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Abstract— This paper deals with the modelling and 
identification of an industrial Staubli RX-60 robot. A Lagrange-
Euler method is used to derive the dynamic equations of the 
robot. The dynamic model introduced here was obtained with the 
distinct parameters. In this paper, a least squares estimation for 
determining parameters of a dynamic Staubli RX-60 Robot 
model based on experiments was used. The robot was moved with 
respect to many experiments formed. At the end of the 
movement, data such as the position and velocity was taken from 
the robot. Moreover, the acceleration was taken from SIMI 
Motion with a three cameras system and torque was measured 
from the loadcell (FTC-L50) sensor during the robot 
experiments. The inertial parameters of the robot were estimated 
according to these data. The estimation values were verified 
experimentally. The experimental results show that the estimated 
inertial parameters predict robot dynamics well. The errors of 
the torque estimation were also computed and they are between 
0.0171 Nm and 0.1136 Nm. 

I. INTRODUCTION 
Determination of inertial parameters of robot manipulators 

is often required for advanced control algorithms. The dynamic 
model, either in the form in inertial parameters or in the form in 
the minimal set of inertial parameters, is then used to determine 
this set of parameters experimentally. That is, for various 
trajectory of the robot, corresponding values of positions, 
velocities, torques and accelerations of the joints are measured. 
Based on these experimental values, the inertial parameters are 
then estimated by some kind of “best fit’.  

To use a dynamic model for control of a robotic system, 
one must be sure that the model closely matches the real 
dynamics. To enable a close match, the structure of the model 
should be capable of describing the relevant aspects of the 
physics and accurate values for the model parameters are 
needed. So far, a number of theoretical and experimental 
studies on estimating model parameters have been reported. 
Each exploits the well-known property that a model of the 
robot dynamics can be represented linearly in a minimum set of 
identifiable parameters. 

Most robot manipulators are not equipped with joint 
torques/force sensors. Thus, estimates of joint torques and 
forces must be used. A typical estimate is from the motor 
current [1, 2]. The most efficient way to obtain accurate values 
of the unknown model parameters may be experimental 

parameter identification using the assembled robot. The 
problem of obtaining these parameters by means of 
experimental estimation has been addressed by many authors. 
The identification of the robot as experimental estimation must 
be revealed. A general overview of experimental robot 
identification using linear least squares techniques can be found 
in the textbooks of [3] and [4]. 

In this paper, a least squares (LS) estimation method was 
applied to obtain an accurate estimation of the parameters. The 
least square method optimizes the root-mean square (rms) 
residual error of the model under the assumption that the 
measurement errors are negligible. However, in [5] it has been 
observed that there are problems with the parameter estimates 
of the least square method. One of the problem is the 
sensitivity to measurement noise. To overcome this problem, 
one can generate so-called “exciting trajectories and/or use 
data filtering. By using such “input data improvement”, a lot 
of excellent parameter estimations using the least square 
method has been obtained [6-8].  

The minimum inertial parameters are defined as the 
minimum set of constant inertial parameters that do not contain 
the zero element and are sufficient to calculate the dynamic 
model of the robot. They can be obtained from the classical 
inertial parameters by eliminating those that have no effect on 
the dynamic model. A model must be presented for 
determining these parameters.  The dynamical equations of a 
manipulator consist of a number of mathematical equations that 
define the behavior of the manipulator dynamics. This is a 
second order non-linear differentiate equation. A robot arm 
dynamic model can be obtained from physical laws known 
such as Newton and Lagrangian mechanics [9-10]. There are a 
lot of methods for obtaining the equations of the robot arm 
dynamics. They are the approaches such as Lagrange-Euler (L-
E), Recursive Lagrange (R-L), Newton-Euler (N-E) and 
Generalized D'Alambert (G-D) principle [11]. The most used 
methods are the approaches to L-E and N-E. In this process, an 
approach to L-E which has a well planned structure and is more 
simple and more systematic than an approach to N-E is used in 
order to obtain the robot dynamic model. 

In this paper, the dynamic model of the three first links of a 
six-axis Staubli RX-60 robot was obtained. The minimum 
inertial parameters of the robot could be attainable by using the 



         

given model. The LS error method was used for determining 
inertial parameters of a dynamical robot model based on 
experiments. The values of the parameters were obtained by 
this method. These values which were obtained from 
experimental results were tested. 

II. DYNAMIC MODEL OF THE ROBOT 
The dynamical analysis of the robot arm investigates a relation 
between the joint torques/forces applied by the actuators and 
the position, velocity and acceleration of the robot arm with 
respect to the time. Robot manipulators have complex 
nonlinear dynamics that might make accurate and robust 
control difficult. Fortunately, robots are in the class of 
Lagrangian dynamical systems, so that they have several 
extremely nice physical properties that make their control 
straightforward.  

