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Abstract—Support Vector Machine has good generality. Its 
development for function regressing is not as same as that with 
fast speed for sample separated. Sequence Minimum Optimizing 
(SMO) is effective on large samples, and is used to handle the 
problems with sparse solutions. Considering the power of Rough 
Set (RS) for handling imprecise data, the datum boundary sought 
by RS will substitute original inputs as training subset. As the 
size of both training set and support vectors gained reduce, 
learning machine can be promoted and favor high quality 
solutions. Based on rough set and SMO algorithm of regression, a 
hybrid algorithm (RS-SMO-RA) is presented for function 
regressing. Only a simple and short module is need to makeup for 
differentiating boundary sample, and then algorithm RS-SMO-
RA can outperform common regression algorithm of SMO. At 
last, experimental results are displayed with two approaches. 
There are evaluations of two algorithms implementing and 
testing.  
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I.  INTRODUCTION  
Support Vector Machine (SVM) has been developed in last 

years, mostly about support vector classifier. The distinct 
sequential minimal optimization (SMO) algorithm[1] 
analytically solves the problem of optimizing two variants each 
time for improving the complexity of SVM training, and is 
effectively applied in the situation of objects with large datum. 
There are also the SMO algorithms applied to the case of 
regression, which contribute to the expansion of SMO 
algorithm, and the progresses of reinforcing SMO[2-3]. 
Simultaneity, these works greatly promote the advance of SVM 
regression explored and applied[4-5].  

Support Vector Regression (SVR) has the main features 
that characterize the maximal margin algorithm: a non-linear 
function learned by a linear learning machine in a kernel- 
induced feature space. SVR can be used in pattern recognition 
with a few samples on dimension independent quantities, such 
as the number of support vectors. The training complexity is 
only related to the size of the sample. As the cost function of 
the original SVM is O(l3) about time and O((l+1)2) about space, 
the performance of SVM learning may get worse in the 
situation of a large dataset so that the optimization is difficultly 
to implement. In practice there are frequently very few support 
vectors, which distribute in the bound closest to the hyper-

plane. If training subset only gathers the points fallen in a 
narrow scope around the convex hull, the support vector 
regression would get better on the shortened size of sample[6]. 
Rough set (RS) is a new tool, which can effectively processes 
imprecise data. The samples within the boundary are nicely 
collected on the RS methodology, and are formed to replace 
original inputs as the training subset of SVM. We merge RS 
and SVR on SMO algorithm, and introduce a hybrid regression 
RS-SMO-RA in which SVR is improved for pattern 
recognizing of large datum objects. It is analogy of the 
classification case that the regression function with an ε-
insensitive band is found on dual close-bags {D+=y+ε, D–=y–
ε}. The decision attribute is directly related to the original 
output y, so that the routine for producing the boundary set 
performs shortly and efficiently. In experiment we select a 
typical function added the stochastic noise as input examples, 
and contrast the solutions of RS-SMO-RA to that of SMO-RA 
without RS. The resultant diagrams validate that the RS-SMO-
RA algorithm is superiority and simplification over SMO-RA 
algorithm.  

II. SUPPORT VECTOR REGRESSION 
As in the classification case the learning algorithm of 

regression minimizes a convex function and its solution is 
sparse. There is a training sample T, as follows.  

T={(x1, y1),…,(xl, yl)}∈(X, Y) l                              (1) 

Where xi∈X=Rn is the input element, yi∈Y=R is the output. 
The difference from the classification is that the output values 
are real rather than two discrete values (states). The problem 
solved relies on training sample and, after learning, is to induce 
the output y corresponding to a test-point. 

A. Support Vector Machine for Regression and 
Classification 
Considering a linear regressor, the function f(x) sought, is 

linear. 

   y=f(x)=(w·x)+b                                       (2) 

This function corresponds to a hyper-plane in space Rn×R, 
with the most simple n=1. The linear regression is a problem 



         

for generating a line, which minimizes error between outputs 
and known examples. 

