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Abstract: Particle Filter is a filter method based on Monte Carlo 
and recursive Bayesian estimation, which has special advantage 
in dealing with the state and parameter estimation in the 
nonlinear and non-Gaussian system. However, high 
computational complexity and lack of dedicated embedded DSP 
and ARM hardware for real-time processing have adversely 
affected its application in real life. In this paper, we present an 
embedded hardware architecture based on Multi-DSPs 
(TMS320DM642) for speeding up the basic computational 
performance, thereby, making Particle Filtering based solutions 
amenable to real-time constraints. Simultaneously, on this 
embedded DSP system, we also do some improvement to the 
Particle Filter algorithm for realization. First, the number of 
particles is reduced by fusing Mean-shift algorithm after 
resampling step. Then, RSR (Residual Systematic Resampling) 
method is mended to reduce the time-consuming division 
computation and to retain the number of particles same pre-and-
post resampling procedure. The performance of the proposed 
embedded DSP system and optimized algorithm are evaluated 
qualitatively on real-world video sequences with moving target. 

Keywords: Particle Filter, Mean-shift, Object tracking, 
TMS320DM642 

I. INTRODUCTION 
Particle Filter is a filter method based on Monte Carlo and 

recursive Bayesian Sequential Estimation, which uses a 
weighted set of particles to approximate the posterior 
distribution. Recently, there are a lot of its applications in 
vision objects tracking, as it can deal with the state estimation 
in the nonlinear and non-Gaussian system. Particle Filter shows 
higher performance in tracking compared with other methods, 
such as Kalman Filter, EKF, UKF and Mean-shift, when 
dealing with cluttered environments and occlusive situations 
[1] [2]. However, high computational complexity and lack of 
dedicated embedded DSP and ARM hardware for real-time 
processing have adversely affected its application in real 
resource-constrained environment [3~5]. So far, there are two 
possible ways to solve the problem of computational 
complexity: one is to design a wholly parallel hardware system 
which needs high performance FGPA components, such as 
Xinlinx’s Virtex-4 SX [3], an alternative is to design an 
embedded system with multiply DSP processors; the other is to 

optimize and simplify the algorithm itself, such as, reducing the 
number of particles and division operations, transferring the 
floating-point computation to fixed-point, etc. 

In this paper, we present an embedded hardware 
architecture based on Multi-DSPs (TMS320DM642) for 
speeding up the basic computation, thereby, making Particle 
Filtering based solutions amenable to real-time constraints in 
embedded DSP system. On this embedded hardware, we also 
do some improvement to the Particle Filter algorithm for 
realization: first, by Mean-shift clustering method after 
resampling, every particle can approach the real target position 
much more, and thereby, less number of particles is needed to 
estimate the target status. Second, RSR (Residual Systematic 
Resampling) method is mended to reduce the computational 
complexity and to make the number of particles same pre-and-
post Resampling procedure. The performance of the proposed 
hardware system and optimized algorithm are evaluated 
qualitatively on real-world video sequences with moving 
target. 

The rest paper is organized as follows. In Section 2, we 
will give a short introduction to Particle Filter, and then derive 
the state transition model and observation model in our 
method. In Section 3, some variations on Particle Filter are 
given for reducing computational complexity. Section 4 shows 
the implementation of our method on Multi-DSPs hardware. 
Evaluation of our hardware system and optimized method is 
presented in Section 5. Section 6 concludes the paper. 

II.  PARTICLE FILTER THEORY 
The algorithm flow of Particle Filter for a dynamic system 

is usually as follows [1] [2]. 

1) Initialization. At time 0k = , sample system states 
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，and the weights of all particles is set to 1 N , 

where N  is the number of particles. 

