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Abstract—In this paper, we present a spherical mobile robot 
BYQ_III, for planetary surface exploration and security tasks. 
The driving torque for the rolling robot is generated by a new 
type of mechanism equipped with a counter-pendulum. This 
robot is nonholonomic in nature, and underactuated. In this 
paper, the three-dimensional (3-D) nonlinear dynamic model is 
developed, then decoupled to the longitudinal and lateral motions 
by linearization. Two sliding-mode controllers are proposed to 
asymptotically stabilize the tracking errors in lean angle and 
spinning angular velocity, respectively, and indirectly to stabilize 
the desired path curvature, because the robot steers only by 
leaning itself to a predefined angle. For the task of path following, 
a path curvature controller, based on a geometrical notion, is 
employed. The stability and performance analyses are 
performed, and also the effectiveness of the controllers is shown 
by numerical simulations. To the best of author’s knowledge, 
similar results could not be obtained in the previous spherical 
robot control system based on the dynamics. The work is of 
significance in understanding and developing this type of 
planning and controlling motions of nonholonomic systems. 

Keywords—nonholonomic system, dynamics, sliding–mode 
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I.  INTRODUCTION 
 

The BYQ project is an effort to design and develop the 
omni-directional spherical mobile robots, for planetary surface 
exploration, security surveillance, inspection of disaster areas, 
and human search and rescue. BYQ_III in Fig.1 is the third 
prototype originally developed in our laboratory [1]. The 
actuation mechanism consists of two separate actuators: (1) a 
steer motor, which mainly controls the steering motion of the 
robot by tilting the counter-weight pendulum; and (2) a drive 
motor, which causes forward and/or backward acceleration by 
swinging the counter-weight pendulum. And the main axes of 
the two motors are perpendicular. The concept of the spherical 
mobile robot allows the entire system to be enclosed within the 
shell to provide mechanical and environmental protection for 
the equipment and actuation mechanism inside. This 
configuration conveys significant advantages over multi-wheel, 
statically stable vehicles. These advantages include good 
dynamic stability, high maneuverability, low rolling resistance, 
ability to omni-directionally roll, and amphibious capability. 
Most important, the robot can resume stability even if a 
collision happened.  

 
Figure 1.  Photograph of the third prototype BYQ_III 

At the same time, spherical robot concept also brings a 
number of challenging problems in modeling, stabilization and 
path following. First, there are highly coupled dynamics among 
the shell, the gimbal and the counter-weight pendulum (Fig.1). 
This is similar to the case when a manipulator is mounted on a 
satellite [7]. Second, it is subject to a kind of underactuated 
non-holonomic system that can control more degrees of 
freedom (DOF) using less drive inputs. The constraints mainly 
arise when the robot rolls on the ground without slipping. 
Therefore, when the problem of controlling the position and 
attitude of the sphere is considered, the system must be treated 
as a nonholonomic system. This type of motion control of a 
sphere, referred to as the plate-ball problem [2-6], has been of 
particular interest to researchers over the past years, since its 
kinematic model can not be reduced to chained-form; this 
renders regimented nonholonomic control techniques 
inapplicable[8]. But, it has been shown by Li and Canny [9] 
that the ball-plate system is completely controllable. T. Otani 
[6] constructed two feedback controllers respectively, one for 
the kinematic model based on Lyapunov control, and the other 
for the dynamic model based on Backstepping technique. It is 
shown that the both controllers make the system converge to a 
small neighborhood of the desired point. R. Mukherjee [8] 
presented a sweep-tuck algorithm for four dimensional 
reconfiguration of the spherical robot. The sphere is 



         

reconfigured by repeated application of a pair of control 
actions: moving along straight line and circular path, 
respectively. In this case, the posture needs to be constrained 
and, accordingly, arbitrary trajectories can not be globally 
followed. 

