
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

Genetic Algorithm for Power Load Dispatch
Chao-Lung Chiang

Depart. of Electronic Engineering
Nan-Kai Institute of Technology

Nan-Tou, TAIWAN, R.O.C.
t129@nkc.edu.tw

Abstract—Few investigations of the genetic algorithm (GA) have

been studied for the real-world power economic load dispatch (PELD)
problem. This paper proposes an improved genetic algorithm with
multiplier updating (IGAMU) to solve practical PELD problems of
complexity having nonconvex cost curves where conventional
mathematical methods are inapplicable. The proposed IGAMU
integrates the improved genetic algorithm (IGA) and the multiplier
updating (MU). A practical example is employed to demonstrate that
the proposed algorithm has merits of straightforward concept; easy
implementation; better effectiveness than previous methods; better
effectiveness and efficiency than the GA with MU (GA-MU);
automatic adjustment of the randomly assigned penalty to an
appropriate value, and the requirement for only a small population in
applications of real life PELD operations.

Keywords—economic load dispatch, nonconvex function.

I. INTRODUCTION
The GA has been applied popularly as a useful optimization

tool for handling nonlinear programming problems [1]. Various
modifications to the basic method have been proposed with a
view to enhance speed and robustness, and these have been
applied successfully on some benchmark mathematical
problems [2]. But few approaches have been reported on the
real-world PELD problem, which is one of the important
optimizations in a power system for allocating generation
among the committed units such that system constraints
imposed are satisfied and energy requirements are minimized.
Improvements in scheduling the unit outputs can lead to
significant cost savings. For simplicity, the generator cost
function was mostly approximated by a single quadratic
function [3], [4]. However, the whole operating range may not
be always available. Units may have prohibited operation zones
(POZs) due to faults in machines or associated auxiliaries, such
as boilers, feed pumps, etc., leading to instabilities in certain
ranges. Take Fig. 1 for example, a power unit with three POZs
has a discontinuous input-output fuel cost characteristic. The
prohibited region separates the decision space into disjointed
subsets, constituting a nonconvex solution space, and the PELD
problem becomes a nonsmooth optimization problem having
complex and nonconvex characteristics, which makes the
challenge of finding the global optimum difficult.

Traditionally, the PELD problem is solved using
conventional mathematical based techniques such as the
lambda iteration method (λ-δ) [5] and gradient method. These
techniques require increasing fuel cost curves should be
monotonically increasing to find the global optimal solution.

Whereas, the input-output characteristics of units are inherently
highly nonlinear because of POZs, thus the traditional methods
may generate either multiple local minimum points or
infeasible solutions for the PELD problem. Recently, various
evolutionary algorithms are proposed for the PELD problem
such as simulated annealing (SA) [6], GA [1], [7] and an
integrated artificial intelligence (ETQ) [8]. The SA was
devoted to solve the high nonlinear PELD problem without
restrictions on the shape of the fuel cost function. Nevertheless,
it is difficult to tune the related control parameters of the
annealing schedule and may be too slow when applied to a
practical power system. The GA can find a global solution after
sufficient iterations, but has a high computational burden. The
ETQ integrates EP, Tabu search and quadratic programming
methods to solve the PELD problem of units with POZs.

II. PROBLEM FORMULATION
The PELD problem can be described as an optimization

process with objective [5]:

())1(
1
∑
=

pn

i
ii PFMinimize

Where Fi(Pi) is the fuel cost function of the ith unit, Pi is the
power generated by the ith unit, and np is the number of on-line
units. Subject to the equality constraint of the power balance as:

)2(
1

∑ +=
=

pn

i
Ldi TPP

Where Pd is the system load demand and TL is the
transmission loss, and generating capacity constraints are
expressed as:

)3(,,1,maxmin
piii niPPP =≤≤

Where Pi
min and Pi

max are the minimum and maximum power
outputs of the ith unit.