A. D-H Parameters of RX-60 Robot  
The Denavit-Hartenberg (or D-H) technique has become 

the standard method in robotics for describing the forward 
kinematics of a manipulator. Essentially, by careful placement 
of a series of coordinate frames fixed in each link, the D-H 
technique reduces the forward kinematics problem to that of 
combining a series of straightforward consecutive link-to-link 
transformations from the base to the end effector frame. 

Table 1 shows the D-H parameters of Staubli RX-60. 
According to the D-H convention, D-H parameters of RX-60 
Robot are represented as: 

1−iα : Link twist; 

1−ia  : Link length; 

id    : Link offset; 

iθ    : Joint angle; 

TABLE I.   LINK PARAMETERS FOR STAUBLI RX-60 ROBOT  
 

 
 

 
 
 

 

 

 
 

 

 

Where: 2a =0.29 m, 1d =0.237 m, 3d =0.049 m, 4d =0.31 m [13]. 

 

This manipulator, which is called Staubli RX-60 Robot of 
Figure 1, consists of an RRR arm and three degrees of freedom 
wrist. The first step is to locate and label the joint axes as 
shown.  

This is completely arbitrary and the robot arm is the zero 
configuration of the manipulator, that is, the position of the 
manipulator when 1 2 3 4 5 6, , , ,  and 0θ θ θ θ θ θ = . 
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Figure 1.  D-H coordinate frame assignment for Staubli RX-60 Robot.                       

B. Obtaining Dynamic Model 
The dynamics of robot manipulators with rigid links can be 

written as 

)(),()( qGqqCqqD ++=τ                       (1) 

where ( )D q q is the inertia matrix, ( , )C q q is the 
coriolis/centripetal matrix, ( )G q is the gravity vector, and τ is 
the control input torque. The joint variable q  is an n -vector 
containing the joint angles for revolute joints and lengths for 
prismatic joints.  

Using θ  as the vector of joint angles, the dynamics of the 
three first links of a six-axis Staubli RX-60 robot can be 
modelled by: 
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  (2) 

where θ , θ and θ  respectively are joint position, velocities 
and accelerations. 

The torque equation of the three first links of a six-axis 
Staubli RX-60 robot can be computed by: 
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The terms in equations above will be explained in chapter 3 

III. IDENTIFYING THE PARAMETER OF RX-60 ROBOT 
Advanced robot control algorithms usually rely on model-

based control techniques in order to accomplish a desired level 
of accuracy and compliance. Thus, accurate model 
identification is a highly important topic for advanced robot 
control, and many modern robotics applications rely on it (e.g., 
as in haptic robotic devices, robotic surgery and the safe 
application of compliant assistive robots in human 
environments). 

Equation (2) can also be expressed linearly in terms of the 
physical parameters of the system. The non-linear robot terms 
are linear in the parameters of mass and friction so that one 
can write 

ταθθθ =),,(Y                                             (3) 

where ),,( θθθY is a matrix of known measured joint values 
θθ , andθ , and α is a vector of unknown parameters of the 

robot. Generally, it includes masses, link dimensions, and even 
constants of friction. 

For RX-60 Robot, the elements involved in (3) are 
computed. First vector α including the constant terms is 
expressed. 

[
]

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

              

                       T

α α α α α α α α α

α α α α α α α α

=
                 (4) 

These elements involved in (4) are either known constant 
parameters or unknown parameters of RX-60. The physical 
meaning of the parameters 1α ,,, 16α is given in Table 2.  

TABLE II.  PHYSICAL MEANING OF PARAMETERS   

Parameter Meaning Unit 

1α  
c 2

2 2
2 3 2 2 yya m m a B+ +  2.mkg  
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3α  
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2
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8α  
1

2
3 3 ZZm d C+  2.mkg  

9α  2D  2.mkg  

10α  2 2 3 3E a d m+  2.mkg  

11α  
c3 3 3 4D d m d−  2.mkg  



         

12α  3E  2.mkg  

13α  
2 2ZZ yyC B−  2.mkg  

14α  
3 3ZZ xxC A−  2.mkg  

15α  
c0 2 2 0 3 2g m a g m a+  

2

2.
s

mkg  

16α  
c0 3 4g m d  

2

2.
s

mkg  

Variables as stated above are in Table 2 where m is link 
mass; a and d are link length and link offset (Denavit-
Hartenberg parameters) respectively; 4c

d ve 2c
a are coordinates 

of link’s centers of gravity in the frame 4 and 2; A, B, C are 
link’s moments of inertia matrix; E, F, D are link’s products of 
inertia matrix; og is the value of gravity.For Staubli RX-60 

Robot dynamics the regressor matrix ),,( θθθY  is given by 

11 12 13 116

21 22 23 216

31 32 33 316 3 16

. . .

