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Abstract—Few investigations of the genetic algorithm (GA) have 

been studied for the real-world power economic load dispatch (PELD) 
problem. This paper proposes an improved genetic algorithm with 
multiplier updating (IGAMU) to solve practical PELD problems of 
complexity having nonconvex cost curves where conventional 
mathematical methods are inapplicable. The proposed IGAMU 
integrates the improved genetic algorithm (IGA) and the multiplier 
updating (MU). A practical example is employed to demonstrate that 
the proposed algorithm has merits of straightforward concept; easy 
implementation; better effectiveness than previous methods; better 
effectiveness and efficiency than the GA with MU (GA-MU); 
automatic adjustment of the randomly assigned penalty to an 
appropriate value, and the requirement for only a small population in 
applications of real life PELD operations. 
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I.  INTRODUCTION 
The GA has been applied popularly as a useful optimization 

tool for handling nonlinear programming problems [1]. Various 
modifications to the basic method have been proposed with a 
view to enhance speed and robustness, and these have been 
applied successfully on some benchmark mathematical 
problems [2]. But few approaches have been reported on the 
real-world PELD problem, which is one of the important 
optimizations in a power system for allocating generation 
among the committed units such that system constraints 
imposed are satisfied and energy requirements are minimized. 
Improvements in scheduling the unit outputs can lead to 
significant cost savings. For simplicity, the generator cost 
function was mostly approximated by a single quadratic 
function [3], [4]. However, the whole operating range may not 
be always available. Units may have prohibited operation zones 
(POZs) due to faults in machines or associated auxiliaries, such 
as boilers, feed pumps, etc., leading to instabilities in certain 
ranges. Take Fig. 1 for example, a power unit with three POZs 
has a discontinuous input-output fuel cost characteristic. The 
prohibited region separates the decision space into disjointed 
subsets, constituting a nonconvex solution space, and the PELD 
problem becomes a nonsmooth optimization problem having 
complex and nonconvex characteristics, which makes the 
challenge of finding the global optimum difficult. 

Traditionally, the PELD problem is solved using 
conventional mathematical based techniques such as the 
lambda iteration method (λ-δ) [5] and gradient method. These 
techniques require increasing fuel cost curves should be 
monotonically increasing to find the global optimal solution. 

Whereas, the input-output characteristics of units are inherently 
highly nonlinear because of POZs, thus the traditional methods 
may generate either multiple local minimum points or 
infeasible solutions for the PELD problem. Recently, various 
evolutionary algorithms are proposed for the PELD problem 
such as simulated annealing (SA) [6], GA [1], [7] and an 
integrated artificial intelligence (ETQ) [8]. The SA was 
devoted to solve the high nonlinear PELD problem without 
restrictions on the shape of the fuel cost function. Nevertheless, 
it is difficult to tune the related control parameters of the 
annealing schedule and may be too slow when applied to a 
practical power system. The GA can find a global solution after 
sufficient iterations, but has a high computational burden. The 
ETQ integrates EP, Tabu search and quadratic programming 
methods to solve the PELD problem of units with POZs. 

 

 
 

II. PROBLEM FORMULATION 
The PELD problem can be described as an optimization 

process with objective [5]:  
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Where Fi(Pi) is the fuel cost function of the ith unit, Pi is the 
power generated by the ith unit, and np is the number of on-line 
units. Subject to the equality constraint of the power balance as: 
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Where Pd is the system load demand and TL is the 
transmission loss, and generating capacity constraints are 
expressed as: 

)3(,,1,maxmin
piii niPPP =≤≤  

Where Pi
min and Pi

max are the minimum and maximum power 
outputs of the ith unit. 

Additional constraints on the unit operating range denote 
the effects of a generator with POZs [7]: 
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Where l
jiP ,  and u

jiP ,  respectively denote the lower and upper 

bounds of the jth prohibited zone for the ith unit, ni is the 
number of prohibited zones in the ith unit, and ω  is the set of 
all on-line units with prohibited zones. 

Clearly, a dispatching unit with ni prohibited zones has its 
entire operating region to be divided into (ni+1) disjoint 
operating sub-regions. The total number of decision sub-spaces 
resulting from that division may be counted as follows: 
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Equation (5) indicates that the total number of decision sub-
spaces increases extremely rapidly as the number of units with 
prohibited zones increases. 