Additional constraints on the unit operating range denote
the effects of a generator with POZs [7]:

ω∈∀≤≤

=≤≤

≤≤

−

iPPP

ornjPPP

orPPP

ii
u
nii

i
l

jii
u

ji

l
iii

,

)4(,,2,
max

,

,1,

1,
min

Where l
jiP , and u

jiP , respectively denote the lower and upper

bounds of the jth prohibited zone for the ith unit, ni is the
number of prohibited zones in the ith unit, and ω is the set of
all on-line units with prohibited zones.

Clearly, a dispatching unit with ni prohibited zones has its
entire operating region to be divided into (ni+1) disjoint
operating sub-regions. The total number of decision sub-spaces
resulting from that division may be counted as follows:

)5()1(∏ +=
∈ωi

inN

Equation (5) indicates that the total number of decision sub-
spaces increases extremely rapidly as the number of units with
prohibited zones increases.

III. THE PROPOSED ALGORITHM
This section describes the proposed IGAMU. First, the IGA

is provided, then the MU for managing system constraints is
introduced, and finally solution procedures of the proposed
IGAMU are presented.

A. IGA
To enhance GA’s computational efficiency, an improved

evolutionary direction operator (IEDO) altered from [9] and a
migration [10] are embedded in GA to form the IGA. The
IEDO [11] includes choosing the three best solutions in each
generation to perform the evolutionary direction operator
algorithm to find a new solution superior to the original best
solution.

The IGA has been applied successfully to constrained
optimization problems such as: design of an induction motor
controller for tracking control [11], and nonlinear mixed-
integer optimization problems [12]. The operations of IGA had
been gone into details in [11] and [12].

B. MU
Considering the NLP with general constraints as

follows:

())6(
,...,1,0)(
,...,1,0

)(min

ik

ek

x

mkxg
mkxhtosubject

xf

=≤
==

where hk (x) and gk (x) stand for equality and inequality
constraints, respectively.

Michalewicz et al. [13] surveyed and compared several
constraint-handling techniques used in evolutionary algorithms,
and showed that the penalty function method is among the most
popularly methods for managing constraints. Powell [14] noted
that classical optimization methods with a penalty function
have certain disadvantages that become severe when using
large penalty parameters, because the penalty function becomes
“ill-conditioned”, making good solutions difficult to obtain.
However, a situation in which the penalty parameters are too
small makes it impossible for the constraint violation to
contribute a high cost to the penalty function. Therefore,
selecting suitable penalty parameters is not trivial. Herein, the
MU [12] is introduced to manage constrained optimization
problems. Such a method can eradicate the ill-conditioned
property of the objective function.

The augmented Lagrange function [12] for constrained
optimization problems is defined as:

() { [] }

{ }∑ −++

∑ −++=

= +

=

i

e

m

k
kkkk

m

k
kkkka

xg

xhxfxL

1

22

1

22

)7()(

)()(,,

υυβ

νναυν

Where αk and βk are the positive penalty parameters, and the
corresponding Lagrange multipliers),,(1 emννν …= and

),,(1 imυυυ …= > 0 are associated with equality and inequality
constraints, respectively.

The contour of the augmented Lagrange function does not
change shape between generations while constraints are linear.
Therefore, the contour of the augmented Lagrange function is
simply shifted or biased in relation to the original objective
function, f(x). Consequently, small penalty parameters can be
used in the MU. However, the shape of contour of La is
changed by penalty parameters while the constraints are
nonlinear, demonstrating that large penalty parameters still
create computational difficulties. Adaptive penalty parameters
of the MU are employed to alleviate the above difficulties, and
Table I presents computational procedures of the MU.

C. Solution Procedures of the Proposed Algorithm
Figure 2 displays the flow chart of the proposed algorithm,

which has two iterative loops. The augmented Lagrange
function is used to obtain a minimum value in the inner loop
with the given penalty parameters and multipliers, which are
then updated in the outer loop toward producing an upper limit
of La. When both inner and outer iterations become sufficiently
large, the augmented Lagrange function converges to a saddle-
point of the dual problem [12]. Advantages of the proposed
IGAMU are that the IGA efficiently searches the optimal

solution in the economic dispatch process and the MU
effectively tackles system constraints.

