
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

Implementation and Optimization of Particle Filter
Tracking Algorithm on Multi-DSPs System

Gongyan Li, Bin Li,
 Research Center of Integrated Information System

 Institute of Automation, CAS
Beijing 100190, China
gongyan.li@ia.ac.cn

lixiebin2003@yahoo.com.cn

Zhou Liu, Xiaopeng Chen
National Key Lab of Pattern Recognition

Institute of Automation, CAS
Beijing 100190, China

 zliu@nlpr.ia.ac.cn

Abstract: Particle Filter is a filter method based on Monte Carlo
and recursive Bayesian estimation, which has special advantage
in dealing with the state and parameter estimation in the
nonlinear and non-Gaussian system. However, high
computational complexity and lack of dedicated embedded DSP
and ARM hardware for real-time processing have adversely
affected its application in real life. In this paper, we present an
embedded hardware architecture based on Multi-DSPs
(TMS320DM642) for speeding up the basic computational
performance, thereby, making Particle Filtering based solutions
amenable to real-time constraints. Simultaneously, on this
embedded DSP system, we also do some improvement to the
Particle Filter algorithm for realization. First, the number of
particles is reduced by fusing Mean-shift algorithm after
resampling step. Then, RSR (Residual Systematic Resampling)
method is mended to reduce the time-consuming division
computation and to retain the number of particles same pre-and-
post resampling procedure. The performance of the proposed
embedded DSP system and optimized algorithm are evaluated
qualitatively on real-world video sequences with moving target.

Keywords: Particle Filter, Mean-shift, Object tracking,
TMS320DM642

I. INTRODUCTION
Particle Filter is a filter method based on Monte Carlo and

recursive Bayesian Sequential Estimation, which uses a
weighted set of particles to approximate the posterior
distribution. Recently, there are a lot of its applications in
vision objects tracking, as it can deal with the state estimation
in the nonlinear and non-Gaussian system. Particle Filter shows
higher performance in tracking compared with other methods,
such as Kalman Filter, EKF, UKF and Mean-shift, when
dealing with cluttered environments and occlusive situations
[1] [2]. However, high computational complexity and lack of
dedicated embedded DSP and ARM hardware for real-time
processing have adversely affected its application in real
resource-constrained environment [3~5]. So far, there are two
possible ways to solve the problem of computational
complexity: one is to design a wholly parallel hardware system
which needs high performance FGPA components, such as
Xinlinx’s Virtex-4 SX [3], an alternative is to design an
embedded system with multiply DSP processors; the other is to

optimize and simplify the algorithm itself, such as, reducing the
number of particles and division operations, transferring the
floating-point computation to fixed-point, etc.

In this paper, we present an embedded hardware
architecture based on Multi-DSPs (TMS320DM642) for
speeding up the basic computation, thereby, making Particle
Filtering based solutions amenable to real-time constraints in
embedded DSP system. On this embedded hardware, we also
do some improvement to the Particle Filter algorithm for
realization: first, by Mean-shift clustering method after
resampling, every particle can approach the real target position
much more, and thereby, less number of particles is needed to
estimate the target status. Second, RSR (Residual Systematic
Resampling) method is mended to reduce the computational
complexity and to make the number of particles same pre-and-
post Resampling procedure. The performance of the proposed
hardware system and optimized algorithm are evaluated
qualitatively on real-world video sequences with moving
target.

The rest paper is organized as follows. In Section 2, we
will give a short introduction to Particle Filter, and then derive
the state transition model and observation model in our
method. In Section 3, some variations on Particle Filter are
given for reducing computational complexity. Section 4 shows
the implementation of our method on Multi-DSPs hardware.
Evaluation of our hardware system and optimized method is
presented in Section 5. Section 6 concludes the paper.

II. PARTICLE FILTER THEORY
The algorithm flow of Particle Filter for a dynamic system

is usually as follows [1] [2].

