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Abstract—By combining backstepping techniques and small-
gain theorem, a nonlinear controller for generator system with
dynamic uncertainties is proposed to make rotor angle and
voltage stable. For the high-order model of generator system,
the excitation control is designed by the modified backstepping
techniques and dynamic uncertainties are controlled by the small-
gain method, which render the whole closed-loop system asymp-
totically stable. Since the controller design is based completely
on the nonlinear dynamic system without any linearization, the
nonlinear property of the system is used to design the nonlinear
robust controller. Simulations have shown the effectiveness of the
proposed design method.

Index Terms—dynamic uncertainty, small-gain, backstepping,
generator system

I. INTRODUCTION

The stability problem of power systems is always important,
and the development of the large-scale power systems requires
a high degree of reliability. Power systems are nonlinear
dynamic systems with complicated structures [2], [3], [4],
where possibly there exist various uncertain factors. The
obtained control laws are focused on the research of the
system with static uncertainties [5], [6], [7]. However, the
system with dynamic uncertainties is studied rarely. In the
generator system, the part of dynamic uncertainties comes from
modelling simplifications and modelling error, for which the
general robust controllers are often ineffective. Therefore, the
design approach to the dynamically uncertain system is needed.

The small-gain technique is an important design idea in
the field of nonlinear control. For the interconnected systems,
the nonlinear robust controller based on small-gain technique
can make closed-loop system stable. In 1963, Zames presented
the thesis about the small-gain principle [8], which becomes
one important basis of modern robust control theory. With the
improvement of small-gain theorem [1], [9], it becomes an
effective tool in the nonlinear control. Recently, the small-
gain techniques are joined with other design methods to design
nonlinear systems with dynamic uncertainties [10].

In this paper, for the high-order model of generator sys-
tem, we combine the Backstepping techniques and small-
gain method to design the excitation controller, which renders
the generator system stable. The design procedure is divided
into two steps. Firstly, the certain part of generator system
is designed by Backstepping techniques, which make power
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Fig. 1. Feedback system

angle and voltage stable. Secondly, according to the small-
gain theorem, we deal with the dynamic uncertainties, which
ensures that the whole system is stable. Finally, simulations
show that the design result is effective to the system.

II. PRELIMINARIES AND KEY LEMMAS

As shown in Fig. 1, there are two systems H1 : Lpe → Lqe

and H2 : Lqe → Lpe. Suppose both systems are finite-gain L
stable, that is

‖y1τ‖L ≤ γ1‖e1τ‖L + β1, ∀e1 ∈ Lpe, ∀τ ∈ R+ (1)

‖y2τ‖L ≤ γ2‖e2τ‖L + β2, ∀e2 ∈ Lqe, ∀τ ∈ R+ (2)

Suppose further that the feedback system is well defined in
the sense that for every pair of inputs u1 ∈ Lpe and u2 ∈ Lqe,
there exist unique outputs e1, y2 ∈ Lpe and e2, y1 ∈ Lqe.
Define

u =
[

u1

u2

]
, y =

[
y1

y2

]
, e =

[
e1

e2

]

The question of interest is whether the feedback connection,
when viewed as a mapping from the input u to the output e or a
mapping from input u to the output y, is finite-gain L stable.
The following theorem, known as the Small-Gain Theorem,
gives a sufficient condition for finite-gain L stability of the
feedback connection.

Theorem 1: (Small-Gain Theorem) [1] Under the pre-
ceding assumptions, if

γ1γ2 < 1
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then the feedback connection is finite-gain L stable, and for
all inputs u1 ∈ Lpe and u2 ∈ Lqe,

‖e1τ‖L ≤ 1
1 − γ1γ2

(‖u1τ‖L + γ2‖u2τ‖L + β2 + γ2β1) (3)

‖e2τ‖L ≤ 1
1 − γ1γ2

(‖u2τ‖L + γ1‖u1τ‖L + β1 + γ1β2) (4)

for all τ ∈ R+; if u1 ∈ Lp and u2 ∈ Lq, then e1, y2 ∈ Lp and
e2, y1 ∈ Lq.