TABLE I. COMPUTATIONAL PROCEDURES OF THE MU

Step 1. Set the initial iteration 0=l . Set initial multiplier,

ek
l
k mk ,...,1,00 ===νν , ik

l
k mk ,...,1,00 ===υυ , and the initial

penalty parameters, αk>0, k=1,…,me andβk>0, k=1,…,mi . Set
tolerance of the maximum constraint violation,εk (e.g. εk =1032), and
the scalar factors, ω1 >1 andω2 >1 .

Step 2. Use a minimization solver, e.g. IGA, to solve ()ll
a xL υν ,, . Let ,l

bx

be a minimum solution to the problem ()ll
a xL υν ,, .

Step 3. Evaluate the maximum constraint violation as
{ () }kk

k
k

k
k gh υε −= ,maxmax,maxmaxˆ , and establish the

following sets of equality and inequality constraints whose
violations have not been improved by the factorω1:

{ }

{ }i
k

kkI

e
k

kE

mkgkI

mkhkI

,,1,),max(:

,,1,:

1

1

=>−=

=>=

ω
ευ

ω
ε

Step 4. If kk εε ≥ˆ , let kk αωα 2= and 2
1 /ωνν l

k
l
k =+ for all EIk ∈ , let

kk βωβ 2= and 2
1 /ωυυ l

k
l
k =+ for all IIk ∈ , and go to step7.

Otherwise, go to step 5.
Step 5. Update the multipliers as follows:

()
() (){ }l

k
l
bk

l
k

l
k

l
bk

l
k

l
k

l
bk

l
k

xgxg

xh

υυυυ

νν

−+=+=

+=

+
+

+

,max1

1

Step 6. If 1/ˆ ωεε kk ≤ , let kk εε ˆ= and go to step 7. Otherwise, let

kk αωα 2= and 2
1 /ωνν l

k
l
k =+ for all EIk ∈ , and let kk βωβ 2=

and 2
1 /ωυυ l

k
l
k =+ for all IIk ∈ . Let kk εε ˆ= and go to step 7.

Step 7. If the maximum iteration reaches, stop. Otherwise, repeat steps 2 to
6.

IV. SYSTEM SIMULATIONS
This section applies a practical system to illustrate the

effectiveness of the proposed IGAMU with respect to the
quality of the solution obtained for realistic PELD problems
with POZs. The Elitism technique [1] was used in the proposed
IGAMU and the GA-MU. Both the IGAMU and the GA-MU
were directly coded using real values, and were implemented
on a personal computer (PIII-700) in FORTRAN-90.
References of [11] and [12] suggest setting factors for the
proposed algorithm. Setting factors employed in this example
was as follows: the iteration number of the IEDO operation NL
was set to 4; the population size Np was set to 5 and 20 for the
IGAMU and the GA-MU, respectively, and iteration numbers
of the outer loop and inner loop were set to (outer, inner) as
(30, 3000).

A. Simulation Results
A practical system of units with POZs having nonconvex

cost functions was considered in this example, and the system
data are identical to that used in [7]. This system has 15 on-line
units that supply a system demand of 2650MW. Among these
dispatching generators, units 2, 5 and 6 have three POZs, and
unit 12 has two POZs, that form 192 decision sub-spaces for
this realistic system. The implementation of this example can
be represented as follows:

() { [] }

{ })8()(

)()(,,

224

1

2
1

2
111

kkk
k

k

a

xg

xhxfxL

υυβ

νναυν

−+∑+

−++=

+=

)9()()(min:
15

1),...,(1521
ii

iPPPx
PFxfobjective ∑=

==

)10(0:
15

1
1 =−∑ −

=
d

i
Li PPPhtosubject

80
1212

75
2,12

65
2,1212

55
1,12

30
1,1212

20
124

460
66

455
3,6

430
3,66

395
2,6

365
2,66

255
1,6

230
1,66

135
63

470
55

420
3,5

390
3,55

335
2,5

260
2,55

200
1,5

180
1,55

105
52

455
22

450
3,2

420
3,22

335
2,2

305
2,22

225
1,2

185
1,22

150
21

,,:

,

)11(,,:

,

,,:

,

,,:

