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Abstract—Dominance-based rough set approach is an useful
extension of the classical rough set approach and it has been
successfully applied into multi-criteria decision analysis problems.
This paper present an explorative research focusing on knowledge
reduction of fuzzy rough set model in fuzzy decision system.
The investigated fuzzy rough set model is different from the
classical fuzzy rough set model because it is based on the
dominance principle of memberships of objects on the attributes.
We introduce the concept of reducts of fuzzy lower and upper
approximations. They are minimal subsets of attributes which
preserve the fuzzy lower and upper approximate memberships
for each object belongs to the universe. The judgment theorems
and discernibility matrixes associated with these two reducts are
also obtained. An numerical examples is employed to substantiate
the conceptual arguments.

I. INTRODUCTION

As one of the new mathematical tools to deal with uncertain
and vague information, rough set theory[1], [2], [3], [4], [5],
[6] was firstly proposed by Pawlak. In classical rough set
model, the lower and upper approximations are defined based
on the two extreme cases regarding the relationships between
an equivalence class and a set. The lower approximation
requires that the equivalence class is a subset of the set,
while the upper approximation requires that the equivalence
class has a intersectant part with the set. However, a lack of
consideration for the preference-ordered domains of attributes
limits the applications of Pawlak’s rough set and has motivated
many researchers to investigate dominance-based generaliza-
tions of rough set model. The Dominance-based Rough Set
Approach (DRSA)[7], [8], [9], [10] was firstly proposed by
Greco, this approach is different from the classical rough
set approach because it takes into account the preference
orders in the domains of attributes and in the set of decision
classes. This innovation is mainly based on substitution of the
indiscernibility relation (equivalence relation) by a dominance
relation[7].

By generalizing the information (decision) system from
crisp to fuzzy case, Greco et al. have also introduced the
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DRSA into fuzzy systems and proposed a new fuzzy rough
set approach. This fuzzy rough approach is different from
most known fuzzy set extensions of rough set theory, does not
use any fuzzy logical connectives (t-norm, t-conorm, fuzzy
implication) because it is based on the ordinal properties of
fuzzy membership degrees only[11].

One of the most important problems which can be solved
using the rough set concept is reducing attributes, i.e., knowl-
edge reduction. In recent years, many authors have proposed
different concepts of reducts[12], [13], [14], [15], [16] in
classical information systems in rough set research, each of
which aimed at some basic requirements. By eliminating the
unnecessary attributes, one can generate different kinds of
simplified or optimal decision rules from the decision system.
However, only a limited number of researches on the knowl-
edge reductions of DRSA have been presented presently. They
are summarized as follows. In Ref.[17], we have proposed
four types of approximate distribution reducts based on the
DRSA. In Ref.[18], Shao and Zhang have presented the
approach to knowledge reduction in consistent decision system
by considering the ordinal properties of values of attributes.

The purpose of this paper is to present explorative research
focusing on knowledge reduction of the fuzzy rough set model
proposed by Greco which is based on the ordinal properties
of fuzzy membership degrees. To generate simplified decision
rules from fuzzy decision system, we introduce the concept of
reducts of fuzzy lower and upper approximations, from which
can obtain minimal subsets of attributes which preserve the
lower and upper approximate memberships for each object.

To facilitate our discussion, we first present basic notions of
DRSA and the relevant fuzzy rough models in fuzzy decision
system. The approach to compute reducts of fuzzy rough
approximations are then introduced in Section 3. An illustrative
example is analyzed in Section 4. Results are summarized in
Section 5.

II. PRELIMINARIES

A. Dominance-based rough set model

A decision system is a 4-tuple Ω =< U,AT ∪d, V, f >. U
is a non-empty finite set of objects called universe and AT is
a non-empty finite set of condition attributes, such that ∀a ∈
AT : U → Va where Va is the domain of attribute a, d is
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the decision attribute where AT ∩ d = ∅, V is regarded as the
domain of all attributes and then V = VAT ∪ Vd, for ∀x ∈ U ,
f(x, a) is the value that x holds on a(a ∈ AT ∪ d).