Proof: See reference [1]
On the basis of Small-Gain Theorem, a lot of research

work has done. Now, the small-gain technique has become
an effective tool in the field of nonlinear control. In this paper,
the Lyapunov formulation of nonlinear Small-Gain Theorem
is used to design the interconnected systems, which is given
as follows:

Theorem 2: [9] Consider the interconnected systems

{
ẋ1 = f1(x1, x2, u1)
ẋ2 = f2(x1, x2, u2)

(5)

where, for i = 1, 2, xi ∈ R
ni , ui ∈ R

pi and fi : R
n1 ×

R
n2×R

pi → R
ni is locally Lipschitz. Assume that there exists

an input-to-state practically stable (ISpS) Lyapunov function
Vi(·), for the xi-subsystem such that the following hold:

• there exist functions ϕi1(·), ϕi2(·) ∈ K∞ such that

ϕi1(‖xi‖) ≤ Vi(xi) ≤ ϕi2(‖xi‖), ∀xi ∈ R
ni (6)

• there exist functions αi(·) ∈ K∞, χi(·), γi(·) ∈ K
and some constant ci ≥ 0 such that V1(x1) ≥
max{χ1(V2(x2)), γ1(‖u1‖) + c1} implies

∇V1(x1)f1(x1, x2, u1) ≤ −α1(V1) (7)

and V2(x2) ≥ max{χ2(V1(x1)), γ2(‖u2‖) + c2} implies

∇V2(x2)f2(x1, x2, u2) ≤ −α2(V2) (8)

if there exists some c0 ≥ 0 such that

χ1 ◦ χ2(r) < r, ∀r > c0 (9)

then the interconnected system (5) is ISpS. Furthermore, if
c0 = c1 = c2 = 0, the system is input-to-state stable (ISS).

Proof: See reference [9]
In addition, Young’s inequality is given as follows:

Lemma 3: (Young’s inequality) For any two vectors x
and y, the following holds:

xT y ≤ εp

p
‖x‖p +

1
qεq

‖y‖q (10)

where ε > 0 and the constants p > 1 and q > 1 satisfy
(p − 1)(q − 1) = 1.

III. NONLINEAR CONTROLLER DESIGN

A. Single Machine Model

The model of single machine infinite-bus system is pre-
sented by the following dynamic functions:


δ̇ = ω − ω0

ω̇ = −D
H (ω − ω0) + ω0

H (Pm − Pe)
Ė′

q = − 1
T ′

d
E′

q + 1
Td0

Xd−X′
d

X′
dΣ

Vs cos δ + 1
Td0

Vf

(11)

where

Pe =
E′

qVs

X ′
dΣ

sin δ +
V 2

s

2

(
X ′

dΣ − XqΣ

X ′
dΣXqΣ

)
sin 2δ (12)

List of symbols is as follows:
δ is the power angle, ω the relative speed, ω0 the synchronous
machine speed (ω0 = 2πf0), Pm the mechanical input power,
Pe the electric power, E′

q the q-axis internal transient voltage,
D the per-unit damping constant, H the inertia constant, Vs

the infinite bus voltage, X ′
d the d-axis transient reactance, Xd

the d-axis reactance, Xq the q-axis transient reactance, Vf the
excitation control variable, Td0 the d-axis open circuit transient
time constant, Vt the end voltage, T ′

d = Td0
X′

dΣ
XdΣ

, X ′
dΣ = X ′

d+
XT + XL, XqΣ = Xq + XT + XL, XdΣ = Xd + XT + XL,
where XL the reactance of transmission line, XT the reactance
of transformer.

B. Control Model

Firstly, the generator system with dynamic uncertainties is
presented by the following model:

µ̇ = Q(µ, δ) (13)

δ̇ = ω − ω0

ω̇ = −D

H
(ω − ω0) +

ω0

H
(Pm − Pe)

Ė′
q = − 1

T ′
d

E′
q +

1
Td0

Xd − X ′
d

X ′
dΣ

Vs cos δ +
1

Td0
Vf (14)

where µ ∈ R
n0 , the integer n0 ≥ 1. The system structure

consists of two parts: the equations (14) is main part of the
system, which is certain; µ-subsystem (13) is the uncertain
part, which has the influence on the machine power Pm. These
two parts are interconnected to one complex system.

