d rGµ

t
β

β ⋅=

These dynamic differential equations can be solved by the
fourth-order Runge-Kutta numeric method [35].

VI. A NUMERICAL LAGRANGE HNN-BASED DEA EXAMPLE

To illustrate the solution performance of the proposed
HNN-based DEA method, a commercial DEA package, DEA-
Solver, was used to get a traditional LP-based DEA solution;
meanwhile, the fourth-order Runge-Kutta implemented in
MATLAB utility functions was utilized to solve the same DEA

example. Table 1 shows the example. Figure 2 shows a
simplified HNN-based DEA network of the example.

TABLE 1. INPUT/OUTPUT DATA FOR EXAMPLE

DMU 1x 2x y

A 1 1 1

B 2 1 1

C 3 2 1

The derivatives of HNN-based DEA for each DMU of the
example are as follows.
1) case 1 for DMUA:

a) the CCR original formulation for DMUA:
1 2

1 2

1 2

1 2

1 2

m i n i m i z e
s u b j e c t t o 1
 0
 2 0
 3 2 0
 , , 0

A v v
u

v v u
v v u
v v u

v v u

φ = +
=

+ − ≥
+ − ≥
+ − ≥

≥

b) the standard LP formulation for DMUA:
1 2

1 2 1

1 2 2

1 2 3

m i n i m i z e
s u b j e c t t o 1
 0
 2 0
 3 2 0

A v v
u
v v u s

v v u s
v v u s

φ = +
=

+ − − =
+ − − =
+ − − =

1 2 1 2 3 , , , , , 0v v u s s s ≥

c) energy function for DMUA:
() 2

1 2 1 1 2 1

2 2
2 1 2 2 3 1 2 3

1(1) ()
2

1 1 (2) (3 2)
2 2

AL v v u v v u s

v v u s v v u s

α β

β β

= + − − − + − −

− + − − − + − −

Σ Σ

Figure 2. A simplified Lagrange HNN-based DEA network

A system of dynamic differential equations of HNN

for DMUA can be shown as:
1

1 1 2 1 2 1 2 2 3 1 2 31 () 2 (2) 3 (3 2)v v v u s v v u s v v u s
t

β β β∂ = − + − − − + − − − + − −
∂

2
1 1 2 1 2 1 2 2 3 1 2 31 () (2) 2 (3 2)v v v u s v v u s v v u s

t
β β β∂ = − + − − − + − − − + − −

∂

1 1 2 1 2 1 2 2 3 1 2 3() (2) (3 2)u v v u s v v u s v v u s
t

α β β β∂ = − + + − − + + − − + + − −
∂

1
1 1 2 1()s v v u s

t
β∂ = + − −

∂

2
2 1 2 2(2)s v v u s

t
β∂ = + − −

∂

3
3 1 2 3(3 2)s v v u s

t
β∂ = + − −

∂

()1u
t

α∂ = −
∂

21
1 2 1

1 ()
2

v v u s
t

β∂ = + − −
∂

22
1 2 2

1 (2)
2

v v u s
t

β∂ = + − −
∂

23

1 2 3
1 (3 2)
2

v v u s
t

β∂ = + − −
∂

The derivatives for both DMUB and DMUC cases are similar
with the above case 1 (DMUA) and are not depicted here since
the limited pages of the paper length regulation. The
convergence trajectory of the HNN for DMUA is shown in
Figures 3, similar trajectory also happened to both DMUB and
DMUC cases. Table 2 summarizes the optimal DEA solution
obtained from the both methods and shows that the same
solution was for the two methods.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1

100

10000 Epochs

D
M

U
A Train

Performance is 0.12016, Goal is 0

10

Figure 3. Trajectory line of DMUA convergence to its stable state

after 5500 iterations

TABLE 2. COMPARISON OF LAGRANGE HNN-BASED DEA TO
LP-BASED DEA

Method LP-based CCR
solution

Lagrange HNN-based
solution

Weight 1v 2v u ψ (1)
1v (1)