III. THE PROPOSED ALGORITHM 
This section describes the proposed IGAMU. First, the IGA 

is provided, then the MU for managing system constraints is 
introduced, and finally solution procedures of the proposed 
IGAMU are presented. 

A. IGA 
To enhance GA’s computational efficiency, an improved 

evolutionary direction operator (IEDO) altered from [9] and a 
migration [10] are embedded in GA to form the IGA. The 
IEDO [11] includes choosing the three best solutions in each 
generation to perform the evolutionary direction operator 
algorithm to find a new solution superior to the original best 
solution. 

The IGA has been applied successfully to constrained 
optimization problems such as: design of an induction motor 
controller for tracking control [11], and nonlinear mixed-
integer optimization problems [12]. The operations of IGA had 
been gone into details in [11] and [12]. 

B. MU 
Considering the NLP with general constraints as 

follows: 
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where hk (x) and gk (x) stand for equality and inequality 
constraints, respectively. 

Michalewicz et al. [13] surveyed and compared several 
constraint-handling techniques used in evolutionary algorithms, 
and showed that the penalty function method is among the most 
popularly methods for managing constraints. Powell [14] noted 
that classical optimization methods with a penalty function 
have certain disadvantages that become severe when using 
large penalty parameters, because the penalty function becomes 
“ill-conditioned”, making good solutions difficult to obtain. 
However, a situation in which the penalty parameters are too 
small makes it impossible for the constraint violation to 
contribute a high cost to the penalty function. Therefore, 
selecting suitable penalty parameters is not trivial. Herein, the 
MU [12] is introduced to manage constrained optimization 
problems. Such a method can eradicate the ill-conditioned 
property of the objective function. 

The augmented Lagrange function [12] for constrained 
optimization problems is defined as: 
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Where αk and βk are the positive penalty parameters, and the 
corresponding Lagrange multipliers ),,( 1 emννν …=  and 

),,( 1 imυυυ …= > 0 are associated with equality and inequality 
constraints, respectively. 

The contour of the augmented Lagrange function does not 
change shape between generations while constraints are linear. 
Therefore, the contour of the augmented Lagrange function is 
simply shifted or biased in relation to the original objective 
function, f(x). Consequently, small penalty parameters can be 
used in the MU. However, the shape of contour of La is 
changed by penalty parameters while the constraints are 
nonlinear, demonstrating that large penalty parameters still 
create computational difficulties. Adaptive penalty parameters 
of the MU are employed to alleviate the above difficulties, and 
Table I presents computational procedures of the MU. 

C. Solution Procedures of the Proposed Algorithm 
Figure 2 displays the flow chart of the proposed algorithm, 

which has two iterative loops. The augmented Lagrange 
function is used to obtain a minimum value in the inner loop 
with the given penalty parameters and multipliers, which are 
then updated in the outer loop toward producing an upper limit 
of La. When both inner and outer iterations become sufficiently 
large, the augmented Lagrange function converges to a saddle-
point of the dual problem [12]. Advantages of the proposed 
IGAMU are that the IGA efficiently searches the optimal 



         

solution in the economic dispatch process and the MU 
effectively tackles system constraints. 

TABLE I.   COMPUTATIONAL PROCEDURES OF THE MU 

Step 1. Set the initial iteration 0=l . Set initial multiplier, 

ek
l
k mk ,...,1,00 ===νν , ik

l
k mk ,...,1,00 ===υυ , and the initial 

penalty parameters, αk>0, k=1,…,me andβk>0, k=1,…,mi . Set 
tolerance of the maximum constraint violation,εk (e.g. εk =1032), and 
the scalar factors, ω1 >1 andω2 >1 . 

Step 2. Use a minimization solver, e.g. IGA, to solve ( )ll
a xL υν ,, . Let ,l

bx

be a minimum solution to the problem ( )ll
a xL υν ,, . 