Definition 1  Suppose a training set T, and ε>0, y=(w·x)+b is 
called as a hard ε-band hyper-plane if all points in T are 
included in. It is that the hyper-plane must meet constraints: 

          –ε≤yi－((w·x)+b)≤ε ,            i=1,2,…,l .           (3) 
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Figure 1.  Hard ε-band hyper-plane with n=1 

The real line in Fig.1 represents a hyper-plane with n=1, 
and the scope restricted by two dashed lines is ε-band related to 
the plane. It is evident that the plane of hard ε-band always 
presents when the value of ε is enough large and the count of 
points in training set is finite. The minimum εmin corresponding 
to being plane of hard ε-band is the solution of optimization in 
following. 

min     ε                                                                    (4) 

 s.t.  –ε≤yi－((w·x)+b)≤ε ,             i=1,2,…,l .   (5) 

We form two categories out of T, noted D+ and D–

respectively as follows;  

   D+={(xi
T, yi+ε)T,  i=1,   ,l}                                  (6) 

   D–={(xi
T, yi－ε)T,  i=1,   ,l}                                (7) 

So, the problem induced is to divide apart two kind of 
points, both positive and negative, as the classification case. 

Theorem 1  Let training set T converted, (xl+i
T,yl+i－ε)T=(xi

T,yi

－ε)T, i=1,…,l, and organize again the sample in following. 

  {((x1
T,y1+ε)T;1),…, ((xl

T,yl+ε)T;1), ((xl+1
T,yl+1－ε)T;–1) ,…, 

((x2l
T,y2l－ε)T;–1)}                                                            (8) 

To adapt the same method of a linear separable sample for 
the maximal margin hyper-plane, the weight vector of which is 
(wT, η)T, and to solve the optimization problem: 

   min  1/2||w||2+1/2η2                                                 (9) 

        s.t.   zi((w·xi)+ η (yi+ziε)+b)≥1,     i=1,…,2l        (10)  

where, zi=       1 ,   i= 1,…,l;                                             (11) 

                     –1 ,  i=l+1,…,2l;   

the hyper-plane drawn is (w*·x)+ η* y+b* =0, and after 
coordinating the linear regress function is derived as:                 
y =(w·x)+b, where w =–w*/η*, b =–w*/b*. 

The optimization correspondence of primal problem 
Eqs.(9)-(10) is in following. 

minα ∑∑
==

−+•+
l

j
j

l

ji

T
jj

T
j

T
ii

T
ijiji zyxzyxzz

2

1

2

1,

)),(),((
2
1 αεεαα (12) 

 s.t.     ∑
=

=
l

i
iiz

2

1
0α   αi≥0,  i=1,…,2l                               (13) 

Using the feature space implicitly defined by the kernel K(xi, 
xj), curve instead of line, the hard ε-band method of the 
maximal margin hyper-plane is popularized to apply in 
regression as in the classification case. The problem is 
transferred to the linear regression solved in high-dimension 
Hilbert space, and suppose the parameter (α(*)∈R2l) solve the 
following optimization problem. 

To gain the decision function: 

bxxKxf
i

iii +−=∑ ),()()( * αα                          (16) 

where b is computed for any j with αj∈(0, C) or k with αk. 

  b=        yj－∑i(α*i－αi)K(xi, xj)+ ε      αj∈(0, C) 

        yk－∑i(α*i－αi)K(xi, xk)－ε      αk∈(0, C)        (17) 

B. SMO Algorithm forRegression 
The SMO algorithm was initially developed in 

classification case, undergoes improving and altering, and later 
is suit to resolve regression either simply or effectively [2]. 
SMO for regression is summarized as follows. 