PPPor

PPPorPPPg

PPPorPPPor

PPPorPPPg

PPPorPPPor

PPPorPPPg

PPPorPPPor

PPPorPPPg

≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤≤

This complex optimization problem contains one objective
function with fifteen variable parameters, (P1, P2, …, P15), one
equality constraint, (h1), and four inequality constraints, (g1 to
g4), owing to four units having the POZs. The proposed
IGAMU compared with λ-δ[7], SGA [7], DCGA [7], ETQ [8]
and the GA-MU with respect to the best dispatch solution
obtained, are given in Table II. Unit loadings in Table II show
why the λ-δ method is not capable of solving this PELD
problem. For example, using λ-δ technique results in a solution
that requires unit 5 to operate in one of the POZs. The proposed

algorithm on the other hand, provides final optimal loadings
that do not fall in any of the ‘illegal’ zones. The proposed
algorithm is superior to other methods in the solution quality,
and it has the exact generation for the system load demand.
From Table II, the proposed IGAMU also outperforms the GA-
MU in terms of the solution quality and the convergence rate.
Hence, for PELD problems of different size and complexity,
the proposed IGAMU proves to be the best algorithm among
previous methods mentioned above.

TABLE II. COMPARED RESULTS OF PREVIOUS METHODS, THE GA-MU,
AND THE PROPOSED IGAMU

Methods λ-δ SGA DCGA ETQ GA-MU IGAMU

Unit1 455 451.4 406.1 450 454.9783 454.9794

Unit2 455 455 453.8 450 454.9881 454.9638

Unit3 130 130 130 130 129.9941 129.9848

Unit4 130 129.1 130 130 129.9946 129.9919

Unit5 295.3* 337.1 355 335 259.9989 259.9884

Unit6 460 429.5 456.8 455 459.9893 459.9892

Unit7 465 464.4 459.8 465 464.9859 464.9731

Unit8 60 60 60 60 60.0172 60.0355

Unit9 25 26.6 26.6 25 25.0110 25.0137

Unit10 20 27.1 21.6 20 20.0095 20.0383

Unit11 43.4 25.7 36.2 20 58.4360 70.0417

Unit12 56.3 59 59 55 76.5870 64.9759

Unit13 25 25 25 25 25.0040 25.0105

Unit14 15 15 15 15 15.0029 15.0077

Unit15 15 15 15 15 15.0032 15.0061

TP (MW) 2650.0 2649.9 2649.9 2650 2650.0000 2650.0000

TC ($/h) 32503# 32517 32515 32507.5 32506.3740 32506.3390

* An unit loading in a prohibited zone

 # An infeasible result

B. The Performance of the Proposed Algorithm
Table III lists the relative frequencies of convergence for

the proposed algorithm and the GA-MU among 100 randomly
initiated trials, and the proposed IGAMU has shown the better
solution quality with a high probability to demonstrate its
excellent performance. Moreover, the compared tests are also
itemized in Table IV. The proposed IGAMU performs better
than the GA-MU in terms of mean cost as well as mean time,
even though the proposed method applies a small population.
Tables III and IV clearly illustrate that the proposed IGAMU is
superior to the GA-MU in both effectiveness and efficiency.

C. Penalty Setting Discussion
This test compared the proposed IGAMU with IGA using

the fixed penalty (IGAFP) in terms of penalty settings,

demonstrates that the IGAMU has the advantage of
automatically adjusting the randomly given penalty to an
appropriate value. Herein, the IGAMU with initial penalty
parameters of 10, 103 and 106, was employed to solve this
example again, and the sum of constraint violations is defined
as { }0.0,max