1) Initialization. At time 0k = , sample system states

{ } ()00 1

Nix p x
i

∝
=

，and the weights of all particles is set to 1 N ,

where N is the number of particles.

2) Particle sampling and weight computation. Based on the
observation zk at time k and the state of the system at time

1k − (represented by particles { ,1 1
i ixk kω− − }, 1,..., ,i N=),

propose a set of new particles { ixk , 1,..., ,i N= } from the

importance density function (| ,)1:0: 1
iq x x z kk k− . Then, with each

proposed particle ixk , associate an unnormalized weight
defined as:

(|) (|)1

1 (| ,)1:0: 1

i i ip z x p x xki i k k kw wk k i iq x x z kk k

−= −
−

 (1)

At last, normalize weights according to:

1

Ni i iw w wk k k
i

= ∑
=

 (2)

3) Compute the Expected Inference. The posterior
distribution can be approximated by the following equation:

ˆ(|) (|) ()1: 1:
1

N i ip x z p x z w x xk k k k kk k
i

δ≈ = −∑
=

 (3)

Therefore, an expected inference can be computed as:

(()) ()0: 0:
1

N i iE g x w g xk k k
i

≈ ∑
=

 (4)

4) Resampling. Sampling a new set of particles from the

set { }0: 1

Nix k i=
 according to weight iwk . The resulting particles

are represented by { }0: 1

Nix k i=
 and they are assigned identical

weights: 1i iw w Nk k= = ;

5) 1k k= + , and go Step 2) for a next iteration.

Figure 1. Flowchart of the Particle Filter.

From the algorithm flow described above, we need to
make certain the state transition model (|)1

i ip x xk k− and the

observation model (|)ip z xk k to describe a dynamic system. In

this paper, for vision tracking, we use T[,]i i iX x yk k k= which
represents the coordinates of moving object to denote the state
vector of the dynamic system. Therefore, the particles are

represented by{ },0: 1

Ni iX wk k i=
. We construct the state transition

model as follows [6]:

1
1 21

ki i i iX X X X vn nk k km n k m
λ∑= + − +− −− = −

 (5)

Where : [1,1]v Uk − and T[,]1 2λ λ λ= 。

The construction of observation model is similar to the
method in [7]. In this paper, we construct the color model of
moving object at time k in the YCbCr color space. For
consideration of computation, only Y component is used. We
assume that, at time k , the moving object under tracking
whose coordinates are y has nh candidate points and the
histogram is composed of m bins. Then, the corresponding
histogram of a moving object at current frame is computed as:

2
ˆ () () ,

1

 1, 2, ...

nh y xip y C k b x uiu h hi

u m

δ
 −   ∑= −  =  

=
 (6)

Where Ch is a normalization constant, h is window

radius, 1 , 1
()

0 , else
x x

k x
 − <

= 


, which is a kernel function,

()b xi represents the bin index associated with the Y

component at pixel location xi , and u is the color index in the
histogram. By the similar method, we can construct the
reference distribution which is gathered at the initial time 0k=

and at location 0X , denoted as ˆ ˆ ()0q p Xu u= . The reference
color model is updated with current target model in the new
video image sequence in order to improve the performance of
tracking.

Then, Bhattacharyya distance is used to measure the

difference between the histogram obtained at location iX k and
the reference histogram at time k as follows:

ˆ ˆ1 ()
1

m
d p y qi u u

u
= − ∑

=
 (7)

Finally, we obtain the observation model:

21
(|) exp()22 2

di ip Z Xk k πσ σ
= − (8)

In this paper, the importance density function is

selected (| ,) (|)0: 1 1: 1
i i i iq X X Z p X Xk k k k k=− − , allowing for

computational complexity and memory capacitance. Then,

considering all the weights are equal after resampling step, the

weight of the thi particle can be computed as:

(|)
21

 exp()22 2

i iw p Z Xk k k
di

πσ σ

=

= −
 (9)

