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Abstract—This paper investigates both the knowledge model 
and the mechanism model for correcting Carbon Potential Using 
an Oxygen Sensor (CPUOS). CPUOS is widely used and there 
exists a deviation between the true value and the measured value. 
Therefore it is very important to study the correction model for 
CPUOS. Experiments are planned and carried out to generate 
the necessary data. Based on the experimental data we get the 
knowledge model for CPUOS using Support Vector Machine 
(SVM). Under the guidance of the knowledge model, we build the 
mechanism model based on the carbon potential relevant theory. 
The knowledge model and the mechanism model are corrected 
and verified by the practical experience. 
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I.  INTRODUCTION 
Oxygen probes are widely used as Carbon Potential (CP) 

sensor with the rapid development of oxygen probe 
manufacturing techniques. Compared to the other CP sensors, 
such as dewpoint meter, CO2 infrared meter and resistance 
probe, the oxygen probe has some practical advantages. It may 
be used as a true “in-situ” device. The response rate is fast and 
local fluctuations or point-to-point variations are easily 
observed. Probe design based on the SIRO2 Sensor is simple 
and permits easy maintenance or refurbishing. Thus, it is 
widely used in the atmosphere control for carburizing, 
carbonitriding, bright quenching, bright annealing, bright 
normalizing and control for endothermic, drop-feed, nitrogen, 
direct atmosphere under protected atmosphere. Oxygen probes 
are suitable for multi- purpose chamber furnace, continuous gas 
carburizing furnace, pit-type gas carburizing furnace. 

But the conventional measurement techniques for Carbon 
Potential Using an Oxygen Sensor (CPUOS) are not so 
satisfying. The control accuracy of carbon potential are affected 
by several factors, such as other atmosphere component[1], the 
change of the temperature, the deviation between the practical 
reaction and the balanced reaction, the system errors of oxygen 
probe and temperature meters. There exists a deviation between 
the measured carbon potential and the true carbon potential[2]. 
In order to improve the control technique of carbon potential, it 
is necessary to study the factors that cause the deviation and 
study the correction model for the oxygen sensor approach so 
as to obtain the more accurate value of carbon potential. 

In this paper, we obtain both the knowledge model and the 
mechanism model for correcting the CPUOS approach. The 
remainder of this paper is organized as follows. Section II will 
provide some background knowledge of carbon potential and 
SVM. In section III, we select the input/output variables 
according to the practical experience and record the relevant 
data. In section IV, we analyze the influencing factors and get 
the knowledge model using SVM for correcting the CPUOS 
approach. Under the guidance of the knowledge model, in 
section V, we build the mechanism model based on the carbon 
potential relevant theory. In section VI, we obtain the more 
overall correction models combining the knowledge model, the 
mechanism model and the practical human experience. Section 
VII gives some summary and future work. 

II. PRELIMINARIES OF CP USING AN OXYGEN SENSOR 
AND SVM FOR REGRESSION 

For the readers’ convenience, some background knowledge 
on controlling carbon potential using the Oxygen 
probe[3][4][5][6] and SVM[7][8][9] for regression is firstly 
provided in this section. 

A. Carbon Potential using an oxygen sensor 
When the electrodes of the oxygen probe are exposed to 

different oxygen partial pressures an electric potential ( E) is 
developed. E  is related to oxygen partial pressure (

2OP ), and 

2OP  is related to CP. Thus CP could be indirectly measured 
through the voltage E  outputted by the oxygen probe. 
Therefore we briefly introduce the relationship between E  and 

2OP ,
2OP  and CP. For more detailed information about 

measuring CP using an oxygen probe please refer to [3][4][6]. 

1) The relationship between voltage and oxygen partial 
pressure[3]. 

The sensor is an oxygen concentration cell. It comprises a 
membrane of stabilized zirconium oxide which, at high 
temperature, is a conductor of oxygen ions, two electrodes and 
leads to a voltage. Figure 1 gives the schematic diagram of an 
Oxygen probe[5]. 

When the electrodes are exposed to different oxygen partial 
pressures 'P and ''P  an electromotive force (emf) E is 
developed which following the Nernst equation 
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where ( )T K° is the temperature of the membrance, R is the 
gas constant and F the Faraday constant. The sense of the emf 
is such that the positive electrode is the one exposed to the 
higher oxygen partial pressure. 

 
 

 

 

 

 

 

 

 
Figure 1.  Schematic diagram of an Oxygen probe 

The cell may be used to determine the oxygen partial 
pressure at one electrode (e.g. ''P ) provided that 'P  and T are 
known. 'P  is generally fixed by maintaining a controlled 
reference atmosphere, e.g. air, at the electrode. If an air 
reference is used, equation becomes    
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2) Relationship between oxygen partial pressure and CP 
The exchange of carbon between an equilibrium gas phase 

containing CO, O2, H20, H2, CH4 and N2 and a one-phase 
solid solution, such as austenite, is given by the following 
Equation[3]. 
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The equilibrium constant, K , for Reaction [3] is 
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where cα is the termodynamic activity of carbon, COP ，

2OP is the partial pressure of component CO,CO2. 