2) Particle sampling and weight computation. Based on the 
observation zk  at time k  and the state of the system at time 

1k − (represented by particles { ,1 1
i ixk kω− − }, 1,..., ,i N= ), 



         

propose a set of new particles { ixk , 1,..., ,i N= } from the 

importance density function ( | , )1:0: 1
iq x x z kk k− . Then, with each 

proposed particle ixk , associate an unnormalized weight 
defined as:  
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At last, normalize weights according to: 
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3) Compute the Expected Inference. The posterior 
distribution can be approximated by the following equation: 
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Therefore, an expected inference can be computed as: 
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4) Resampling. Sampling a new set of particles from the 

set { }0: 1

Nix k i=
 according to weight iwk . The resulting particles 

are represented by { }0: 1

Nix k i=
 and they are assigned identical 

weights: 1i iw w Nk k= = ; 

5) 1k k= + , and go Step 2) for a next iteration. 

 
Figure 1.  Flowchart of the Particle Filter. 

From the algorithm flow described above, we need to 
make certain the state transition model ( | )1

i ip x xk k−  and the 

observation model ( | )ip z xk k to describe a dynamic system. In 

this paper, for vision tracking, we use T[ , ]i i iX x yk k k=  which 
represents the coordinates of moving object to denote the state 
vector of the dynamic system. Therefore, the particles are 

represented by{ },0: 1

Ni iX wk k i=
. We construct the state transition 

model as follows [6]: 

1
1 21

ki i i iX X X X vn nk k km n k m
λ∑= + − +− −− = −

            (5) 

Where : [ 1,1]v Uk −  and T[ , ]1 2λ λ λ= 。 

The construction of observation model is similar to the 
method in [7]. In this paper, we construct the color model of 
moving object at time k  in the YCbCr color space. For 
consideration of computation, only Y component is used. We 
assume that, at time k , the moving object under tracking 
whose coordinates are y  has nh  candidate points and the 
histogram is composed of m  bins. Then, the corresponding 
histogram of a moving object at current frame is computed as: 

2
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Where Ch  is a normalization constant, h  is window 

radius, 1 ,  1
( )

0 ,       else
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, which is a kernel function, 

( )b xi represents the bin index associated with the Y 

component at pixel location xi , and u is the color index in the 
histogram. By the similar method, we can construct the 
reference distribution which is gathered at the initial time 0k=  

and at location 0X , denoted as ˆ ˆ ( )0q p Xu u= . The reference 
color model is updated with current target model in the new 
video image sequence in order to improve the performance of 
tracking. 

Then, Bhattacharyya distance is used to measure the 

difference between the histogram obtained at location iX k  and 
the reference histogram at time k  as follows: 
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Finally, we obtain the observation model: 

21
( | ) exp( )22 2

di ip Z Xk k πσ σ
= −                       (8) 

In this paper, the importance density function is 

selected ( | , ) ( | )0: 1 1: 1
i i i iq X X Z p X Xk k k k k=− − , allowing for 

computational complexity and memory capacitance. Then, 



         

considering all the weights are equal after resampling step, the 

weight of the thi particle can be computed as: 

( | )
21
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i iw p Z Xk k k
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πσ σ

=

= −
                         (9) 

III. VARIATIONS ON PARTICLE FILTER  
As described in the previous paper, the main drawback of 

Particle Filter is its high computational complexity. For each 
observation received, all the particles need to be processed. 
Moreover, to obtain an accurate approximation of posterior 
distribution, the number of particles is usually large. 
Therefore, reducing the number of particles is crucial for 
implementation of Particle Filter algorithm on an embedded 
system based on DSP processor. In this Section, we first 
reduce particle number by Mean-shift method. Then, 
according to the architecture of TI’s DSP, we fuse the 
normalization and resampling steps to overcome some 
shortcomings of RSR. Finally, some tricks for DSP 
programming are introduced to improve computational 
performance. 