Step 3. Evaluate   the   maximum   constraint   violation   as 
{ ( ) }kk

k
k

k
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following sets of equality and inequality constraints whose 
violations have not been improved by the factorω1: 

{ }

{ }i
k

kkI

e
k

kE

mkgkI

mkhkI

,,1,),max(:

,,1,:

1

1

=>−=

=>=

ω
ευ

ω
ε

 

Step 4. If kk εε ≥ˆ , let kk αωα 2= and 2
1 /ωνν l

k
l
k =+  for all EIk ∈ , let 

kk βωβ 2= and 2
1 /ωυυ l

k
l
k =+  for all IIk ∈ , and go to step7.

Otherwise, go to step 5. 
Step 5.   Update the multipliers as follows:  
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Step 6. If 1/ˆ ωεε kk ≤ , let kk εε ˆ= and go to step 7. Otherwise, let 

kk αωα 2= and 2
1 /ωνν l

k
l
k =+  for all EIk ∈ , and let kk βωβ 2=

and 2
1 /ωυυ l

k
l
k =+  for all IIk ∈ . Let kk εε ˆ= and go to step 7. 

Step 7.  If the maximum iteration reaches, stop. Otherwise, repeat steps 2 to 
6. 

 

 

IV. SYSTEM SIMULATIONS 
This section applies a practical system to illustrate the 

effectiveness of the proposed IGAMU with respect to the 
quality of the solution obtained for realistic PELD problems 
with POZs. The Elitism technique [1] was used in the proposed 
IGAMU and the GA-MU. Both the IGAMU and the GA-MU 
were directly coded using real values, and were implemented 
on a personal computer (PIII-700) in FORTRAN-90. 
References of [11] and [12] suggest setting factors for the 
proposed algorithm. Setting factors employed in this example 
was as follows: the iteration number of the IEDO operation NL 
was set to 4; the population size Np was set to 5 and 20 for the 
IGAMU and the GA-MU, respectively, and iteration numbers 
of the outer loop and inner loop were set to (outer, inner) as 
(30, 3000). 

A. Simulation Results 
A practical system of units with POZs having nonconvex 

cost functions was considered in this example, and the system 
data are identical to that used in [7]. This system has 15 on-line 
units that supply a system demand of 2650MW. Among these 
dispatching generators, units 2, 5 and 6 have three POZs, and 
unit 12 has two POZs, that form 192 decision sub-spaces for 
this realistic system. The implementation of this example can 
be represented as follows: 
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This complex optimization problem contains one objective 
function with fifteen variable parameters, (P1, P2, …, P15), one 
equality constraint, (h1), and four inequality constraints, (g1 to 
g4), owing to four units having the POZs. The proposed 
IGAMU compared with λ-δ[7], SGA [7], DCGA [7], ETQ [8] 
and the GA-MU with respect to the best dispatch solution 
obtained, are given in Table II. Unit loadings in Table II show 
why the λ-δ method is not capable of solving this PELD 
problem. For example, using λ-δ technique results in a solution 
that requires unit 5 to operate in one of the POZs. The proposed 



         

algorithm on the other hand, provides final optimal loadings 
that do not fall in any of the ‘illegal’ zones. The proposed 
algorithm is superior to other methods in the solution quality, 
and it has the exact generation for the system load demand. 
From Table II, the proposed IGAMU also outperforms the GA-
MU in terms of the solution quality and the convergence rate. 
Hence, for PELD problems of different size and complexity, 
the proposed IGAMU proves to be the best algorithm among 
previous methods mentioned above. 