The equations (13)-(14) are rewritten into the incremental
form. Setting the work point (µ0, δ0, ω0, E

′
q0), the system is

changed into

∆µ̇ = ∆Q(∆µ, ∆δ) (15)

∆δ̇ = ∆ω

∆ω̇ = −D

H
∆ω − ω0

H

[
Vs

X ′
dΣ

E′
q0(sin(δ0 + ∆δ) − sin δ0)

+
Vs

X ′
dΣ

∆E′
q sin(δ0 + ∆δ) +

V 2
s

2

(
X ′

dΣ − XqΣ

X ′
dΣXqΣ

)

(sin 2(δ0 + ∆δ) − sin 2δ0) − ∆Pm(∆µ)
]

∆Ė′
q = − 1

T ′
d

∆E′
q +

1
Td0

Xd − X ′
d

X ′
dΣ

Vs(cos(δ0 + ∆δ)

− cos δ0) +
1

Td0
Vf (16)



where sin(δ0 +∆δ) 
= 0, the machine input power satisfies the
following assumption:

Assumption 1: There exists a known smooth function
P (·), P (0) = 0, which satisfies

|∆Pm(∆µ)| ≤ P (|∆µ|) (17)

The dynamic uncertainties satisfy the following assumption:
Assumption 2: The µ-subsystem (15) has the ISS-

Lyapunov function V0(·), which satisfy

∂V0

∂∆µ
∆Q(∆µ, ∆δ) ≤ −αz(V0(∆µ)) + υz(|∆δ|) (18)

where, αz(·) and υz(·) ∈ K∞.

C. Controller Design

Set the states x1 = ∆δ, x2 = ∆ω, x3 = ∆E′
q , the state of

uncertain part z = ∆µ, the input u = Vf ; Let a1 = ω0Vs

HX′
dΣ

,

a2 = Vs

Td0

Xd−X′
d

X′
dΣ

, a3 = ω0V 2
s

2H

(
X′

dΣ−XqΣ
X′

dΣXqΣ

)
, the following

equations are obtained

ż = ∆Q(z, x1) (19)

ẋ1 = x2

ẋ2 = −D

H
x2 − a1E

′
q0(sin(δ0 + x1) − sin δ0)

−a1x3 sin(δ0 + x1) − a3(sin 2(δ0 + x1) − sin 2δ0)

+
ω0

H
∆Pm(z)

ẋ3 = − 1
T ′

d

x3 + a2(cos(δ0 + x1) − cos δ0) +
1

Td0
u (20)

Based on small-gain method, the design produre is divided
into two steps. Firstly, x-subsystem with the lower-triangular
structure is designed by the Backstepping technique. Secondly,
according to Small-Gain Theorem, we deal with the dynamic
uncertainties.

D. Design x-Subsystem by Using Backstepping Technique

Set b1(x1) = a1E
′
q0(sin(δ0 + x1)− sin δ0) + a3(sin 2(δ0 +

x1) − sin 2δ0), b2(x1) = a2(cos(δ0 + x1) − cos δ0).
Firstly, let ξ1 = x1, the Lyapunov function V1 = ξ2

1
2 and

the derivative of it is

V̇1 = ξ1x2

The virtual controller is taken as α2 = −C1ξ1 , we have

V̇1 = −C1ξ
2
1 + ξ1(x2 − α2)

Secondly, let ξ2 = x2 − α2, then ξ̇2 = ẋ2 + C1x2. The
Lyapunov function is V2 = V1 + ξ2

2
2 . Its derivative is

V̇2 = −C1ξ
2
1 + ξ2

[
− a1x3 sin(δ0 + x1) − D

H
x2

+
ω0

H
∆Pm(z) − b1(x1) + ξ1 + C1x2

]
(21)