A. Combining Mean shift algorithm in Particle Filter 
The Mean-shift algorithm is a non-parametric method 

which converges to a local maximum of the measurement 
function under certain assumptions on the kernel behaviors. 
Therefore, the application of Mean-shift algorithm in Particle 
Filter can refine the location of particles, and then, reduce the 
particle number needed in tracking. The application of Mean- 
shift in Particle Filter has already been presented in the 
literature, such as, [8] [9]. However, in the traditional 
methods, the computation of the correlation between candidate 
region and reference template for every particle before 
resampling is time-consuming. In this paper, the Mean-shift 
process is applied between step 4) and step 5) described in 
Section 2. We assume that the number of replication for every 
particle is saved as ri  during resampling process. Then, after 
resampling, the new location of a particle is denoted as: 
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Where, T[ , ]i i iX x yk k k= is the location of the thi  particle 

before resampling, 2( )g x  is a kernel function and h  is 
window radius. The principle of Particle Filter Embedded 
Mean-shift algorithm can be illustrated in figure 2. 

Through Mean-shift operation, every particle is more close 
to the local maximum, i.e. the real position of target. 
Therefore, less number of particles is needed to estimate the 
target status. Subsequently, the computational complexity is 

reduced greatly. As a result, make Particle Filter algorithm 
implement on embedded DSP system feasible. 

 
Figure 2.  chematic representation of the Particle Filter embedded Mean-shift 

algorithm. 

B.  Fusing normalization step and resampling step 
A common problem with Particle Filter is the degeneracy 

phenomenon. When after a few iterations, all but one particle 
will have negligible weight. The degeneracy phenomenon 
means that a large part of computation is devoted to the 
particles which only contribute little to the posterior 
distribution. To alleviate the phenomenon, some resampling 
methods have been proposed, such as: Stratified Resampling, 
Residual and Systematic Resampling [10~12]. From 
experiments, we find that the RSR in [12] is more suitable for 
implementation on embedded DSP system. However, it still 
has some shortcomings and we improve it in two ways: 

1) The number of particles before and after RSR in [12] 
may change. In this paper, we can retain the particle number 
same after resampling by increment/decrement of particles 
similar with the method in [11]. 

2) We extend the RSR method to deal with unnormalized 
situation and this can neglect the division computation of 
weight normalization.  

To extend the RSR, the original algorithm is amended as 
follows: 

a) Initialize 0WN = , : [0,1]0u U . 

b)  1,...,for i N= , iW W wN N k= + . 

c) temp1 /N WN= . 

d)  1,...,for i N= , temp2 temp1 1
iw uik= ∗ − − , (temp2) 1r roundi= + ,

temp2u ri i= − . 

In this algorithm flow, the temp1 and temp2  are 
intermediate variables, ri  is the number of replication for the 
thi particle.  

Figure 3 shows a simulated experiment of the improved 
RSR algorithm. In this experiment, the number of particles is 
set to 64 and the weight of each particle is randomly sampled 
from [0, 1].  
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Figure 3.  Simulated experiment result of the improved RSR algorithm in 

Matlab. 

C. Optimization of the code 
After improving the algorithm as described above, the 

computational complexity has been reduced a lot. In this 
section, we will introduce some tricks on DSP programming: 

1)  Design the formulas which are computed repeatedly as 

intermediate variables, for example,  
21 exp( )22 2

di
πσ σ

−  can be 

denoted as 2exp( )1 2C C di , where 1
1 2

C
πσ

= ，
1

2 22
C

σ
=− . 

 2) Obtain the random numbers which fit [0,1]U  or [ 1,1]U −  
offline, then, save these numbers in a table on DSP. Therefore, 
we can use look up table method to obtain random numbers 

 3) To enhance the efficiency, loop operations which are 
time consuming are rewritten in assemble language. 