. . .

. . .
x

y y y y
Y y y y y

y y y y

 
 =  
 
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                 (5) 

A. Estimation of Inertial Parameters 
The vector can generally be estimated from (3) using the 

least squares method as 

τα TT YYY 1)( −=                                                      (6) 

If the inputτ sufficiently excites the manipulator dynamics, 
then the least squares estimate of α will be existence. There are 
several criteria evaluating sufficiency of excitation. The usual 
one is the condition number of the information matrix 

TT YYY 1)( − , defined as the ratio between maximal and minimal 
singular values of TT YYY 1)( − . If this number is closer to one, 
the excitation is considered to be better for a reliable estimation 
of α . In addition, the least squares method may not be applied 
directly when 1)( −YY T does not exist [12].  

IV. EXPERIMENTAL RESULTS 
For identification of the robot parameter, the positions and 

velocities of the joints were obtained from incremental 
encoders during motion of the robot along a given trajectory. In 
each experiment, torque at end effector was measured from 
FTC-L50 sensor. In Figure 2, three cameras in SIMI Motion 
system with 300 Hz were used for measuring the accelerations 
of the joints. The data is obtained from the data acquisition card 
at the sampling rate of 1 kHz. 

 

 

 

 

 
          (a)                                                        (b) 

Figure 2.  SIMI Motion System and an Acceleration Experiment Setup.  

A. Experimental Procedure 
Vectorα has included the constant parameters known such 

as the coordinates of center of gravity, link’s length and link 
mass. By writing the values of these parameters in (4), 
vectorα can be simplified to 
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The above α is used in determining inertial parameters of each 
joint. The programs were composed for implementation of (6) 
by using Matlab/Simulink software.  

Here, in Matlab the trajectory equations have been designed 
by composing the programs which can make the writing task 
such as a circle, an ellipse, a bulb, an ellipsoid, a helix and a 
desired trajectory. A total of the six experiments was made 
with respect to these trajectories. These trajectories were 
applied on the RX-60 robot. The desired data was obtained 
from the robot during tracking these trajectories.  

The table below clearly demonstrates all values of the 
parameters in vectorα that were obtained at the end of a total 
of the six experiments shown above, but values of 4α , 15α and 

16α  were calculated from data sheet parameters. All of the 
columns show the value of the parameters, and the rows show 
the parameters in the vector α in Table 3. 

TABLE III.  VALUES OF VECTOR α   

 

At the end of the six experiments, the mean and standard 
deviation of allα below were obtained as shown the following 
table 

α  Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 

1α  2.6412 2.5935 2.8242 3.1333 2.4098 2.9768 

2α  1.3659 1.3143 1.3853 1.1982 1.3311 1.3950 

3α  1.1893 1.3150 1.2248 1.1562 1.2269 1.3639 

4α  0.1255 0.1255 0.1255 0.1255 0.1255 0.1255 

5α  -0.2632 0.8591 0.1570 0.1535 0.8992 -0.5470 

6α  -0.3487 -0.2446 -0.3995 -0.1067 -0.4057 -0.1595 

7α  0.1588 0.1581 0.2375 0.1460 0.1398 0.2698 

8α  5.9423 5.5719 4.9693 5.5327 4.6663 5.0116 

9α  -0.0390 0.0508 -0.0052 -0.0386 -0.0139 -0.0507 

10α  -0.0048 -0.0075 -0.0010 -0.0001 -0.0006 -0.0041 

11α  -0.0018 -0.0013 -0.0021 -0.0051 -0.0030 -0.0011 

12α  -0.0055 -0.0042 -0.0021 -0.0028 -0.0027 -0.0028 

13α  2.6416 3.0584 2.6880 2.8690 2.4255 2.8106 

14α  0.4379 0.4961 0.4205 0.4317 0.3134 0.3944 

15α  24.7750 24.7750 24.7750 24.7750 24.7750 24.7750 

16α  2.1197 2.1197 2.1197 2.1197 2.1197 2.1197 



         

TABLE IV.  THE MEANS AND STANDARD DEVIATIONS IN VECTOR α  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the goal in this here is to determine the values of inertial 
parameters of joints, vector α is determined as the following 

[

]

2.7631  1.3316  1.2460  0.1255  0.2098  -0.2775
         0.1850  5.2824  -0.0161  -0.0030  -0.0024  -0.0034
           2.7488  0.4157  24.7750  2.1197

α =
 

Table 5 shows the values of the elements of inertia matrix 
with the moment and products of inertia of link remained by 
eliminating the parameters that have no effect on the dynamic 
model in vectorα . 