Based on Assumption 1 and Young’s inequality (10), it is
obtained

ξ2
ω0

H
∆Pm(z) ≤ |ξ2|ω0

H
P (|z|) ≤ ω2

0

H2
ξ2
2 +

1
4
P (|z|)2 (22)

Substituting (22) into (21) yields

V̇2 ≤ −C1ξ
2
1 + ξ2

[
− a1 sin(δ0 + x1)x3 − b1(x1) + ξ1

+
(

C1 − D

H

)
x2 +

ω2
0

H2
ξ2

]
+

1
4
P (|z|)2 (23)

From sin(δ0 + x1) 
= 0, take the virtual controller as

α3 =

(
C2 + ω2

0
H2

)
ξ2 +

(
C1 − D

H

)
x2 − b1(x1) + ξ1

a1 sin(δ0 + x1)

which renders

V̇2 ≤ −
2∑

i=1

Ciξ
2
i − a1 sin(δ0 + x1)ξ2(x3 − α3) +

1
4
P (|z|)2

(24)
Thirdly, let ξ3 = x3 − α3, V3 = V2 + ξ2

3
2 , we have

V̇3 ≤ −
2∑

i=1

Ciξ
2
i +

1
4
P (|z|)2 + ξ3

[
1

Td0
u − 1

T ′
d

x3

+b2(x1) − a1 sin(δ0 + x1)ξ2 − ∂α3

∂x1
x2

−∂α3

∂x2

(
− D

H
x2 − b1(x1) − a1x3 sin(δ0 + x1)

+
ω0

H
∆Pm(z)

)]
(25)

Similar to (22), from Assumption 1 and Young’s inequality
(10), we have

−ξ3
∂α3

∂x2

ω0

H
∆Pm(z) ≤ ω2

0

H2
ξ2
3

(
∂α3

∂x2

)2

+
1
4
P (|z|)2 (26)

Therefore, (25) is rewritten into

V̇3 ≤ −
2∑

i=1

Ciξ
2
i +

1
2
P (|z|)2 + ξ3

[
1

Td0
u

−a1 sin(δ0 + x1)ξ2 − 1
T ′

d

x3 + b2(x1)

−∂α3

∂x1
x2 − ∂α3

∂x2

(
− D

H
x2 − b1(x1)

−a1x3 sin(δ0 + x1) − ω2
0

H2

∂α3

∂x2
ξ3

)]
(27)

With the choice of the state feedback controller

u = Vf = Td0

[
− C3ξ3 + a1 sin(δ0 + x1)ξ2 +

1
T ′

d

x3

−b2(x1) +
∂α3

∂x1
x2 +

∂α3

∂x2

(
− D

H
x2 − b1(x1)

−a1x3 sin(δ0 + x1) − ω2
0

H2

∂α3

∂x2
ξ3

)]
(28)

we have

V̇3 ≤ −
3∑

i=1

Ciξ
2
i +

1
2
P (|z|)2 ≤ −CxV3 +

1
2
P (|z|)2 (29)



where Cx = min{2Ci; i = 1, 2, 3}.
Therefore, x-subsystem is ISS under the nonlinear con-

troller and all the states are asymptotically stable. Next, the
dynamic uncertainties are handled by using the small-gain
technique.

1) Deal with Dynamic Uncertainties by Small-Gain Tech-
nique: Form the above design, we have (29), and there exists
υx(·) ∈ K∞ such that

1
2
P (|z|)2 ≤ υx(|z|2)

then

V̇3 ≤ −CxV3 + υx(|z|2) (30)

From Assumption 2, it is known that the dynamic uncer-
tainties are ISS, that is, there exist ϕz1(·) and ϕz2(·) ∈ K∞,
which satisfy

ϕz1(|z|) ≤ V0(z) ≤ ϕz1(|z|)
Given any 0 < D1 < Cx, (30) ensure

V̇3 ≤ −D1Vn (31)

as long as V3 ≥ { 2
Cx−D1

υx(|ϕ−1
z1 (V0(z))|2)}.