III. VARIATIONS ON PARTICLE FILTER
As described in the previous paper, the main drawback of

Particle Filter is its high computational complexity. For each
observation received, all the particles need to be processed.
Moreover, to obtain an accurate approximation of posterior
distribution, the number of particles is usually large.
Therefore, reducing the number of particles is crucial for
implementation of Particle Filter algorithm on an embedded
system based on DSP processor. In this Section, we first
reduce particle number by Mean-shift method. Then,
according to the architecture of TI’s DSP, we fuse the
normalization and resampling steps to overcome some
shortcomings of RSR. Finally, some tricks for DSP
programming are introduced to improve computational
performance.

A. Combining Mean shift algorithm in Particle Filter
The Mean-shift algorithm is a non-parametric method

which converges to a local maximum of the measurement
function under certain assumptions on the kernel behaviors.
Therefore, the application of Mean-shift algorithm in Particle
Filter can refine the location of particles, and then, reduce the
particle number needed in tracking. The application of Mean-
shift in Particle Filter has already been presented in the
literature, such as, [8] [9]. However, in the traditional
methods, the computation of the correlation between candidate
region and reference template for every particle before
resampling is time-consuming. In this paper, the Mean-shift
process is applied between step 4) and step 5) described in
Section 2. We assume that the number of replication for every
particle is saved as ri during resampling process. Then, after
resampling, the new location of a particle is denoted as:

2

1

2

1

iN X Xi kX r gik hi
X

iN X Xkr gi hi

 
− 

∑  
 =  
 =

 
− 

∑  
 =  
 

 (10)

Where, T[,]i i iX x yk k k= is the location of the thi particle

before resampling, 2()g x is a kernel function and h is
window radius. The principle of Particle Filter Embedded
Mean-shift algorithm can be illustrated in figure 2.

Through Mean-shift operation, every particle is more close
to the local maximum, i.e. the real position of target.
Therefore, less number of particles is needed to estimate the
target status. Subsequently, the computational complexity is

reduced greatly. As a result, make Particle Filter algorithm
implement on embedded DSP system feasible.

Figure 2. chematic representation of the Particle Filter embedded Mean-shift

algorithm.

B. Fusing normalization step and resampling step
A common problem with Particle Filter is the degeneracy

phenomenon. When after a few iterations, all but one particle
will have negligible weight. The degeneracy phenomenon
means that a large part of computation is devoted to the
particles which only contribute little to the posterior
distribution. To alleviate the phenomenon, some resampling
methods have been proposed, such as: Stratified Resampling,
Residual and Systematic Resampling [10~12]. From
experiments, we find that the RSR in [12] is more suitable for
implementation on embedded DSP system. However, it still
has some shortcomings and we improve it in two ways:

1) The number of particles before and after RSR in [12]
may change. In this paper, we can retain the particle number
same after resampling by increment/decrement of particles
similar with the method in [11].

2) We extend the RSR method to deal with unnormalized
situation and this can neglect the division computation of
weight normalization.

To extend the RSR, the original algorithm is amended as
follows:

a) Initialize 0WN = , : [0,1]0u U .

b) 1,...,for i N= , iW W wN N k= + .

c) temp1 /N WN= .

d) 1,...,for i N= , temp2 temp1 1
iw uik= ∗ − − , (temp2) 1r roundi= + ,

temp2u ri i= − .

In this algorithm flow, the temp1 and temp2 are
intermediate variables, ri is the number of replication for the
thi particle.

Figure 3 shows a simulated experiment of the improved
RSR algorithm. In this experiment, the number of particles is
set to 64 and the weight of each particle is randomly sampled
from [0, 1].

0 10 20 30 40 50 60 70
0

0.5

1
W

ei
gh

t—
—

0 10 20 30 40 50 60 70
0

2

4

R
ep

lic
at

io
n

N
um

be
r

--
--

--

Figure 3. Simulated experiment result of the improved RSR algorithm in

Matlab.