In terms of atom fraction, the activity is given by the 
equation[6]: 

c c Pf Cα =                                        (5) 

where cf  is activity coefficient, pC  is carbon potentialt of 

carbon, a function of compositon and temperature. 

Combining Equation（4），（5）, that is 
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Equation (6) provides the basis for relating 2OP to CP. At a 

particular temperature, a given ratio 2

1/ 2/CO OP P corresponds to a 
particular CP. When both T and COP  do not vary, we can 

compute CP by 2OP . 

B. Support vector machine (SVM) for regression 
In this section, we give the basic theory of SVM for 

regression estimation[7]. SVM, developed by Vapnik[8][9], is 
gaining popularity due to many attractive features and 
promising empirical performance. Originally, SVM is 
developed for pattern recognition problems. Recently, with the 
introduction of ε-insensitive loss function, SVM has been 
extended to solve nonlinear regression estimation, time-series 
prediction, system nonlinear identification and control.  

We describe the linear function using the form x bϖ ⋅ + . 
As to the non-linear case, we transfer the nonlinear problem 
into a linear problem by a nonlinear map ( )xφ from the low 
dimensional input space to a higher-dimensional feature space. 
SVM approximates the function using the following form: 

( ) ( )f x x bϖ φ= ⋅ +                  
(7) 

The regression problem is equivalent to the following 
optimization problem: 
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where, minimizing 
2 2ϖ means minimizing VC dimension

，and at the same time ( )f x  approximates pairs( ),i ix y with ε  
precision. Thus, the above optimization problem is a realization 
of structure risk minimization (SRM) principle [5]. Therefore, 
the obtained regression estimation possesses good 
generalization ability. C>0 is cost coefficient, which represents 
a balance between the model complexity and the approximation 
error. When the constraint conditions are infeasible, slack 
variables

*,i iξ ξ should be introduced.  

By solving Equation (6) the approximate function is 
obtained： 
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III. ACQUIRE THE RAW DATA 
In order to investigate the influencing factors of CPUOS 

and the correction model, we select the relevant variables 
according to the practical experience. We measure and record 
the relevant data.   



         

 

• CP obtained by the oxygen probe (
poC ) which is the 

object to be corrected. 

• CP measured by the steel foil (
pcC ). The purpose of 

this work is to correct CPUOS and the steel foil 
approach represents an original definition of CP and 
leads to small error, so it can be regarded as the true 
value. 

• Possible influencing factors for CPUOS. According to 
practical manufacturing experience, they could be the 
carburizing atmosphere (including CO, CO2, CH4, H2) 
and the temperature.  

In this experiment, atmosphere component is measured by 
MESA gas analyzer. The data are recorded and sent to the 
recorder system by a data acquisition system once a minute. 
The temperature is measured by the thermocouple.  

IV. KNOWLEDGE MODEL OF CP CORRECTION 
In order to investigate the influencing factor of CPUOS, we 

observe the relationship between CP by the oxygen probe 
poC  

and the true CP value, that is CP by the steel foil
pcC . Figure 2 

shows that 
poC  and 

pcC  is likely to be linear. In Figure 2, the 
slope of the fitting line is closed to 1, and there exists a bias. 

 

Figure 2.  Relationship between the CP by an Oxygen probe poC  and that 

by a steel foil pcC  

For further study on the relationship between 
poC  and 

pcC , 
we conduct quantitative analysis use SVM. The motivation of 
selecting SVM for modeling is that both linear and nonlinear 
models can be built using SVM. The other reason is the 
remarkable characteristics of SVM such as good generalization 
performance, and the absence of local minima.�

Our purpose is to amend the CP by the Oxygen probe 
poC , 

so 
poC is the input variable. The steel foil approach represents 

the original definition, can be regarded as the true value, so CP 
by a steel foil 

pcC  is the output variable. In order to 

quantitatively analyze the relationship between the two CP 
value, we have built the linear model. we choose the linear 
kernel function: K( , )= T

i j i jx x x x . The linear model 

is =0.917* +0.036506pc poC C .  

For the purpose of validating the models, the data set is 
randomly split into 28 training samples and 27 test samples. 
The precisions of the methods are listed in Table 1. The first 
row is the error without amendment, that is, the error between 
the carbon potential using the oxygen and that using the steel 
foil. The second row is the error between the carbon potential 
after linear modification and that using the steel foil. The SVM 
models show that, after liner modification, the precision is 
improved, so the linear model is effective. In our experiment, 
the linear model performs a little better. The relation ship is 
likely linear.  

TABLE I.  THE PRESICION OF THE CORRECTION MODELS 

 MAE (Mean Absolute 
Error) 

RMS (Root-Mean-
Square) 

Without correction 0.047458 0.062793 
Linear model 0.044675 0.051016 

  

Figure 3 shows the error curves of the three methods: CP 
using the Oxygen probe, carbon potential after linear 
correction, carbon potential using the steel foil. The 
experimental results show that the carbon potential after linear 
correction is closer to the carbon potential using the steel foil, 
which also shows that the linear model is valid.  