4

1
1 k

k
ghSCV ∑+=

=
, to explain the effect of

constraint feasibility on the final solution. Table V shows three
cases of the best solutions obtained among 100 randomly
initiated trials in each case. The adaptive penalty parameters
and multipliers, (kα , kν , kβ and kυ), are automatically updated
by the MU to avoid ill conditioning. Experimental results of
these three cases produced the same TP and the almost TC, and
all SCVs were less than 10-11. These clearly confirm that the
IGAMU is effective in managing constraints of the realistic
PELD problem by automatically altering the randomly given
penalty to an appropriate value and requiring only a small
population. The IGAFP was also employed to solve this
example. The IGAFP, like the IGAMU, applies 90,000
iterations. Table VI presents three cases of the best solutions
obtained for various fixed penalty parameters among 100
randomly initiated trials in each case. For the case of fixed
penalty parameter 10, the TC yielded by the IGAFP is below
those produced by the IGAMU. Nevertheless, such comparison
is meaningless, since all SCVs of the IGAFP are larger than
those of the IGAMU. This case of IGAFP violated the system
constraint (h1) and yielded an infeasible solution. Therefore,
this test clearly indicates that the IGAMU can automatically
alter the randomly given penalty to an appropriate value to
achieve a global (or near global) solution. However, the IGAFP
can produce a satisfactory result only using a large penalty
parameter. Because the IGAMU actively uses a flexible
multiplier updating strategy to probe for the new solution,
while the IGAFP only employs a fixed penalty function to test
passively feasible and infeasible solutions.

TABLE III. RELATIVE FREQUENCIES OF CONVERGENCE USING THE GA-
MU AND THE PROPOSED IGAMU

Range of cost ($/h)

Methods

32650

-

32675

32625

-

32650

32600

-

32625

32575

-

32600

32550

-

32575

32525

-

32550

32500

-

32525

GA-MU 3 3 4 5 5 52 28

IGAMU 0 2 0 4 4 47 43

TABLE IV. SUMMARIZED RESULTS OF THE COMPARISON BETWEEN THE
GA-MU AND THE PROPOSED IGAMU

Methods
Mean time

(s)

Best time

(s)

Mean cost

($/h)

Max. cost

($/h)

Min. cost

($/h)

GA-MU 20.72 20.62 32543.2681 32664.9540 32506.3740

IGAMU 7.69 7.47 32530.5600 32640.5020 32506.3390

V. CONCLUSIONS
This paper presented the IGAMU to solve practical PELD

problems of complexity having nonconvex cost curves where
conventional mathematical methods are inapplicable. The IGA
enhances the proposed method to efficiently search and
actively explore the solution, and the MU supports the
proposed approach to efficaciously manage system constraints.
The proposed algorithm integrates the IGA and the MU such
that it has the following merits: straightforward concept; easy
implementation; better effectiveness than previous methods;
better effectiveness and efficiency than the GA-MU; automatic
adjustment of the randomly assigned penalty to an appropriate
value, and the requirement for only a small population in
realistic PELD problems. The comparative results showed that
the proposed algorithm has the merits mentioned above for
applying real-world PELD operations.

ACKNOWLEDGMENT
Financial support given to this research by the National Science
Council, Taiwan, R.O.C. under Grant No. 96-2628-E-252-001
is greatly appreciated.