2v (1)
1u ψ

DMUA 0.5 0.5 1 1 0.5 0.5 1 1
DMUB 0 1 1 1 0 1 1 1
DMUC 0 0.5 0.5 0.5 0 0.5 0.5 0.5

VII. CONCLUSIONS

Seldom is a discussion given on the trials and issues of
HNN optimal training for DEA optimization. This work aimed
to demonstrate a feasible method of utilizing HNN to find the
optimal relative efficiency among multiple DMUs of a DEA
problem. The approach was exemplified for substantiating the
solution quality of Lagrange HNN-based DEA; while, it
compared with the one of the DEA-Solver package, the two
solutions were the same. The compared results presented
primarily discussed on the application and the end results
obtained when applying HNN to DEA. In the future, HNN will
be extended to deal with a DEA model that exhibits complex
uncertain characteristics and cannot be treated satisfactorily by
the traditional LP technique. The ability to learn the
sophisticated uncertain relationships and to tolerate the data
fault makes HNN provide an ideal way to overcome the
complicated stochastic DEA data.

REFERENCES

[1] Charnes, A., W.W. Cooper, and E. Rhodes, "Measuring the efficiency of
decision making units," European Journal of Operations Research, vol.2,
no.6, 1978, pp.429-44.

[2] Seiford, L.M. and R.M. Thrall, "Recent developments in DEA: the
mathematical programming approach to frontier analysis." Journal of
Econometrics, vol.46, 1990, pp.7-38.

[3] Bowlin, W. F., "Measuring Performance: An Introduction to Data

Envelopment Analysis (DEA)", Journal of Cost Analysis, Fall, 1998, pp.3-
27.

[4] Bouchard, G.., S. Girard and A. Iouditski, A. Nazin, “Some linear

programming methods for frontier estimation,” Applied Stochastic Models
in Business and Industry, vol.21, no.2, 2005, pp.175-185.

[5] Zhang, S. W. and Constantinides, A. G., “Lagrange programming neural

networks,” IEEE Transactions on CAS, 39, 1992, pp.441–451.

[6] Zhu, X., Zhang, S. W. and Constantinides, A. G., “Lagrange neural

networks for linear programming,” Journal of Parallel and Distributed
Computing, 14, 1992, pp.354–360.

[7] S.H. Zak, V. Upatising and S. Hui, "Solving linear programming problems

with neural networks: a comparative study", IEEE Transactions on Neural
Networks, vol.6, no.1, 1995, pp.94-104.

[8] Wu, Deshdng, Yang, Zijiang, and Liang, Liang (2006), “Using DEA-

neural network approach to evaluate branch efficiency of a large Canadian
bank,” Expert System with Applications, Vol. 31, No.1, pp. 108-115.

[9] Wang, Shouhong, “Adaptive non-parametric efficiency frontier analysis: a

neural-network-based model,” Computers & Operations Research, vol.30,
no.2, 2003, pp279-295.

[10] Pendharkar, P. C. and Rodger, J. A.., “Technical efficiency-based

selection of learning cases to improve forecasting accuracy of neural
networks under monotonicity assumption,” Decision Support Systems,
vol.6, no.1, 2003, pp.117-136.

[11] Costa, A. and Markellos, R.N., “Evaluating public transport efficiency

with neural network models,” Transportation Research Part C: Emerging
Technologies, vol.5, no.5, 1997, pp.301-312.

[12] Athanassopoulos, A. D. and S. P. Curram, “A comparison of data

envelopment analysis and artificial neural networks as tools for assessing
the efficiency of decision making units,” The Journal of the Operational
Research Society, vol.47, no.8., 1996, pp.1000-1016.

[13] Liao, Hailin, Bin Wang and Tom Weyman-Jones, “Neural Network

Based Models for Efficiency Frontier Analysis: An Application to East
Asian Economies' Growth Decomposition,” Global Economic Review,
vol.36 - v3636, no.4, 2007, pp.361-384.

[14] Boussofiane, A., Dyson, R.G., Thanassoulis, E. “Applied data

envelopment analysis,” European Journal of Operational Research, vol.52,
no.1, 1991, pp. 1-15.