TABLE V.  STAUBLI RX-60  ROBOT MINIMUM PARAMETER VALUES  

 

B. Estimation Result Verification  
To verify the estimation results, a totally different motion 

was applied to the robot. The estimatedα is used to predict the 
torques measured from FTC-L50 sensor during motion. 

Finally, the predicted torque can be calculated 
as ταθθθ =),,(Y . The velocity is filtered for maintaining a 
good least square estimation after getting the required 
transformations [14]. So, the start and the end of the trajectory 
have been filtered in order to ensure a smooth motion and to 
reduce the transients.  

In the end, the required filters are applied by using the final 
obtained vector α and thus, the predicted torques match well 
those from sensor measurements as shown in Figure 4 a-c. 

1( ) . .sin
4

tt c r πθ  =  
 

                         (7) 

 2 ( ) . .cos
4

tt c r πθ  = −  
 

                       (8) 

( )( )3 ( ) .cos
4

tt ones size πθ β  =  
 

      (9) 

Where c=0.6, r is the value which changes between -1.2 and 
-0.85, β is the value which changes between 255 and 360. 
Robot moves according to the trajectories of joints above as 
shown in Figure 3. 
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Figure 3.  Joint 1 ( 1θ ), Joint 2 ( 2θ ) and Joint 3 ( 3θ ) During Verification 

Motion.  

 The data is recorded form the incremental encoders at the 
sampling of 1 kHz during manipulator motion. Time of the 
movement in the experiment was equal to 20 sec.  After these 
data have been collected, the estimation of the torque can be 
reached by analyzing these data.  

In Figure 4, the measured and simulated joint torques have 
been plotted. The graph of torques shows the relation between 
the estimated torques and measured torques.  
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            (a) 

 

α  Means Standard 
Deviations 

1α  2.7631 0.2664 

2α  1.3316 0.0724 

3α  1.2460 0.0784 

4α  0.1255 0 

5α  0.2098 0.5830 

6α  -0.2775 0.1269 

7α  0.1850 0.0546 

8α  5.2824 0.4760 

9α  -0.0161 0.0370 

10α  -0.0030 0.0029 

11α  -0.0024 0.0015 

12α  -0.0034 0.0013 

13α  2.7488 0.2163 

14α  0.4157 0.0603 

15α  24.7750 0 

16α  2.1197 0 

Joint xxA  yyB  zzC  D  E  F  

1 0 0 5.2737 0 0 0 
2 1.3316 2.2034 4.9522 -0.0161 -0.0542 -0.2098 
3 0.1720 1.2460 0.5877 0.0082 -0.0034 0.2775 
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Figure 4.  Estimated and Measured Torques.  

The objective in here is to reveal the accuracy of the values 
of the unknown parameters obtained by means of experimental 
identification using dedicated experiments. The results in 
Figure 4 have been indicating that there is a good agreement 
between the measurement and the estimation. 

To verify the estimation results, a totally three different 
experiments was made. Table 6 shows the errors having 
occurred in the result of all three experiments. These estimation 
errors were obtained by dividing sum of the squares of the 
differences between the actual observed and the computed 
values into the number of data. 

TABLE VI.  ESTIMATION ERRORS  

Experiment Joint 1 Joint 2 Joint 3 

1 0.0256 0.0171 0.0252 

2 0.0043 0.1136 0.0036 

3 0.0176 0.082 0.0091 

 

V. CONCLUSIONS 
In this paper, the modeling and identification of Staubli 

RX-60 robot have been presented. A least squares estimation 

method has been used to estimate the inertial parameters of the 
robot. 

 The proposed method has been tested experimentally, and 
the results show that the estimated inertial parameters predict 
robot dynamics well. Moreover, the error of the estimation 
occurred between 0.008 and 0.112 by using estimation result 
verification at the end of the estimation. It was shown that LS 
method was able to find such parameters of the robot’s model. 
Experimental results validate the effectiveness of the proposed 
LS method. 

It can be concluded that accurate identification result can be 
obtained from a different sufficiently exciting identification 
trajectory. Furthermore, the obtained parameter values result in 
an accurate dynamic robot model. The accuracy depends on the 
measurement accuracy of the encoders. Further work is 
required on systematic analysis of the estimation accuracy. 
Other important remaining issues are the identifiably of inertial 
parameters and the selection of efficient exciting trajectories. 
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