This paper considers the problem of stabilization and path 
following of the spherical robot, BYQ_III, using two 
independent torque inputs. Two feedback controllers, based on 
the sliding-mode control method, are then employed for the 
stabilization of the linearized model with the uncertainties. One 
controller (velocity controller) makes the system converge to 
an arbitrarily small neighborhood of the desired spinning 
angular velocity. The other controller (position controller) 
stabilizes the lean angle to a small neighborhood of the desired 
point, and indirectly guarantees the asymptotic stabilization of 
the heading direction. For the path following of the robot, we 
design a steer function to track any desired straight line based 
on the path curvature. By proposed method, the geometric 
constraints in [8] are eliminated and both tracking and 
stabilization problem in the research of the spherical robot are 
solved. The proposed approach does not generate any 
oscillatory and/or chattering behavior to the output/control 
variables. The stability and performance of each control system 
are analyzed. By combining these controllers, the global 
asymptotic performance of path tracking can be achieved even 
with large initial tracking errors in both position and heading 
direction, which are shown through numerical simulation. 

II. MATHEMATICAL MODEL OF BYQ_III 
In derivation of the equations of the robot motion, we 

assume that the shell is a rigid, homogeneous ball which rolls 
over a perfectly flat surface without slipping, and the counter-
weight pendulum is a particle (Fig. 2). 
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Figure 2.   Configuration of the system BYQ_III 
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Figure 3.   Orientation of the shell 

A. Kinematic Model 
Spherical robots require six independent coordinates to 

determine their complete configuration (position and 
orientation) when the configuration of the internal mechanism 
is not considered. Like Marine vessels [11], the six different 
motion components can be defined as surge, sway, heave, roll, 
pitch, and yaw. But the heave displacement holds constant, and 
the heave motion does not exist because the shell is a rigid, 
homogeneous ball which rolls over the surface. It is common to 
reduce the general six-DOF of the model to motion in roll, 
pitch, and yaw only by neglecting the sway and surge modes 
which can be formulated by the roll, pitch and yaw states. The 
state vector (2)η = SE is then defined by 

[ ], , Tx y ϕ=η                                       (1) 

where 2( , )x y ∈R  is the position of geometrical center of the 
spherical robot in an inertial frame, and [0,2 )ϕ π∈  is the 
heading angle of the robot(Fig.3). Denote by u and v the 
coordinates (latitude and longitude respectively) of the contact 
point (P) on the ball. The kinematic model resulting from the 
nonholonomic constrains can be written as 

 ( )R ϕ= ⋅η R υ                                          (2) 

where R is the rotation matrix in yaw and roll, 3∈υ R is a vector 
containing the body-fixed angular velocities and R is the radius 
of the shell. R is defined as 

sin cos cos 0
cos sin cos 0

0 0 1

u
u

ϕ ϕ
ϕ ϕ

 
 = − 
  

R                               (3) 



         

The velocity vector υ is defined by 

[ ]Tu v ϕ=υ                                         (4) 

Here, u is the transverse angular velocity (roll), v  is the forward 
angular velocity (pitch), and ϕ is the angular velocity (yaw) 
decomposed in the body-fixed frame. There is a representation 
singularity when / 2u π= ± , where v andϕ are undefined. We 
assume / 2 / 2uπ π− < < and vπ π− < < , so that the contact 
point belongs always to the same coordinate patch for the ball. 

B. Dynamic Model 
The dynamic equations under nonholonomic constraints 

can be described by Euler-Lagrange formulation [10] as 

( ) ( , ) ( ) ( ) ( ) .TM q q V q q q G q A q B qλ τ+ + = +                       (5) 

where nq ∈R is generalized coordinates, mλ ∈R is a constraint 
force vector, n mτ −∈R is a torque control input 
vector, ( ) n nM q ×∈R is a symmetric and positive definite inertial 
matrix. ( , ) n nV q q ×∈R is a centripetal and coriolis matrix, 

( ) nG q ∈R is a gravitation vector, ( )( ) n n mB q × −∈R is an input 
transformation matrix, and ( ) m nA q ×∈R is a matrix related with 
nonholonomic constraints.  