By considering the preference-ordered domains of at-
tributes, Greco et al. have proposed an extension of the
rough set that is able to deal with inconsistencies typical
to exemplary decisions in Multi-Criteria Decision Making
(MCDM) problems, which is called the Dominance-based
Rough Set Approach (DRSA)[7], [8]. Let �a be a weak
preference relation on U (often called outranking) representing
a preference on the set of objects with respect to criterion a;
x �a y means “x is at least as good as y with respect to
criterion a”. We say that x dominates y with respect to AT ,
(or, x AT -dominates y), denoted by xDAT y, if x �a y for all
a ∈ AT . Assuming, without loss of generality, that domains
of all criterions are ordered such that preference increases
with the value, xDAT y is equivalent to: f(x, a) ≥ f(y, a)
for ∀a ∈ AT . Therefore, the “granules of knowledge” used in
DRSA are[7]:

• A set of objects dominating x, called A-dominating set,
D+

AT (x) = {y ∈ U : yDAT x};
• A set of objects dominated by x, called A-dominated set,

D−
AT (x) = {y ∈ U : xDAT y}.

Moreover, assume that the decision attribute d makes a
partition of U into a finite number of classes; let CL =
{CLn, n ∈ N}, N = {1, 2, · · · ,m}, be a set of these classes
that are ordered, that is, for ∀r1, r2 ∈ N such that r1 > r2, the
objects from CLr1 are preferred to the objects from CLr2 . The
sets to be approximated are an upward union and a downward
union of decision classes, which are defined respectively as
CL≥

n =
⋃

n′≥n CLn′ , CL≤
n =

⋃
n′≤n CLn′ , n, n

′ ∈ N . The
statement x ∈ CL≥

n means “x belongs to at least class CLn”,
where x ∈ CL≤

n means “x belongs to at most class CLn”.
Suppose that we want to approximate the upward and

downward unions of decision classes by using dominance
principle, the lower and upper approximations of CL≥

n are
defined as[7], [8]:

AT (CL≥
n ) = {x ∈ U : D+

AT (x) ⊆ CL≥
n }, (1)

AT (CL≥
n ) = {x ∈ U : D−

AT (x) ∩ CL≥
n �= ∅}; (2)

the lower and upper approximations of CL≤
n are defined as[7],

[8]:

AT (CL≤
n ) = {x ∈ U : D−

AT (x) ⊆ CL≤
n }, (3)

AT (CL≤
n ) = {x ∈ U : D+

AT (x) ∩ CL≤
n �= ∅}. (4)

B. DRSA in fuzzy decision system

The fuzzy decision system represents the formulation of
a problem with fuzzy samples (samples containing fuzzy
representations). Thus, an decision system is called a fuzzy
information system if V = [0, 1], i.e., each object is described
by a fuzzy membership value on each attribute. To distinguish
with the classical information system, the fuzzy decision
system is denoted by ΩF =< U,AT ∪ d, V, f >.

In fuzzy decision table ΩF , if AT = {a1, · · · , am} is the
set of condition attributes, d is the decision attribute, then

we consider a universe of discourse U and m + 1 fuzzy
sets, denoted by ã1, · · · , ãm and d̃, defined on U by means
of membership functions µ

ãi
: U → [0, 1], i ∈ {1, · · · ,m}

and µ
d̃

: U → [0, 1]. µ
ãi

and µ
d̃

represent the values of the
object x with respect to the condition attribute ai and decision
attribute d respectively. Suppose that we want to approximate
knowledge contained in decision d using knowledge about
{ã1, · · · , ãm}. Then, the lower approximation of fuzzy set d̃
given the information on ã1, · · · , ãm is a fuzzy set App(AT, d̃),
whose membership function for each x ∈ U , denoted by
µ[App(AT, d̃), x], is defined as follows[11]:

µ[App(AT, d̃), x] = minz∈D↑
AT

(x){µd̃
(z)}; (5)

where for each x ∈ U , D↑(x) is a non-empty set defined by

D↑
AT (x) = {y ∈ U : µ

ãi
(y) ≥ µ

ãi
(x) for each ai ∈ AT}. (6)

D↑
AT (x) is the set of objects dominating x in terms of set

of condition attributes.
The lower approximation µ[App(AT, d̃), x] can be inter-

preted as follows: in the universe U the following implication
holds[11]:

If µ
ã1

(y) ≥ µ
ã1

(x) and µ
ã2

(y) ≥ µ
ã2

(x) and · · · and

µ
ãm

(y) ≥ µ
ãm

(x), then µ
d̃
(y) ≥ µ[App(AT, d̃), x].