To alter the appearance of Eq.(14)-(16), let λi=α*i－αi and 
|λi|=α*i+αi , where –C≤λi≤C; Assume kij= K(xi, xj) for short, 
and kij=kji; The decision function and optimization problem are 
transferred to Eq.(18)-(19). 
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Which subject to ∑iλi =0. Suppose two optimized parameters 
λu and λv, s*=λu+λv =λ*u+λ*v , where the symbol “*” indicates 
values before optimizing; The loop looks for two new KKT 
violations and optimizes the points until terminating without 
KKT violations. For the regression the KKT conditions are 

                                  <ε ,     λi=0 
               |yi－fi|          =ε ,     –C < λi ≠0<C                 (20)  
                                    >ε ,      |λi|=C    



         

The popularized SMO of regression is summarized. 

Step1: s*=λ*u+λ*v , η=kuu+ kvv－2kvu , ∆=2ε/η ; 
Step2: λv=λ*v +1/η (yv－yu+f*u－f*v) ; 
Step3: λu= s*－λ*v ; 
Step4: if(λu·λv <0) 

{ if(|λv |≥∆∧|λu |≥∆) 
    λv =λv－sgn(λv)·∆ ; 
 else 
    λv =step(|λv |－|λu |)s* ;  } 

Step5: L=max(s*－C, –C) , H=min(C, s*+C, ) ; 
Step6: λv =min(max(L, λv), H) ;  
Step7: λu = s*－λv  . 

b is updated based on any each of both parameters 
complying to the condition, else average of both , or does 
nothing. 

     bu= yu－f*u +(λ*u－λu)kuu+(λ*v－λv)kuv+b*                   (21) 

     bv= yv－f*v +(λ*u－λu)kuv+((λ*v－λv)kvv+b*                   (22) 

III. SUPPORT VECTOR MACHINE REGRESSION BASED ON RS 
The support vectors, which determine the decision function, 

usually distribute over the band-scope around convex hull. 
Rough set is used to collect points in the band-scope from input 
sample, and to constitute the sample as training subset of 
regression learning instead of original input. The performance 
of machine learning can work better on smaller training set. 

A. Knowledge of Rough Set 
Fundamental concepts in the theory of knowledge are 

classifications and categories. The knowledge representation 
system S=(U, A) may be viewed as a description of a 
knowledge base[8]. The boundary region brings non-preciseness 
of sets. 

The information system is represented as a decision table: 
(U, A), A=C∪D, C∩D=∅; Where, C is the set of condition 
attributes, D is the set of decision attributes. Let W⊆U be 
subsets of U and equivalence relation sets U/a of a∈A; Low 
approximate set of W is defined as W(U/a)ˉ= V

aU WV,/V ⊆∈
∪ , and 

also called Sa(W) (supporting subset); Upper approximate set of 
W is defined as W(U/a)+= V

φ≠∩∈ WVU/a,V
∪ . 

In another words, position region of W is pos(W)= W(U/a)ˉ, 
negative region neg(W)=U － W(U/a)+, and boundary region 
bn(W)=W(U/a)+－W(U/a)ˉ. U is classified upon the attributes, as 
U/a1, U/a2 ,…,U/a|A|; pos(W) express a set in which equivalence 
classes surely belong to sets of W composed of elements in U; 
neg(W) is a set in which equivalence classes surely do not 
belong to sets of W composed of elements in U; and bn(W) is 
the set composed of elements that belong to neither pos(W) nor 
neg(W). So the boundary sets of attributes are sets of 
intercrossing every attribute boundary set, as follows: 

bnA(W)=bna1(W)∩…∩bnan(W) ,        n=|A|          (23) 

For the regression the problem becomes very simple. From 
Eq.(11) we know that the decision attribute Z relates to single 
variant y; other elements effect y in Eq.(18) and do not effect z 
directly. So the boundary set in Eq.(23) maintains an attribute 
item. When y is continuous y must be discretized. Since the 
discrete values or partition values may change the size and 
precision of boundary set, the partition is reasonable to set δ∈
[ε, 3ε] based on ε effect. 