C. Optimization of the code
After improving the algorithm as described above, the

computational complexity has been reduced a lot. In this
section, we will introduce some tricks on DSP programming:

1) Design the formulas which are computed repeatedly as

intermediate variables, for example,
21 exp()22 2

di
πσ σ

− can be

denoted as 2exp()1 2C C di , where 1
1 2

C
πσ

= ，
1

2 22
C

σ
=− .

 2) Obtain the random numbers which fit [0,1]U or [1,1]U −
offline, then, save these numbers in a table on DSP. Therefore,
we can use look up table method to obtain random numbers

 3) To enhance the efficiency, loop operations which are
time consuming are rewritten in assemble language.

IV. IMPLEMENTATION OF PARTICLE FILTER ON EMBEDDED
DSP HARDWARE

A. Hardware Description
In order to implement the Particle Filter algorithm in real-

time, an embedded system based on Multi-DSPs is designed
with “pipelining” architecture as illustrated in figure 4. The
hardware is composed of two TI DSP processors--
TMS320DM642. TMS320DM642 is one of the highest-
performance fixed-point DSP generation in the
TMS320C6000™ DSP platform, which is based on the
second-generation high-performance, advanced VelociTI™
very-long-instruction-word (VLIW) architecture
(VelociTI.2™), making this an excellent choice for digital
media applications. With performance of up to 5760 million
instructions per second (MIPS) at a clock rate of 720 MHz, the
TMS320DM642 device offers cost-effective solutions to high-
performance DSP programming challenges. The peripheral set
of TMS320DM642 includes: three configurable video ports; a
10/100 Mb/s Ethernet MAC (EMAC); an inter-integrated
circuit (IIC) Bus module; two multichannel buffered serial
ports (McBSPs); a user-configurable 16-bit or 32-bit host-port
interface (HPI16/HPI32).

The digital video decoder of our DSP system is selected
TVP5146, and encoder is SAA7121.The TVP5146 device is a
high quality, single-chip digital video decoder, which includes
four 10-bit 30-MSPS A/D converters (ADCs), and supports
decoding of NTSC, PAL, and SECAM composite and S-video

into component YCbCr. The SAA7121 encodes digital YCbCr
video data to an NTSC or PAL CVBS or S-video signal. The
circuit accepts CCIR compatible YCbCr data with 720 active
pixels per line in YUV 4:2:2 multiplexed formats.

The SDRAM and Flash connected to EMIF are 64M bytes
and 4M bytes respectively. Every DSP has its own 32M bytes
SDRAM, but they share only one Flash for storing program
data, which make the second DSP can only boot from HPI
data bus instead of EMIF memory.

Figure 4. Architecture of the Multi-DSPs system.

B. Task Assignment of Different DSP
As we can see from the figure 4, the two DSPs are

communicated with each other through 32 bits 100MHZ HPI
data bus. The first DSP is designed to convert the input video
image signal from CCD camera into digital data, and
inversely, convert the processed digital image data into PAL
analogy signal or send the digital image date to remote
terminal for further analysis through Ethernet, meanwhile, the
first DSP is also used to image preprocessing, target detection,
target reference color model constructing and updating; The
second DSP is particularly designed to implement the Particle
Filter algorithm, include initialization, state predication,
weight calculation, resampling, and Mean-shift operation, etc.
The detailed task assignment of the two DSPs is described in
figure 5.

Figure 5. Assignment of the two DSPs.

V. EXPERIMENTAL RESULTS
To test the proposed method, an experimental Intelligent

Vision System (IVS) is built based on the description in
section 4. The composition of hardware system is showed in
figure 6, which composed of Multi-DSPs circuit board, as well
as CCD camera and monitor. The camera we selected is

SONY EVI-D70P, which combines a high quality 1/4 type
Exview HANDTM CCD color camera with the flexibility of a
remote Pan/Tilt/Zoom operation, and the signal system is
PAL.