Similarity, the upper approximation of d̃ given the informa-
tion on ã1, · · · , ãm is a fuzzy set App(AT, d̃), whose member-
ship function for each x ∈ U , denoted by µ[App(AT, d̃), x],
is defined as follows[11]:

µ[App(AT, d̃), x] = maxz∈D↓
AT

(x){µd̃
(z)}; (7)

where for each x ∈ U , D↓
AT (x) is a non-empty set defined by

D↓
AT (x) = {y ∈ U : µ

ãi
(y) ≤ µ

ãi
(x) for each ai ∈ AT}. (8)

D↓
AT (x) is the set of objects dominated by x in terms of

set of condition attributes.
Upper approximation µ[App(AT, d̃), x] can be interpreted

as follows: in the universe U the following implication
holds[11]:

If µ
ã1

(y) ≤ µ
ã1

(x) and µ
ã2

(y) ≤ µ
ã2

(x) and · · · and

µ
ãm

(y) ≤ µ
ãm

(x), then µ
d̃
(y) ≤ µ[App(AT, d̃), x].

[App(AT, d̃), App(AT, d̃)] is referred to as a pair of rough
set of fuzzy set d̃ by using knowledge about {ã1, · · · , ãm}. For
more details about properties of

[
App(AT, d̃), App(AT, d̃)

]
,

we refer the readers to Ref.[11].

III. KNOWLEDGE REDUCTION

Definition 1: Given a fuzzy decision system ΩF , A ⊆ AT ,

1) A is referred to as a reduct of lower approximation
App(AT, d̃) if and only if



a) for each x ∈ U , µ[App(AT, d̃), x] =
µ[App(A, d̃), x],

b) ∃x ∈ U such that µ[App(AT, d̃), x] �=
µ[App(B, d̃), x], for ∀B ⊂ A;

2) A is referred to as a reduct of upper approximation
App(AT, d̃) if and only if

a) for each x ∈ U , µ[App(AT, d̃), x] =
µ[App(A, d̃), x],

b) ∃x ∈ U such that µ[App(AT, d̃), x] �=
µ[App(B, d̃), x] for ∀B ⊂ A.

By Definition 1, we can see that the reducts of lower and
upper approximations are minimal subsets of attributes which
preserve the lower and upper approximation memberships for
each x ∈ U . In the following, we will present practical
approach to compute the above two types of reducts.

Lemma 1: Given a fuzzy decision system ΩF , A ⊆ AT ,
for ∀x ∈ U , we have

y ∈ D↑
A(x) ⇔ D↑

A(y) ⊆ D↑
A(x), (9)

y ∈ D↓
A(x) ⇔ D↓

A(y) ⊆ D↓
A(x), (10)

D↑
A(x) =

⋃
{D↑

AT (y) : y ∈ D↑
A(x)}, (11)

D↓
A(x) =

⋃
{D↓

AT (y) : y ∈ D↓
A(x)}. (12)

Proof: Obviously, D↑
A(y) ⊆ D↑

A(x) ⇒ y ∈ D↑
A(x), thus,

it must be proved that y ∈ D↑
A(x) ⇒ D↑

A(y) ⊆ D↑
A(x). For

∀z ∈ D↑
A(y), since y ∈ D↑

A(x), we have µ
ãi

(y) ≥ µ
ãi

(x) and
µ

ãi
(z) ≥ µ

ãi
(y) for each ai ∈ A, from which we can conclude

that µ
ãi

(z) ≥ µ
ãi

(x) for each ai ∈ A, thus z ∈ D↑
A(x).

Similarity, it is not difficult to prove formula (10).
For ∀y ∈ D↑

A(x), since y ∈ D↑
AT (y), we have D↑

A(x) ⊆⋃{D↑
AT (y) : y ∈ D↑

A(x)}. Consequently, it must be proved
that D↑

A(x) ⊇ ⋃{D↑
AT (y) : y ∈ D↑

A(x)}.
For ∀z ∈ ⋃{D↑

AT (y) : y ∈ D↑
A(x)}, there must be y ∈

D↑
A(x) such that z ∈ D↑

AT (y). Since A ⊆ AT , we have z ∈
D↑

A(y). Thus, z ∈ D↑
A(x).