[15] Cooper, W. W., L. M. Seiford and K. Tone, Data Envelopment Analysis:

A Comprehensive Text with Models, Applications, References and DEA-
Solver Software, Springer Science, 2006.

[16] Charnes, A., Cooper, W. W. and Seiford, L. M., Data envelopment

analysis: theory, methodology, and application (3rd ed), Kluwer Academic
Publishers, 1997.

[17] Avkiran, N. K. and T. Rowlands, “How to better identify the true

managerial performance: State of the art using DEA,” Omega, vol.36,
no.2, 2008, pp.317-324.

[18] Dula, J. H., “A computational study of DEA with massive data sets,”

Computers and Operations Research, vol.35, no.4, 2008, pp.1191-1203.

[19] Zhou, P., B.W. Ang and K.L. Poh, “Measuring environmental

performance under different environmental DEA technologies,” Energy
Economics, vol.30, no.1, 2008, pp.1-14.

[20] Tank, D. W. and J. J. Hopfield., “Simple neural optimization networks:

an A/D converter, signal decision network, and a linear programming
circuit,” IEEE Transactions on Circuits Systems, vol.CAS-33, 1986,
pp.533-541.

[21] Kennedy, M. P. and L. O. Chua, “Neural networks for nonlinear

programming,” IEEE Transactions on Circuits Systems, vol.CAS-35, no.5,
1988, pp.554-562.

[22] Kennedy, M. P. and L. O. Chua, “Unifying the Tank and Hopfield linear

programming circuit and the canonical nonlinear programming circuit of
Chua and Lin” IEEE Transactions on Circuits Systems, vol.34, no.3, 1988,
pp.210-214.

[23] Maa, C-Y. and M. A. Shanblatt, “Stability of linear programming by

neural networks,” Proc. Int. Joint Conf. Neural Networks, vol.3, pp.941-
946,1990.

[24] Wang, Z., Fang, J., Liu, X., “Global stability of stochastic high-order

neural networks with discrete and distributed delays,” Chaos, Solitons and
Fractals, vol.36, no.2, 2008, pp. 388-396.

[25] Guo, B., Wang, D.H., Shen, Y. and Li, Z.S. “A Hopfield neural network

approach for power optimization of real-time operating systems,” Neural
Computing and Applications, vol.17, no.1, 2008, pp.11-17.

[26] Masson, E. and Wang, Y.-J. “Introduction to computation and learning in

artificial neural networks,” vol.189, no.1, European Journal of Operational
Research, 2008, pp.1-28.

[27] Ripley, Brian D., Pattern Recognition and Neural Networks, Cambridge

University Press, 2008.

[28] Samarasinghe, S., Neural Networks for Applied Sciences and

Engineering: From Fundamentals to Complex Pattern Recognition,
Taylor and Francie Group, 2007.

[29] Cichocki, A. and R. Unbehauen, Neural Networks for Optimization and

Singal Processing, John Wiley, 1993.

[30] Grippo, L., “A Class of Unconstrained Minimization Methods for Neural

Network Training,” Optimization Methods and Software, vol. 4, no.1,
1994, pp. 135-150.

[31] Huang, Y. C., “A Novel Method to Handle Inequality Constraints for

Convex Programming Neural Network,” Neural Processing Letters, 16,
2002, pp.17–27.

[32] Wang, J. and C. Vira. “Recurrent neural networks for linear

programming: analysis and design principles,” Computers and Operations
Research, vol.19, no.3, 1992, pp.297-311.

[33] Cichocki, A. and A. Bargiela, “Neural networks for solving linear

inequality systems,” Parallel Computing, vol.22, no.11, 1997, pp.1455-
1475.

[34] Zhang, S. and A. G. Constantinides, “Lagrange programming neural

networks,” IEEE Transactions on Circuits Systems - 2: Analog and Digital
Signal Processing, vol.39, no.2, 1992, pp.441-454.

[35] Chapra, Steven C., “Applied Numerical Methods with MATLAB for

Engineers and Scientists,” MacGraw Hill, 2006.