IV. IMPLEMENTATION OF PARTICLE FILTER ON EMBEDDED 
DSP HARDWARE 

A. Hardware Description 
In order to implement the Particle Filter algorithm in real-

time, an embedded system based on Multi-DSPs is designed 
with “pipelining” architecture as illustrated in figure 4. The 
hardware is composed of two TI DSP processors--
TMS320DM642. TMS320DM642 is one of the highest-
performance fixed-point DSP generation in the 
TMS320C6000™ DSP platform, which is based on the 
second-generation high-performance, advanced VelociTI™ 
very-long-instruction-word (VLIW) architecture 
(VelociTI.2™), making this an excellent choice for digital 
media applications. With performance of up to 5760 million 
instructions per second (MIPS) at a clock rate of 720 MHz, the 
TMS320DM642 device offers cost-effective solutions to high-
performance DSP programming challenges. The peripheral set 
of TMS320DM642 includes: three configurable video ports; a 
10/100 Mb/s Ethernet MAC (EMAC); an inter-integrated 
circuit (IIC) Bus module; two multichannel buffered serial 
ports (McBSPs); a user-configurable 16-bit or 32-bit host-port 
interface (HPI16/HPI32). 

The digital video decoder of our DSP system is selected 
TVP5146, and encoder is SAA7121.The TVP5146 device is a 
high quality, single-chip digital video decoder, which includes 
four 10-bit 30-MSPS A/D converters (ADCs), and supports 
decoding of NTSC, PAL, and SECAM composite and S-video 

into component YCbCr. The SAA7121 encodes digital YCbCr 
video data to an NTSC or PAL CVBS or S-video signal. The 
circuit accepts CCIR compatible YCbCr data with 720 active 
pixels per line in YUV 4:2:2 multiplexed formats. 

The SDRAM and Flash connected to EMIF are 64M bytes 
and 4M bytes respectively. Every DSP has its own 32M bytes 
SDRAM, but they share only one Flash for storing program 
data, which make the second DSP can only boot from HPI 
data bus instead of EMIF memory. 

 
Figure 4.  Architecture of the Multi-DSPs system. 

B. Task Assignment of Different DSP 
As we can see from the figure 4, the two DSPs are 

communicated with each other through 32 bits 100MHZ HPI 
data bus. The first DSP is designed to convert the input video 
image signal from CCD camera into digital data, and 
inversely, convert the processed digital image data into PAL 
analogy signal or send the digital image date to remote 
terminal for further analysis through Ethernet, meanwhile, the 
first DSP is also used to image preprocessing, target detection, 
target reference color model constructing and updating; The 
second DSP is particularly designed to implement the Particle 
Filter algorithm, include initialization, state predication, 
weight calculation, resampling, and Mean-shift operation, etc. 
The detailed task assignment of the two DSPs is described in 
figure 5. 

 
Figure 5.  Assignment of the two DSPs. 

V. EXPERIMENTAL RESULTS 
To test the proposed method, an experimental Intelligent 

Vision System (IVS) is built based on the description in 
section 4. The composition of hardware system is showed in 
figure 6, which composed of Multi-DSPs circuit board, as well 
as CCD camera and monitor. The camera we selected is 



         

SONY EVI-D70P, which combines a high quality 1/4 type 
Exview HANDTM CCD color camera with the flexibility of a 
remote Pan/Tilt/Zoom operation, and the signal system is 
PAL. 

 
(a)  Multi-DSPs circuit board. 

 
(b) CCD camera and monitor. 

Fig.6. Experimental IVS. 

To illustrate our method is practicable and can be well 
implemented on DSP platform rather than usual Personal 
Computer, we use a set of frames of a video sequence 
consisting of one person keeping away from or keeping close 
to the fence of one international airport. In this case, the 
objective is to keep track of the location of the person in any 
time. In the experiment, the frame size is 720×320 originally, 
we only sample 352 × 288 per-frame for reducing 
computational complexity, and σ  in equation (8) or (9) is set 
to o.5, the m  in equation (5) is set to 4 for reducing memory 
space, and the number of particles is set to 26=64. The 
processing speed is about 12 frames per-second (fps), which is 
suitable for real applications.  