(a) Multi-DSPs circuit board.

(b) CCD camera and monitor.

Fig.6. Experimental IVS.

To illustrate our method is practicable and can be well
implemented on DSP platform rather than usual Personal
Computer, we use a set of frames of a video sequence
consisting of one person keeping away from or keeping close
to the fence of one international airport. In this case, the
objective is to keep track of the location of the person in any
time. In the experiment, the frame size is 720×320 originally,
we only sample 352 × 288 per-frame for reducing
computational complexity, and σ in equation (8) or (9) is set
to o.5, the m in equation (5) is set to 4 for reducing memory
space, and the number of particles is set to 26=64. The
processing speed is about 12 frames per-second (fps), which is
suitable for real applications.

Frame 6 Frame 31

Frame 90 Frame 115

Frame 126 Frame 151

Fig.7. Tracking results.

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Frame number

P
ro

ba
bi

lit
y

Fig.8. Probability of existence for object in the video sequence of Fig. 7.

The experimental results are indicated in Figure 7 and
figure 8. We selected six frames from over 200 sequential
video frames, which are displayed in figure 7. The person
appears in the 6th image frame and continues to exist
throughout the video sequence. Combined with object
detection algorithm running on the first DSP, the Particle
Filter algorithm proposed in this paper detects the person in
the frame number 6: the probability of existence of the person
jumps to the value of 1 between frames 5 and 6, as indicated in
Figure 8. The detected object/person is indicated in each
image by a red rectangle, located at the estimated object
position. Frames 90 and 151 are noteworthy: here the person
changes its motion direction and gait abruptly, and this is
reflected in the drop of the probability of existence for the
person, we can see from the figure 8, the probability of
existence drops to 0.82 and 0.76 respectively.

Ultimately, three different platforms are used to run the
same Particle Filter algorithm for the purpose of comparing.
The detailed results are described in TABLE I, from which we
can conclude that the Multi-DSPs system is an ideal hardware
platform to implement Particle Filter Object-tracking
algorithm for its high computational capability compared with
the single DSP system as well as its high performance-cost
ratio and ultra-low power consumation compared with the PC
system.

TABLE I. COMPARATION OF THREE PLATFORM

 Different Platform
Items Single DSP

System
Multi-DSPs

System PC System

Resource
description

DM642 500HZ
SDRAM 32M
CCS2.20.18

DM642 500HZ
SDRAM 64M
CCS2.20.18

Pentium IV 2.4G
DDR2 1G
XP VC6.0

Processing
speed 4~6 fps 11~14 fps 20~26 fps

Power
consumation =< 7.2w =< 10.8w >> 200w

VI. CONCLUSIONS AND DISCUSSION
In this paper, an embedded hardware architecture based on

Multi-DSPs is proposed for speeding up the basic computation
of Particle Filter, thereby, making Particle Filtering based
solutions amenable to real time constraints. Simultaneously,
on this embedded Multi-DSPs system, we also do some
improvement to the Particle Filter algorithm for realization.
First, the number of particles is reduced by fusing Mean-shift
after resampling step. Then, RSR (Residual Systematic
Resampling) method is mended to reduce N times division
computation and to retain the same number of particles pre-
and-post resampling procedure. The performance of the
proposed Multi-DSPs system and optimized Particle Filter
algorithm are evaluated qualitatively on real-world video
sequences with moving target/person.