TABLE V. RESULTS OF THE PROPOSED IGAMU WITH
VARIOUS INITIAL PENALTY PARAMETERS

(a) Initial penalty =10
final penalties and multipliers of La

Constraints
kk βα , kk υν ,

The proposed
IGAMU
Initial

penalty=10

h1 -1.8189E-12 1α 1.0000E+22 1ν -2.9944E-13

g1 0.0000E+00 1β 1.0000E+20 1υ 0.0000E+00

g2 0.0000E+00 2β 1.0000E+20 2υ 0.0000E+00

g3 0.0000E+00 3β 1.0000E+20 3υ 3.8452E-21

g4 0.0000E+00 4β 1.0000E+20 4υ 1.3128E-20

SCV: 0.0000

TP(MW):
2650.0000

TC($/h):
32506.3390

CPU_time(s):
7.49

(b) Initial penalty =103

final penalties and multipliers of La

Constraints
kk βα , kk υν ,

The proposed
IGAMU
Initial

penalty=103
h1 -4.5474E-13 1α 1.0000E+21 1ν 7.1524E-13

g1 0.0000E+00 1β 1.0000E+21 1υ 0.0000E+00

g2 0.0000E+00 2β 1.0000E+21 2υ 0.0000E+00

g3 0.0000E+00 3β 1.0000E+21 3υ 0.0000E+00

g4 0.0000E+00 4β 1.0000E+21 4υ 0.0000E+00

SCV: 0.0000

TP(MW):
2650.0000

TC($/h):
32506.7050

CPU_time(s):
7.63

(c) Initial penalty =106

final penalties and multipliers of La

Constraints
kk βα , kk υν ,

The proposed
IGAMU
 Initial

penalty=106
h1 -9.0950E-13 1α 1.0000E+21 1ν -1.7934E-12

g1 0.0000E+00 1β 1.0000E+16 1υ 0.0000E+00

g2 0.0000E+00 2β 1.0000E+16 2υ 0.0000E+00

g3 0.0000E+00 3β 1.0000E+16 3υ 0.0000E+00

g4 0.0000E+00 4β 1.0000E+16 4υ 0.0000E+00

SCV: 0.0000

TP(MW):
2650.0000

TC($/h):
32506.7980

CPU_time(s):
7.52

TABLE VI. RESULTS OF THE IGAFP WITH VARIOUS FIXED
PENALTY PARAMETERS

 IGAFP

Fixed penalty =kk βα , 10 =kk βα , 103 =kk βα , 106

h1
g1
g2
g3
g4

5.35410E-01
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00

 5.26512E-03
 0.00000E+00
 2.88972E-07
 0.00000E+00
 0.00000E+00

 5.21392E-06
 0.00000E+00
 0.00000E+00
 0.00000E+00
 0.00000E+00

SCV 0.5354 0.0053 0.0000
TP (MW) 2649.4646 2649.9947 2650.0000
TC ($/h) 32500.4487 32507.7015 32507.8321

CPU_time (s) 7.25 7.14 7.25

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Reading, MA: Addison-Wesley, 1989.

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd. ed. Berlin, Heidelberg: Springer-Verlag, 1996.

[3] C. E. Lin and G. L. Viviani, “Hierarchical economic dispatch for
piecewise quadratic cost functions,” IEEE Trans. Power Apparatus and
Syst., PAS-103, no. 6, 1984, pp. 1170-1175.

[4] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary
programming techniques for economic load dispatch,” IEEE Evol.
Comput., vol. 7, no. 1, 2003, pp. 83-94.

[5] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, New York: Wiley& Sons, the 2nd ed., 1996.

[6] K. P. Wong and C. C. Fung, “Simulated annealing based economic
dispatch algorithm,” IEE Proc. C, vol.140, no. 6, 1993, pp. 509- 515.

[7] S. O. Orero and M. R. Irving, “Economic dispatch of generators with
prohibited operating zones: a genetic algorithm approach,” IEE Proc. –
Gener. Transm. Distrib., vol. 143, no. 6, 1996, pp. 529 -534.

[8] W. M. Lin, F. S. Cheng, and M. T. Tsay, “Nonconvex economic
dispatch by integrated artificial intelligence,” IEEE Trans. Power Syst.,
vol. 16, no. 2, 2001, pp. 307- 311.

[9] K. Yamamoto and O. Inoue, “New evolutionary direction operator for
genetic algorithms,” AIAA Journal Technical Notes, vol. 33, no. 10,
1995, pp.1990-1993.

[10] J. P. Chiou and F. S. Wang, “A hybrid method of differential evolution
with application to optimal control problems of a bioprocess system,” in
Proc. 1998 IEEE on Evolutionary Computation Conf., pp. 627-632.

[11] C. L. Chiang and C. T. Su, “Tracking control of induction motor using
fuzzy phase plane controller with improved genetic algorithm,” Electric
Power Systems Research, vol. 73, 2005, pp. 239- 247.

[12] C. L. Chiang, C. T. Su, and F. S. Wang, “Augmented Lagrangian
method for evolutionary optimization of mixed-integer nonlinear
constrained problems,” Intern. Math. J., vol.2, no. 2, 2002, pp. 119-154.

[13] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for
constrained parameter optimization problems,” Evolutionary
Computation, vol.4, no.1, 1996, pp.1-32.

[14] M. J. D. Powell, “Algorithms for nonlinear constraints that use
Lagrangian functions,” Math. Programming, vol. 14, April 1955, pp.
224-248.