  
Frame 6                                             Frame 31 

  
Frame 90                                               Frame 115 

  
Frame 126                                              Frame 151 

Fig.7. Tracking results. 
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Fig.8. Probability of existence for object in the video sequence of Fig. 7. 

The experimental results are indicated in Figure 7 and 
figure 8. We selected six frames from over 200 sequential 
video frames, which are displayed in figure 7. The person 
appears in the 6th image frame and continues to exist 
throughout the video sequence. Combined with object 
detection algorithm running on the first DSP, the Particle 
Filter algorithm proposed in this paper detects the person in 
the frame number 6: the probability of existence of the person  
jumps to the value of 1 between frames 5 and 6, as indicated in 
Figure 8. The detected object/person is indicated in each 
image by a red rectangle, located at the estimated object 
position. Frames 90 and 151 are noteworthy: here the person 
changes its motion direction and gait abruptly, and this is 
reflected in the drop of the probability of existence for the 
person, we can see from the figure 8, the probability of 
existence drops to 0.82 and 0.76 respectively. 

Ultimately, three different platforms are used to run the 
same Particle Filter algorithm for the purpose of comparing. 
The detailed results are described in TABLE I, from which we 
can conclude that the Multi-DSPs system is an ideal hardware 
platform to implement Particle Filter Object-tracking 
algorithm for its high computational capability  compared with 
the single DSP system as well as its high performance-cost 
ratio and  ultra-low power consumation  compared with the PC 
system. 



         

TABLE I.  COMPARATION OF THREE PLATFORM 

 Different Platform 
Items Single DSP 

System 
Multi-DSPs  

System PC System 

Resource 
description 

DM642 500HZ 
SDRAM  32M 
CCS2.20.18 

DM642 500HZ 
SDRAM  64M 
CCS2.20.18 

Pentium IV 2.4G 
DDR2  1G 
XP VC6.0 

Processing 
speed 4~6 fps 11~14 fps 20~26 fps 

Power 
consumation =< 7.2w =< 10.8w >> 200w 

 

VI. CONCLUSIONS AND DISCUSSION 
In this paper, an embedded hardware architecture based on 

Multi-DSPs is proposed for speeding up the basic computation 
of Particle Filter, thereby, making Particle Filtering based 
solutions amenable to real time constraints. Simultaneously, 
on this embedded Multi-DSPs system, we also do some 
improvement to the Particle Filter algorithm for realization. 
First, the number of particles is reduced by fusing Mean-shift 
after resampling step. Then, RSR (Residual Systematic 
Resampling) method is mended to reduce N  times division 
computation and to retain the same number of particles pre-
and-post resampling procedure. The performance of the 
proposed Multi-DSPs system and optimized Particle Filter 
algorithm are evaluated qualitatively on real-world video 
sequences with moving target/person. 

Although the proposed algorithm and hardware platform 
are effective for person tracking in our laboratorial scene, 
there are two limitations inherent to our method. First, as only 
color cue is used, our tracking algorithm in fact is simply a 
general heuristic method and could not be similarly effective 
when used in other tracking problems under clutter and low-
resolution environment. Under considering the prerequisite 
condition of computational performance, we are preparing to 
fuse other features, e.g., texture, edge, simple shape and 
motion information to allow more robustness and more 
flexibility in the object-tracking. Besides, as the number of 
particles required in multiple objects tracking is increased 
many times comparing with single object tracking, which 
make our DSP platform difficult to meet the real-time 
requirement when used to track multiple objects, especially 
more than three objects. To  solve the two problems presented 
above, we are designing a new parallel reconfigurable Multi-
Processors architecture, which is composed of four DSP 
processors and one Intel(Marvell) Xscale/ARM processor- 
PXA270, and the DSP we selected is DAVINCI digital medial 
processors-TMS320DM6437(C64x+ core, 600MHZ) instead 
of TM320DM642. 
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