B. Hybrid Regression Algorithm of SMO and RS 
The role of rough set is to generate the boundary set of 

input sample, which replaces the sample as training subset of 
regression learning. Subsequently the regression SMO 
algorithm is used to optimize two parameters. So this is a 
hybrid regression algorithm of SMO and RS, called RS-SMO-
RA, which block-figure is illustrated in Flg.1. 

There are two stopping criterions: at first the maximum 
generation limits the maximum circles, and secondly the 
number of SV is same in successive two runs, either of them 
means the circulation terminated. 

      
  Figure 2  Flowchart of algorithm RS-SMO-RA 

IV. THE SIMULATION RESULTS 
The RS-SMO-RA algorithm is used to simulate, and the 

experiment results compare with that of SMO-RA algorithm 
removing the module for finding boundary set in Fig.1. The 
original object is the function sin(x)/x, x∈[–13, 13]. The points 
are equably sampled from the function with step δ=0.05, and 
add stochastic noises ((xt－0.5)/2) to gain the input sample 
which length is l1=521. Assume xt

(0)=0.1; The units of 
boundary set generated by RS method count l2=469. 

   xt
(k)=3.78×xt

(k-1)×(1－xt
(k-1))                                  (24) 

The kernel adopts the form of RBF, K(xi, xj)=exp(–||xi－
xj||2). To select the parameters ε and C based on the simulation 
object. In general, ε is so large that there is no reasonable result, 
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and too small ε would result in the performance degradation of 
learning machine; the value of C is related with the smoothness 
of received decision function. Two group of regressing results 
corresponding to different values of ε and C are listed in figure 
3 and 4 respectively, where, the red curve is the original object 
graph, the blue scattering dots are the input points with noise, 
and the green curve is the gained graph of machine learning by 
training algorithms. The test results in table 1 include main 
index evaluations: count of SV, actual times of iteration, and 
time cost. 

TABLE I.  TESTING RECORDS OF TWO ALGORITHMS  

 Methods RS-SMO-RA SMO-RA 
ε: C .015: .28; .03: .25 .015: .28; .03: .25 

Count Of SV 210     187 233     201 
Iteration (Gen) 237     237 263     263 

Time(s) 14      11 20      16 
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(a) Decision function of machine learning using RS-SMO-RA algorithm 
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(b) Decision function of machine learning using SMO-RA algorithm 

Figure 3.  Experiment results of two algorithms with parameters ε=0.015 
and C=0.28 
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(a) Decision function of machine learning using RS-SMO-RA algorithm 
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(b) Decision function of machine learning using SMO-RA algorithm 

Figure 4. Experiment results of two algorithms with parameters ε=0.03 and 
C=0.25 

Assume the standard deviation of RBF σ=1 in 
experimenting. As the standard deviation σ changes C and ε 
adjust accordingly. From experiment results it is known that 
comparing with RS-SMO-RA, SMO-RA implementing collects 
more support vectors, and draws the sharper and coarser curve. 
The records of SMO-RA are no good as that of RS-SMO-RA. 

V. CONCLUSION 
In system identification of large dataset the RS-SMO-RA 

algorithm has distinct superiority only in cost of short and 
simple program. Algorithm implementing is independent of the 
dimension of input sample, and induces the decision function 
on less SVs for minimum structure risk of SVM regression. 
The system identifying using this method makes mush progress 
over using SMO-RA. As the step δ decreases, the ascensive 
effect enlarges, and the result of machine learning is ever better. 

However the result of training algorithm is sensitive to the 
variety of ε and C, which are carefully choose based on actual 



         

object. The choice of ε and C merge the flat factor σ of kernel 
to solve the problem of connected-parameter optimization; 
otherwise how to select two optimizing points is also important 
to determine the decision function of system identification. 
These need to explore the related literatures, and research 
further. 
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