On the other hand, from Assumption 2 we have

∂V0

∂z
∆Q(z, x1) ≤ −αz(V0) + υz(|x1|) (32)

In addition, V3 = 1
2

∑3
i=1 ξ2

i implies that

|x1| ≤
√

2V3

Hence

∂V0

∂z
∆Q(z, x1) ≤ −αz(V0) + υz(

√
2V3) (33)

Similarly, taking any 0 < D2 < 1, from (33) we obtain

V̇0 ≤ −D2αz(V0) (34)

as long as V0 ≥ {α−1
z ◦ 2

1−D1
υx(

√
2Vn)}.

According to Theorem 2, it is known that

χ1(s) =
2

Cx − D1
υx(|ϕ−1

z1 (V0(z))|2)

χ2(s) = α−1
z ◦ 2

1 − D1
υx(

√
2Vn)

From the condition (9), we have

2
Cx − D1

νx

((
ϕ−1

z1 ◦ α−1
z ◦ 2

1 − D2
νz(

√
2s)

)2)
< s,

∀s > 0 (35)

Via the appropriate choice of the design parameters, we are
able to make the inequality (35) hold. Then the interconnected
systems are ISS.
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Fig. 2. Responses of δ to three-phase short circuit fault with dynamic
uncertainties
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Fig. 3. Responses of Vt to three-phase short circuit fault with dynamic
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2) Design Result.: The main theorem of this paper is
presented as follows:

Theorem 4: Consider the generator system with dy-
namic uncertainties (13)-(14), under Assumption 1 and As-
sumption 2, the excitation control is designed as

Vf = Td0

[
− C3ξ3 +

ω0Vs

HX ′
dΣ

sin(δ0 + x1)ξ2 +
1
T ′

d

x3

+
∂α3

∂x1
x2 − Vs

Td0

Xd − X ′
d

X ′
dΣ

(cos(δ0 + x1) − cos δ0)

+
∂α3

∂x2

(
− D

H
x2 − ω2

0

H2

∂α3

∂x2
ξ3

− ω0Vs

HX ′
dΣ

E′
q0(sin(δ0 + x1) − sin δ0)

− ω0Vs

HX ′
dΣ

x3 sin(δ0 + x1) − ω0V
2
s

2H

(
X ′

dΣ − XqΣ

X ′
dΣXqΣ

)

(sin 2(δ0 + x1) − sin 2δ0)
)]

(36)

where ξ1 = x1, ξ2 = x2 − α2, ξ3 = x3 − α3, and choosing
the appropriate parameters makes (35) hold. Then the whole
system is ISS and all the states are asymptotically stable.

IV. SIMULATION RESULTS

The simulation of single machine infinite-bus system is
performed for the following parameters: Xd = 2.534, Xq =
2.534, X ′

d = 0.318, XT = 0.1, XL = 1.46, Td0 = 10,
THΣ = 0.1, C = 1.0, D = 5, H = 8. The dynamically



uncertain part of system is ∆µ̇ = −2∆µ + 2∆δ, which is a
ISS subsystem.

Simulation process: three-phase short circuit fault is as-
sumed to occur during t = 0.5−0.6s. In the simulation figures,
the responses of system under the small-gain controller are
shown by real lines, and the responses of system without the
control are shown by broken lines.

Figure 2 and Figure 3 show the performance of power angle
δ and end voltage Vt. From the above figures, we can see that,
the generator system with dynamic uncertainties is unstable
without the control, while the closed-loop system holds stable
under the small-gain controller. Therefore, the design method
guarantees the stability of the power system and enhances the
ability of disturbance attenuation.

V. CONCLUSIONS

In this paper, the nonlinear controller is designed by using
Small-Gain Theorem for the generator system with dynamic
uncertainties, which renders the states of closed-loop system
asymptotically stable. For the high-order model of generator
system, the Backstepping techniques are joined with small-
gain technique. The obtained controller not only makes power
angle and output voltage stable, but also controls the dynamic
uncertainties. In the end, the simulations are provided to
illustrate the effectiveness of the design.
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