In derivation of the equations of BYQ_III, noting that there 
are only two control torques available:  the tilt torque vτ and 
drive torque uτ  (Fig.2), and that the relative angular 
displacements (i.e. the swinging α and tilting β angle) of the 
counter-pendulum are not important from the perspective of 
our control objects, they should be omitted in the simplified 
model. Using the Euler-Lagrange method, and simple algebraic 
manipulations, the complete kinematic and dynamical vector 
equations describing the motion of a spherical robot can be 
obtained are written as 

( )R ϕ= ⋅η R υ                                                       (6) 

2 2( ) ( )cos umR I u mR I uνϕ τ+ = + +                           (7) 

2 2

2 2

( cos ) sin
1( )cos sin 2
2 v

mR u I v I u

mR I uu mR uu

ϕ

ϕ ν τ

+ +

= + − +
        (8) 

sin cosI I uv I uuϕ ϕ+ = −                                        (9) 

where m is the total mass of the robot, and suτ , svτ are the 
control torques under the actions of the counter-weight 
pendulum, respectively. Equations (6)-(9) show the reduced 
dynamic model of the robot, the lean angle u is not coupled 
with the spinning angle v and the steering angle ϕ  at the 
acceleration level; they are coupling at the velocity level 
through the cross terms v  andϕ .  

III. CONTROL OF ROBOT MOTION 
There exists no continuous time-invariant state feedback 

that renders the system (6)-(9) asymptotically stable about the 
origin[8], but the system is real analytic, there exists a 
piecewise analytic feedback law which can stabilize the closed 
loop system to a given equilibrium. In the problem of the 
motion control, the lean angle of the robot can be controlled 
indirectly by tilting the counter-pendulum, then, the spherical 
robot steers by leaning at different angles. Therefore, it is 
necessary to design a controller that stabilizes the robot at any 
desired lean angle to control the steering velocity. 

On the other hand, for a typical unicycle, it should be noted 
that the longitudinal and lateral motions are highly coupled to 
each other, and it is not suitable to decompose the motions 
through a linearization method [12] and [13]. However, like the 
single wheel robot [10], because of the stabilizing effect of the 
counter-pendulum, the effect of the coupling/cross terms 
between the longitudinal and lateral motions of the robot 
become less significant for the spherical robot. It is feasible to 
decouple them by linearizing the dynamic model [10], and then 
by designing a linear state feedback law to control the lean 
angle and spinning speed of the robot. In the process of 
linearization, the approximate uncertainties are conducted, and 
sliding-mode control methods are employed to solve this 
problem. 

A. Linearized Model 
In derivation of the linearized model, we make the 

following assumptions: 1) the terms uδ , vδ are sufficiently 
small, and 2) u uδ= , ov vδ= Ω + , oΩ  is the nominal value. 
The linearized model of the system (10)-(12) can be 
represented as 

2
1/( )o u o uu v mR I fδ ϕ δ ϕ τ ϕ τ= Ω + + + = Ω + ∆ +               (10) 

2
2/( )v vv u mR I fδ δ ϕ τ τ= + + = ∆ +                                (11) 

o uϕ δ= −Ω                                                              (12) 

where the approximate uncertainties uf∆ and vf∆  can be treated 
as the disturbances, and both are bounded because uδ and vδ  
are controllable by steer torque and drive torque, respectively. 

B. Velocity Controller 
Because vδ  is independent of the roll and yaw dynamics 

(10) and (12), we can decompose the longitudinal motion (11) 
and establish a closed–loop control for controlling the spinning 
velocity v to the nominal value oΩ . 

Proposition 1: Consider the system (11), and design 2τ to 
robustly stabilize the origin 0vδ = . This can be achieved with  

2 1 ( )v v vk v k sign vτ δ λ δ= − − ⋅                                (13) 

where 1 0vk > , supv vk f> ∆ ,and 0vλ > . The sliding surface is 
v vs vλ δ= .  



         

Proof: This controller globally stabilizes the origin, because 
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Choosing Lyapunov functions and taking the time 
derivative, we have 

21
2 vV s=   2 2

1v vV k vλ δ≤ −                                (15) 

C. Position Controller 
When the tracking errors are chosen as 

u re u uδ= −                                          (16) 

and if 0uλ > , the convergence of (10) to zero can be achieved by 
making the following variables converge to zero 

u u u us e eλ= +                                         (17) 

Using the computed-torque method, a torque control input 
1τ  can be chosen from (10) as 

1 1 2

1 2

( ) ( )
( ) | | | | | | sup( )

( )

u u u u u o

u

r u u r u r

k e k e u sign s
u a u b u R f

R u k u k u

τ β δ ϕ
β δ δ δ η

δ λ δ δ

= − − − ⋅ − Ω
= + + + ∆

= − − + −
                      (18) 

where a , b , η , 1uk and 2uk are all the positive parameters that 
satisfy 1u uk aλ − ≤ , 2uk b− ≤ and 1 η< . Then the control system 
satisfies the property in the following theorem. 