TABLE II.  COMPARED RESULTS OF PREVIOUS METHODS, THE GA-MU, 
AND THE PROPOSED IGAMU 

Methods λ-δ SGA DCGA ETQ GA-MU IGAMU 

Unit1 455 451.4 406.1 450 454.9783 454.9794 

Unit2 455 455 453.8 450 454.9881 454.9638 

Unit3 130 130 130 130 129.9941 129.9848 

Unit4 130 129.1 130 130 129.9946 129.9919 

Unit5 295.3* 337.1 355 335 259.9989 259.9884 

Unit6 460 429.5 456.8 455 459.9893 459.9892 

Unit7 465 464.4 459.8 465 464.9859 464.9731 

Unit8 60 60 60 60 60.0172 60.0355 

Unit9 25 26.6 26.6 25 25.0110 25.0137 

Unit10 20 27.1 21.6 20 20.0095 20.0383 

Unit11 43.4 25.7 36.2 20 58.4360 70.0417 

Unit12 56.3 59 59 55 76.5870 64.9759 

Unit13 25 25 25 25 25.0040 25.0105 

Unit14 15 15 15 15 15.0029 15.0077 

Unit15 15 15 15 15 15.0032 15.0061 

TP (MW) 2650.0 2649.9 2649.9 2650 2650.0000 2650.0000

TC ($/h) 32503# 32517 32515 32507.5 32506.3740 32506.3390

* An unit loading in a prohibited zone 

 # An infeasible result 

B. The Performance of the Proposed Algorithm 
Table III lists the relative frequencies of convergence for 

the proposed algorithm and the GA-MU among 100 randomly 
initiated trials, and the proposed IGAMU has shown the better 
solution quality with a high probability to demonstrate its 
excellent performance. Moreover, the compared tests are also 
itemized in Table IV. The proposed IGAMU performs better 
than the GA-MU in terms of mean cost as well as mean time, 
even though the proposed method applies a small population. 
Tables III and IV clearly illustrate that the proposed IGAMU is 
superior to the GA-MU in both effectiveness and efficiency. 

C. Penalty Setting Discussion 
This test compared the proposed IGAMU with IGA using 

the fixed penalty (IGAFP) in terms of penalty settings, 

demonstrates that the IGAMU has the advantage of 
automatically adjusting the randomly given penalty to an 
appropriate value. Herein, the IGAMU with initial penalty 
parameters of 10, 103 and 106, was employed to solve this 
example again, and the sum of constraint violations is defined 
as { }0.0,max

4
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constraint feasibility on the final solution. Table V shows three 
cases of the best solutions obtained among 100 randomly 
initiated trials in each case. The adaptive penalty parameters 
and multipliers, ( kα , kν , kβ and kυ ), are automatically updated 
by the MU to avoid ill conditioning. Experimental results of 
these three cases produced the same TP and the almost TC, and 
all SCVs were less than 10-11. These clearly confirm that the 
IGAMU is effective in managing constraints of the realistic 
PELD problem by automatically altering the randomly given 
penalty to an appropriate value and requiring only a small 
population. The IGAFP was also employed to solve this 
example. The IGAFP, like the IGAMU, applies 90,000 
iterations. Table VI presents three cases of the best solutions 
obtained for various fixed penalty parameters among 100 
randomly initiated trials in each case. For the case of fixed 
penalty parameter 10, the TC yielded by the IGAFP is below 
those produced by the IGAMU. Nevertheless, such comparison 
is meaningless, since all SCVs of the IGAFP are larger than 
those of the IGAMU. This case of IGAFP violated the system 
constraint (h1) and yielded an infeasible solution. Therefore, 
this test clearly indicates that the IGAMU can automatically 
alter the randomly given penalty to an appropriate value to 
achieve a global (or near global) solution. However, the IGAFP 
can produce a satisfactory result only using a large penalty 
parameter. Because the IGAMU actively uses a flexible 
multiplier updating strategy to probe for the new solution, 
while the IGAFP only employs a fixed penalty function to test 
passively feasible and infeasible solutions. 

TABLE III.  RELATIVE FREQUENCIES OF CONVERGENCE USING THE GA-
MU AND THE PROPOSED IGAMU 

Range of cost ($/h) 

Methods

32650

- 

32675

32625

- 

32650

32600 

- 

32625 

32575 

- 

32600 

32550 

- 

32575 

32525

- 

32550

32500

- 

32525

GA-MU 3 3 4 5 5 52 28 

IGAMU 0 2 0 4 4 47 43 

TABLE IV.  SUMMARIZED RESULTS OF THE COMPARISON BETWEEN THE 
GA-MU AND THE PROPOSED IGAMU 

Methods
Mean time

(s) 

Best time 

(s) 

Mean cost 

($/h) 

Max. cost 

($/h) 

Min. cost 

($/h) 

GA-MU 20.72 20.62 32543.2681 32664.9540 32506.3740

IGAMU 7.69 7.47 32530.5600 32640.5020 32506.3390

 