 
Figure 3.   Curves of CP. 

V. MECHANISM MODEL OF CP CORRECTION 
In this section, we build the mechanism model about the 

relationship of the measured CP and the true CP. From the 
knowledge model, the linear relation is obvious; we can guess 
there exists certain relationships between the physical 
variables. We study the relationship between the physical 
variables in the measurement and computation process of using 
the oxygen probe in order to analyze the mechanism model. 



         

In high temperature condition the carbon potential is a 
function of the oxygen partial pressure, the oxygen partial 
pressure is a function of the electric potential. Thus we mainly 
study the relationship among electric potential, oxygen partial 
pressure and carbon potential. 

Revisit the relationship between electric potential E  and 
oxygen partial pressure 

2OP  and substitute Pref
=0.21 into 

Equation (2), we have 
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=                            （10） 
Then focus on the relationship between carbon potential 

PC and oxygen partial pressures
2OP : 

Define ' cK K f= . Equation (6) can be represented as: 
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Combining Equation (6) and (11), we have 
10.0805 0.3387
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CO is affected by rich gas and balanced atmosphere, and 
varies in a large scope, so the deviation of CO should be 
considered. The deviation of E  is another important 
influencing factor. The output of the oxygen probe is electric 
voltage, not electric potential, and affected by the internal 
resistance. The incremental format of Equation (12), that is, the 
practical value obtained by the oxygen probe 

poC  is： 
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Combing Equation（12）and（13）, we have: 
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where 
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PC is the true CP value. CP by the steel foil 
pcC is 

approximately equal to 
PC . 

VI. SUMMARY AND FUTURE WORK 
Combining the knowledge model, the mechanism model 

and the practical experience, about the correction model on 
CPUOS, we draw the following conclusions:  

1) Both knowledge model and the mechanism model show 
that the CP by the oxygen probe and the true value is linear 
relationship in a short period of time. 

The result of the knowledge model:  

=0.917* +0.036506pc poC C  

 where 
pcC  is the true CP value, i.e., CP by the steel foil, 

poC is 
the value by the oxygen probe. It needs to be noted that the 
model varies according to the time and the work environment. 

The result of the mechanism model: 

10.0805 10.0805 0.33870
where 10 ; ' 10
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2) The linear relationship is true only in a short period of 
time. E∆ is not a const value, the scope will vary. Therefore the 
model is linear in a short period of time and nonlinear in a long 
term. The linear relationship is meaningful, for it is easy to 
update for a linear relationship, only little data is enough to 
update the model; the nonlinear relationship shows that the 
model is not fixed, that means, in order to obtain the good 
result, the periodic updating is necessary. The linear model 
should be updated periodically according to the recent short-
term data. 

3）The mechanism model shows: the deviation is related to 
CO, and the higher the temperature is, the larger the deviation 
is; the higher the temperature is, the closer the rate of the line is 
close to 1, which means the error is more like translational 
error. This provide a theoretical foundation for the model 
correcting in the future under different temperature. 

4）The future work will emphasize on temperature T , the 
deviation of the electric potential of the oxygen potential 

E∆ and 'K , the change rule of E∆ and 'K , and the further 
experimental verification.  

VII. ACKNOWLEDGEMENT 
This work is supported by the National Natural Science 

Foundation of China under Grand No. 60474036 and Key 
Foundation Program of Shanghai  Sciences & Technology 
Committee under Grand No. 06JC14036. 

VIII. REFERENCE 
[1] T. Naito, Effects of CO, CO2 and H2 partial pressure on carbon potential 

and grain boundary oxidation, Gaswaerme International, 48  (1999) 
527-533 

[2] Zhang W. M., J. S. Pan  Measurement Methods of Carbon Content in 
Heat Treatment in Controllable Atmosphere Heat Treatment 3 (1992) 
23-26 Language: Chinese 

[3] M. J. Bannister, Control of Carbon Potential Using an Oxygen Sensor, 
Industrial Heating, 51(1984) 24-26 

[4] R. Hoffmann  Theorie und Praxis der Sauerstoffsonde HTM 34(1979) 
130-137 

[5] M. Benammar, Techniques for measurement of oxygen and air-to-fuel 
ratio using zirconia sensors. A review, Meas. Sci. Technol.5(1994) 757-
767 

[6] F. J. Harvey, Thermodynamic Aspects of Gas-Metal Heat Treating 
Reactions, Metallurgical Transaction A,. 9A (1978)1507-1513 

[7] A. J. Smola, B. Scholkopf, A tutorial on support vector regression. 
Statistics and Computing, 14(2004) 199-222. 

[8] V. Vapnik The Nature of Statistical Learning Theory. New York, USA, 
Springer. 1995 

[9] V. Vapnik  Statistical learning theory New York, Wiley. 1998

 