Similarity, it is not difficult to prove formula (12).

Theorem 2: Given a fuzzy decision system ΩF , A ⊆ AT ,
we have

1) µ[App(AT, d̃), x] = µ[App(A, d̃), x] for ∀x ∈ U ⇔
∀x, y ∈ U , if µ[App(AT, d̃), x] > µ[App(AT, d̃), y],
then D↑

A(y) ⊆ D↑
A(x) does not hold;

2) µ[App(AT, d̃), x] = µ[App(A, d̃), x] for ∀x ∈ U ⇔
∀x, y ∈ U , if µ[App(AT, d̃), y] > µ[App(AT, d̃), x],
then D↓

A(y) ⊆ D↓
A(x) does not hold.

Proof: 1) “⇒”: For ∀x, y ∈ U , if
D↑

A(y) ⊆ D↑
A(x), then by formula (5), we have

µ[App(A, d̃), x] ≤ µ[App(A, d̃), y]. By assumption
we have µ[App(AT, d̃), x] = µ[App(A, d̃), x] and
µ[App(AT, d̃), y] = µ[App(A, d̃), y], it follows that
µ[App(AT, d̃), x] ≤ µ[App(AT, d̃), y].
“⇐”: Since A ⊆ AT , we have D↑

A(x) ⊇ D↑
AT (x),

from which we can conclude that µ[App(A, d̃), x] ≤

µ[App(AT, d̃), x]. Thus, it must be proved that
µ[App(A, d̃), x] ≥ µ[App(AT, d̃), x]. By formulas (9)
and (11) we have D↑

A(x) =
⋃{D↑

AT (y) : y ∈
D↑

A(x)} =
⋃{D↑

AT (y) : D↑
A(y) ⊆ D↑

A(x)}. Thus,
µ[App(A, d̃), x] = max{µ[App(AT, d̃), y] : D↑

A(y) ⊆
D↑

A(x)}. By assumption we have D↑
A(y) ⊆ D↑

A(x) ⇒
µ[App(AT, d̃), x] ≤ µ[App(AT, d̃), y]. It follows that
µ[App(AT, d̃), x] ≤ µ[App(A, d̃), x].

2) Similarity, it is not difficult to prove 2).

Definition 2: Given a fuzzy decision system ΩF , denote by

θL
AT = {(y, x) : µ[App(AT, d̃), x] > µ[App(AT, d̃), y]};
θU

AT = {(y, x) : µ[App(AT, d̃), y] > µ[App(AT, d̃), x]};

where

θL
AT (y, x) =

{ {ai ∈ AT : µ
ãi

(y) < µ
ãi

(x)}:(y, x) ∈ θL
AT

AT :(y, x) /∈ θL
AT

θU
AT (y, x) =

{ {ai ∈ AT : µ
ãi

(x) < µ
ãi

(y)}:(y, x) ∈ θU
AT

AT :(y, x) /∈ θU
AT

θL
AT (y, x) and θU

AT (y, x) are referred to as lower and
upper approximate discernibility attributes sets of y and x,
respectively, DL = {θL

AT (y, x)} and DU = {θU
AT (y, x)}

are referred to as lower and upper approximate discernibility
matrixes of fuzzy decision system, respectively.

Theorem 3: Given a fuzzy decision system ΩF , A ⊆ AT ,

1) µ[App(AT, d̃), x] = µ[App(A, d̃), x] for ∀x ∈ U ⇔ for
each (y, x) ∈ θL

AT , A ∩ θL
AT (y, x) �= ∅;

2) µ[App(AT, d̃), x] = µ[App(A, d̃), x] for ∀x ∈ U ⇔ for
each (y, x) ∈ θU

AT , A ∩ θU
AT (y, x) �= ∅.

Proof: 1) “⇒”: For ∀(y, x) ∈ θL
AT , we have

µ[App(AT, d̃), x] > µ[App(AT, d̃), y]. By Theorem 1
we can see that D↑

A(y) ⊆ D↑
A(x) does not hold, which

implies that there must be z ∈ U such that z ∈ D↑
A(y)

and z /∈ D↑
A(x). Suppose that y ∈ D↑

A(x), then we have
z ∈ D↑

A(x) because z ∈ D↑
A(y). This is contradictive

to z /∈ D↑
A(x), from which we can conclude that there

must be ai ∈ A ⊆ AT such that µ
ãi

(y) < µ
ãi

(x), i.e.,
ai ∈ θL

AT (y, x), A ∩ θL
AT (y, x) �= ∅.