Proposition 2: under the condition that the bounded 
disturbance uf∆ exists in the system (10), control input (18) 
stabilizes the sliding surface (17). Then, position-tracking 
errors converge to zero and heading-direction is bounded. 

Proof: From the yaw dynamics (12), it can be obtain that 
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where 0ϕ and 0ϕ are the initial value. And we can assume that  

2| | | |o o u Dϕ δΩ = −Ω ≤                                                (20) 

| | | | | | sup | |u o uf v v u fδ ϕ δ δ∆ = = − Ω ≤ ∆                            (21) 

Differentiating the sliding surface (17) yields 
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Substituting (18) into (22) and multiplying both sides by 
us gives 
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Choosing Lyapunov functions and taking the time 
derivative, we have 

21
2 uV s=  , 0V ≤                                               (24) 

IV.  PATH FOLLOWING 
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Figure 4.  Principle of line following. (Top view). 

The spherical robot steers by leaning itself to a predefined 
angle. Therefore, the main difficulty in solving the path-
following problem of the spherical robot is that we must 
control the position and the orientation using two control 
inputs.Here, we employ an approach to the path following 
problem in controlling the path curvature [16]. Like [10], we 
redefine the system configuration of the robot based on the 
geometrical notion and characteristics of the nonholonomic 
motion. 

A. Robot Configuration 
For the path following, because the shell is a rigid, 

homogeneous ball, it is not different to use the point of contact 
on the ground, or use the geometrical center of the shell, to 
describe the position of the robot.The status of the contact point 
(or the geometrical center of the shell) of the robot can be 
described by an alternative set of configurations based upon 
[10] and [17]. 



         

( , , ) (( , ), , )q p k x y kϕ ϕ= =                                  (25) 

where ( , )x y ,ϕ , and k are the position, the heading orientation 
and the path curvature of the robot with respect to the inertial 
frame, respectively. The new configuration of the robot is 
shown in Fig. 4.  

We can only indirectly control the path curvature to steer 
the robot by changing its lean angle. Fortunately, the path 
curvature of the contact point can be expressed as 

( ) 1/ ( ) tan ( ) /k t t u t Rρ= =                                (26) 

where ( )tρ  is the radius of the curvature from the center of 
rotation c to the contact point (P). If the center c of the rotation 
is at infinity, the robot is moving on a straight line and the path 
curvature and steering velocity are zero. From (26), for the 
given linear velocity yv , we can control the path curvature k  by 
controlling the lean angular u , and it is not identical to the 
single wheel robot which controlled the path curvature by 
controlling the steering velocity directly[10]. 

B. Line Following 
Based on [17], we designed a line following controller for 

the robot to track a desired straight line. Assuming that the 
linear velocity yν  of the robot is fixed/controlled to a nominal 
value, we consider the lean angle as the only position input for 
the robot. Using the position control law (18), we can stabilize 
the robot to a predefined lean angle which corresponds to the 
desired path curvature. 

We consider the derivative of the path curvature and then 
express the derivative of the path curvature /dk ds with respect 
to the path length s as 

( )a b r c
dk k k k k d
ds

ϕ ϕ= − ⋅ − ⋅ − − ⋅ ∆                           (27) 

where ak , bk  and ck  are positive constants, rϕ and dδ are the 
direction of the desired line and the perpendicular distance 
between the robot and the desired line, respectively, (Fig. 4). 
Equation (26) is called a steering function [17]. The first term, 