Although the proposed algorithm and hardware platform
are effective for person tracking in our laboratorial scene,
there are two limitations inherent to our method. First, as only
color cue is used, our tracking algorithm in fact is simply a
general heuristic method and could not be similarly effective
when used in other tracking problems under clutter and low-
resolution environment. Under considering the prerequisite
condition of computational performance, we are preparing to
fuse other features, e.g., texture, edge, simple shape and
motion information to allow more robustness and more
flexibility in the object-tracking. Besides, as the number of
particles required in multiple objects tracking is increased
many times comparing with single object tracking, which
make our DSP platform difficult to meet the real-time
requirement when used to track multiple objects, especially
more than three objects. To solve the two problems presented
above, we are designing a new parallel reconfigurable Multi-
Processors architecture, which is composed of four DSP
processors and one Intel(Marvell) Xscale/ARM processor-
PXA270, and the DSP we selected is DAVINCI digital medial
processors-TMS320DM6437(C64x+ core, 600MHZ) instead
of TM320DM642.

ACKNOWLEDGMENT
The authors would like to thank Lei Ma and Yuan Tian for

their help in experiments, and thank Xinbo Deng for his help
in schematic and PCB design. This research is funded by the
National Hi-Tech R&D Program (no.2007AA809505B), and
Youth Innovation Foundation of Institute of Automation,
Chinese Academy of Sciences (Grant DI07J01).

REFERENCE

[01] C. Jacek, R. Branko, M. Benoit, “A Particle Filter for joint detection and
tracking of color objects,” Image and Vision Computing, Vol. 25, Issue.
8, pp. 1271-1281, Aug. 2007.

[02] P. Brasnett, L. Mihaylova, D. Bull, N. Canagarajah, “Sequential Monte
Carlo tracking by fusing multiple cues in video sequences,” Image and
Vision Computing, Vol. 25, Issue. 8, pp. 1217-1227, Aug. 2007.

[03] J. Cho, S. Jin, X. Pham, J. Jeon, J. Byun, H. Kang, “A real-time object
tracking system using a Particle Filter,” Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, Beijing, pp.
2822-2827, Oct. 2006.

[04] A. Sankaranarayanan, R. Chellappa, A. Srivastava, “Algorithmic and
architectural design methodology for Particle Filters in hardware,”
Proceedings of the 2005 International Conference on Computer Design,
pp. 275-280, Oct. 2005.

[05] T. Bando, T. Shibata, K. Doya, S. Ishii, “Switching Particle Filters for
efficient real-time visual tracking,” Proceedings of the 17th International
Conference on Pattern Recognition, Vol. 2, pp.720-723, Aug.2004.

[06] S. Zhou, R. Chellappp, B. Moghaddam, “Visual tracking and recognition
using appearance-adaptive models in Particle Filters,” IEEE
Transactions on Image Processing, Vol. 12 ,Issue. 11, pp. 1491-1504,
Nov. 2004.

[07] P. Perez, C. Hue, J. Vermaak and M. Gangnet, “Color-based probabilistic
tracking,” Proceedings of 7th European Conference on Computer Vision
(ECCV), pp. 661-675, May. 2002.

[08] K. Deguchi, O. Kawanaka, T. Okatani, “Object tracking by the Mean-
shift of regional color distribution combined with the Particle-filter
algorithm,” 17TH International Conference on Proceedings of the Pattern
Recognition, Vol. 3, pp. 506-509, Aug. 2004.

[09] E. Maggio, A. Cavallaro, “Hybrid Particle Filter and Mean shift tracker
with adaptive transition model,” Proc. of IEEE Signal Processing
Society International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Philadelphia, Vol. 2, pp. 221-224, Mar. 2005.

[10] M. Bolic, Architectures for efficient implementation of Particle Filters,
Ph.D. Dissertation, State University of New York at Stony Brook, 2004.

[11] S. Hong, M. Bolic, “An efficient fixed-point implementation of residual
resampling scheme for high-speed Particle Filters,” IEEE Signal
Processing Letters, Vol. 5, pp. 482-485, Nov. 2004.

[12] M. Boloc, P. Djuric, S. Hong, “New resampling algorithms for Particle
Filters,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, Vol. 2, pp. 589-592, Apr. 2003.