“⇐”: (y, x) ∈ θL
AT ⇒ µ[App(AT, d̃), x] >

µ[App(AT, d̃), y]. If for ∀(y, x) ∈ θL
AT , A∩θL

AT (y, x) �=
∅, then there must be ai ∈ A such that µ

ãi
(y) < µ

ãi
(x),

i.e., y /∈ D↑
A(x). Since y ∈ D↑

A(y), then we have
D↑

A(y) ⊆ D↑
A(x) does not hold. By Theorem 1 we can

conclude that µ[App(AT, d̃), x] = µ[App(A, d̃), x] for
∀x ∈ U .

2) The proof of 2) is similar to the proof of 1).



Definition 3: Given a fuzzy decision system ΩF , denote by

∆L =
∧

(y,x)∈θL
AT

∨
θL

AT (y, x);

∆U =
∧

(y,x)∈θU
AT

∨
θU

AT (y, x);

∆L and ∆U are referred to as lower and upper approximation
discernibility functions respectively.

Theorem 4: Given a fuzzy decision system ΩF , A ⊆ AT ,
then A is reduct of App(AT, d̃) or App(AT, d̃), if and only if
∧a∈Aa is a prime implicant of the discernibility function ∆L

or ∆U .
Proof: It follows directly from Theorem 3 and the defini-

tion of minimal disjunctive normal forms of the discernibility
functions.

IV. AN ILLUSTRATIVE EXAMPLE

To demonstrate the above concepts, we consider data in
Table 1, which describes a small training set with fuzzy
samples.

Table 1 is a summary of cars’ evaluations. This table details
6 cars evaluated by means of five attributes: a1: Mileage;
a2: Power; a3: Compression-ratio; a4: Max-speed; d: Global
evaluation.

The universe of discourse is U = {x1, · · · , x6}, AT =
{a1, a2, a3, a4} is the set of condition attributes and d is
the decision attribute. The global evaluation indicates that the
higher value a car holds on decision d, the better this car should
be.

By using the fuzzy rough set approach presented in Section
2, we obtain the following:

App(AT, d̃) =
0.8
x1

+
0.8
x2

+
0.5
x3

+
0.65
x4

+
0.8
x5

+
0.75
x6

,

App(AT, d̃) =
0.85
x1

+
0.85
x2

+
0.5
x3

+
0.65
x4

+
0.8
x5

+
0.75
x6

.

In the following, we can calculate the reducts of
App(AT, d̃) and App(AT, d̃) by using the approach studied
in Section 3.

Step 1: By Definition 2, we have

θL
AT = {(x3, x1), (x4, x1), (x6, x1), (x3, x2), (x4, x2), (x6, x2),

(x3, x4), (x3, x5), (x4, x5), (x6, x5), (x3, x6), (x4, x6)}.
θU

AT = {(x1, x3), (x1, x4), (x1, x5), (x1, x6), (x2, x3), (x2, x4),
(x2, x5), (x2, x6), (x4, x3), (x5, x3), (x5, x4), (x5, x6),

(x6, x3), (x6, x4)}.
Step 2: Compute the lower and upper approximate discerni-

bility matrixes of Table 1.
Here, we only present the lower approximate discernibility

matrix of Table 1 as Table 2 shows.
Step 3: By Definition 3, we have ∆L = ∆U = a2 ∧ a3.

According to Theorem 4, {a2, a3} is the reduct of lower and
upper approximations App(AT, d̃) and App(AT, d̃).

From discussion above, we can generate simplified decision
rules from Table 1 as following show.