ak k− ⋅ is a feedback term (a damping factor) for the curvature, 
the second term ( )b rk ϕ ϕ− ⋅ − is a feedback term for the angle 
error, and the third term ck d− ⋅ ∆ is a feedback term for the 
positional error. The positional error d∆ is the signed distance 
from (P) to L, where 0d∆ >  if the robot is on the left side of the 
directed line, 0d∆ <  if it is on the right side, and 0d∆ = if it is 
on the line. If ( , , )a b ck k k are selected such that (27) is 
asymptotically stable, the continuity of the path curvature can 
be ensured, and ( / ) 0dk ds → as the path length s increases, 
i.e., 0d → , 0k →  and rϕ ϕ→ as s increases. Hence, the robot 
converges to the desired straight line asymptotically. In order to 
design the position input (lean angle), we first find the path 
curvative feedback by integrating the (27) in each instant. 
Using the path curvature feedback, we can obtain the 
corresponding desired lean angle input for the robot according 

to (27). The equilibrium point 0 of Equation (27) is uniformly 
asymptotically stable if ak , bk  and ck  are positive constants 
and a b ck k k⋅ > . And the solution for critically damped condition 
is 2 33 , 3 ,a cur b cur c curk k k k k k= = = ,where curk  is the gain of the 
curvature control law. The detailed proof is described in [17].  

V. SIMULATION RESULTS 
In this section, simulation results on the spherical robot, 

BYQ_III, using the proposed method are presented to 
demonstrate the effectiveness of the controllers and verify the 
path following performance. System (6)-(9) is always used in 
the simulation instead of (10)-(12) for dynamics. Consider the 
spherical robot with the model 
parameters 25m kg= , 0.3R m= , and 20.27I kg m= i . The 
design parameters of (13), (18), and (27) are 5uλ = , 1vλ = , 

1 1vk = , 1vk = , 1 10uk = , 2 10uk = , 4a = , 1b = , 2η = , sup( ) 10uf∆ = , 
and 1curk = . The signum functions in the controllers (13), (18) 
are replaces by saturation functions to reduce the chattering 
phenomenon. Assume the initial condition of the system is as 
follow 

[ , , , , , , , ] [0, 0, 0, 0, 0 ,0 ,0 ,0]x y u v u vϕ ϕ =  
Fig.5 shows the evolutions of the variables for tracking the 

desired curvature: sine wave and square wave, respectively. 
The reference tangent linear velocity is 0.5 /yrv m s= . As 
expected, simulations reveal that the spherical robot converges 
globally uniformly to the desired point with acceptable 
dynamic performances. 
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(b) Lean angle (solid)(rad) and angular velocity (dashed)(rad/s) 
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(c) Steer angle (solid)(rad) and angular velocity (dashed)(rad/s) 
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(d) Tracking curvature (k)(1/m)(solid:reference, dashed:actual) 
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(e) Tracking velocity yv  
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Figure 5.  Stabilization performance of the proposed controllers 

 

Fig.6 shows the results of the robot in tracking a straight 
line. The reference trajectory is a line with tan( / 6)y xπ= ⋅ , with 

, cos( / 6) ( tan( / 6) )
6r d x yπϕ π π= ∆ = ⋅ − ⋅  

The reference tangent linear velocity 0.5 /yrv m s= , and the 
initial conditions of position and heading direction are assumed 
to exist as follow 

[ , , , , , , , ] [0.5,1, 0, 0, / 2 ,0 ,0 ,0]x y u v u vϕ ϕ π=  
Fig.6 shows that a straight line can be exactly followed as 

posture-tracking errors converge to zero as in Fig.6 (b),(c) and 
(d). Also, the linear and angular velocities do not contain 
chattering phenomenon, which are omitted here.  
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(d) Tracking errors (k)(1/m) 
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(e) Tracking velocity ( yv ) 
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Figure 6.  Path following performance of the proposed controller 

 

VI.  CONCLUSION 
In this paper, we have formulated the kinematic model and 

dynamic model using the constrained generalized Lagrangian 
formulation, and verified it through simulations. Two 
discontinuous feedback control laws have been derived using 
the sliding-mode control method for stabilization of 
nonholonomic spherical robot, BYQ_III. Both controllers make 
the system converge to a neighborhood of the desired point. 
Furthermore, we developed a line following controller for 
tracking any desired straight line. Then the robot can be 
stabilized for tracking a lean angle trajectory in which the 
desired path curvature is identical to the desired value. Global 
asymptotic stabilization and tracking result are obtained, and 

the effectiveness of the controllers is shown by numerical 
simulations. 
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