         

V. CONCLUSIONS 
This paper presented the IGAMU to solve practical PELD 

problems of complexity having nonconvex cost curves where 
conventional mathematical methods are inapplicable. The IGA 
enhances the proposed method to efficiently search and 
actively explore the solution, and the MU supports the 
proposed approach to efficaciously manage system constraints. 
The proposed algorithm integrates the IGA and the MU such 
that it has the following merits: straightforward concept; easy 
implementation; better effectiveness than previous methods; 
better effectiveness and efficiency than the GA-MU; automatic 
adjustment of the randomly assigned penalty to an appropriate 
value, and the requirement for only a small population in 
realistic PELD problems. The comparative results showed that 
the proposed algorithm has the merits mentioned above for 
applying real-world PELD operations. 
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TABLE V.  RESULTS OF THE PROPOSED IGAMU WITH 
VARIOUS INITIAL PENALTY PARAMETERS 

(a) Initial penalty =10 
final penalties and multipliers of La 

Constraints 
kk βα ,  kk υν ,  

The proposed 
IGAMU 
Initial 

penalty=10 

h1 -1.8189E-12 1α  1.0000E+22 1ν  -2.9944E-13 

g1 0.0000E+00 1β  1.0000E+20 1υ  0.0000E+00 

g2 0.0000E+00 2β  1.0000E+20 2υ  0.0000E+00 

g3 0.0000E+00 3β  1.0000E+20 3υ  3.8452E-21 

g4 0.0000E+00 4β  1.0000E+20 4υ  1.3128E-20 

SCV:  0.0000 

TP(MW):  
2650.0000

TC($/h):  
32506.3390

CPU_time(s):  
7.49

  
(b) Initial penalty =103 

final penalties and multipliers of La 

Constraints 
kk βα ,  kk υν ,  

The proposed 
IGAMU 
Initial 

penalty=103 
h1 -4.5474E-13 1α  1.0000E+21 1ν  7.1524E-13 

g1 0.0000E+00 1β  1.0000E+21 1υ  0.0000E+00 

g2 0.0000E+00 2β  1.0000E+21 2υ  0.0000E+00 

g3 0.0000E+00 3β  1.0000E+21 3υ  0.0000E+00 

g4 0.0000E+00 4β  1.0000E+21 4υ  0.0000E+00 

SCV:  0.0000 

TP(MW):  
2650.0000

TC($/h):  
32506.7050

CPU_time(s): 
7.63

 
(c) Initial penalty =106 

final penalties and multipliers of La 

Constraints 
kk βα ,  kk υν ,  

The proposed 
IGAMU 
 Initial 

penalty=106 
h1 -9.0950E-13 1α 1.0000E+21 1ν  -1.7934E-12 

g1 0.0000E+00 1β 1.0000E+16 1υ  0.0000E+00 

g2 0.0000E+00 2β 1.0000E+16 2υ  0.0000E+00 

g3 0.0000E+00 3β 1.0000E+16 3υ  0.0000E+00 

g4 0.0000E+00 4β 1.0000E+16 4υ  0.0000E+00 

SCV:  0.0000 

TP(MW):  
2650.0000

TC($/h):  
32506.7980

CPU_time(s):  
7.52

 

 

TABLE VI.  RESULTS OF THE IGAFP WITH VARIOUS FIXED 
PENALTY PARAMETERS 

 IGAFP 

Fixed penalty =kk βα , 10 =kk βα , 103 =kk βα , 106 

h1 
g1 
g2 
g3 
g4 

5.35410E-01 
0.00000E+00 
0.00000E+00 
0.00000E+00 
0.00000E+00 

 5.26512E-03 
 0.00000E+00 
 2.88972E-07 
 0.00000E+00 
 0.00000E+00 

 5.21392E-06 
 0.00000E+00 
 0.00000E+00 
 0.00000E+00 
 0.00000E+00 

SCV 0.5354 0.0053 0.0000 
TP (MW) 2649.4646 2649.9947 2650.0000 
TC ($/h) 32500.4487 32507.7015 32507.8321 

CPU_time (s) 7.25 7.14 7.25 
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