TABLE I
CARS’ EVALUATIONS

U a1 a2 a3 a4 d

x1 0.6 0.9 0.8 0.7 0.8
x2 0.5 0.85 0.7 0.6 0.85
x3 0.3 0.5 0.7 0.6 0.5
x4 0.5 0.7 0.7 0.6 0.65
x5 0.9 0.7 0.8 0.5 0.8
x6 0.7 0.9 0.6 0.7 0.75

TABLE II
LOWER APPROXIMATE DISCERNIBILITY MATRIX

x1 x2 x3 x4 x5 x6

x1 AT AT AT AT AT AT
x2 AT AT AT AT AT AT
x3 AT a, b AT a, b a, b, c a, b, d
x4 AT b AT AT a, c a, b, d
x5 AT AT AT AT AT AT
x6 c b, c AT AT a, c AT

• Decision rules w.r.t. the lower approximation:
r1: µ

ã2
(y) ≥ 0.9 ∧ µ

ã3
(y) ≥ 0.8 ⇒ µ

d̃
(y) ≥ 0.8;

r2: µ
ã2

(y) ≥ 0.85 ∧ µ
ã3

(y) ≥ 0.7 ⇒ µ
d̃
(y) ≥ 0.8;

r3: µ
ã2

(y) ≥ 0.5 ∧ µ
ã3

(y) ≥ 0.7 ⇒ µ
d̃
(y) ≥ 0.5;

r4: µ
ã2

(y) ≥ 0.7 ∧ µ
ã3

(y) ≥ 0.7 ⇒ µ
d̃
(y) ≥ 0.65;

r5: µ
ã2

(y) ≥ 0.7 ∧ µ
ã3

(y) ≥ 0.8 ⇒ µ
d̃
(y) ≥ 0.8;

r6: µ
ã2

(y) ≥ 0.9 ∧ µ
ã3

(y) ≥ 0.6 ⇒ µ
d̃
(y) ≥ 0.75.

• Decision rules w.r.t. the upper approximation:
r1: µ

ã2
(y) ≤ 0.9 ∧ µ

ã3
(y) ≤ 0.8 ⇒ µ

d̃
(y) ≤ 0.85;

r2: µ
ã2

(y) ≤ 0.85 ∧ µ
ã3

(y) ≤ 0.7 ⇒ µ
d̃
(y) ≤ 0.85;

r3: µ
ã2

(y) ≤ 0.5 ∧ µ
ã3

(y) ≤ 0.7 ⇒ µ
d̃
(y) ≤ 0.5;

r4: µ
ã2

(y) ≤ 0.7 ∧ µ
ã3

(y) ≤ 0.7 ⇒ µ
d̃
(y) ≤ 0.65;

r5: µ
ã2

(y) ≤ 0.7 ∧ µ
ã3

(y) ≤ 0.8 ⇒ µ
d̃
(y) ≤ 0.8;

r6: µ
ã2

(y) ≤ 0.9 ∧ µ
ã3

(y) ≤ 0.6 ⇒ µ
d̃
(y) ≤ 0.75.

V. CONCLUSIONS

We have developed a general framework for approach to
knowledge reduction of fuzzy rough set in fuzzy decision
system. It must be noticed that the fuzzy rough model we
used here is different from the classical fuzzy rough approach
because it is based on the ordinal properties of fuzzy member-
ship degrees, i.e., dominance principle. To preserve the lower
and upper memberships for each object with minimal number
of attributes, we introduced the concept of reducts of fuzzy
lower and upper approximations. The judgement theorems and
discernibility functions we discussed in this paper present a
practical approach to compute the above two types of reducts.

In further research, we will develop the proposed ap-
proaches to more complicated fuzzy systems such as interval-
valued fuzzy system and incomplete fuzzy system.

REFERENCES

[1] Z. Pawlak, “Rough set theory and its applications to data analysis,”
Cybernetics and Systems, vol. 29, pp. 661-688, 1998.

[2] Z. Pawlak, “Rough sets and intelligent data analysis,” Information Sci-
ences, vol. 147, pp. 1-12, 2002.



[3] Z. Pawlak, “Some remarks on conflict analysis,” European Journal of
Operational Research, vol. 166, pp. 649-654, 2005.

[4] Z. Pawlak, A. Skowron, “Rudiments of rough sets,” Information Sciences,
vol. 177, pp. 3-27, 2007.

[5] Z. Pawlak, A. Skowron, “Rough sets: some extensions,” Information
Sciences, vol. 177, pp. 28-40, 2007.

[6] Z. Pawlak, A. Skowron, “Rough sets and Boolean reasoning,” Information
Sciences, vol. 177, pp. 41-73, 2007.

[7] S. Greco, B. Matarazzo, R. Słowiński, “Rough approximation by domi-
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