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Abstract—To solve the fuzzy edge detection problems in image 
processing, a novel fuzzy clustering method based on chaos small-
world algorithm (CSWFCM) is presented. The traditional fuzzy 
clustering method (FCM) is good at local searching capability, 
but it is sensitive to the initial value and easy to trap into local 
minimum value. The small-world algorithm (SWA), inspired by 
the mechanism of small-world phenomenon, is a novel global 
searching algorithm, which enables to enhance the diversity of 
the population and avoid trapping into local minimum value. 
However, the further capability of solving complicated problems 
is limited for its low efficiency of local short-range searching 
operator. In this paper, the chaos disturbance is utilized to 
improve the searching efficiency of  SWA after local short-range 
search, and the chaos small-world algorithm (CSWA) is used to 
optimize the FCM in image edge detection. The simulation results 
show that the proposed algorithm can correctly detect the fuzzy 
and exiguous edges with higher convergence speed. 
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I. INTRODUCTION 
Edge detection is extensively used to separate the object 

from the background in image processing. A lot of research 
has been done in the field of image segmentation using edge 
detection. Some of the earliest operators detecting edges in an 
image were proposed by Sobel, Prewitt, Roberts, etc. [1]. 
These operators used local gradient methods to detect edges 
along a specified direction. The common premise conditions 
of these operators are that the edges of an image must be clear. 
However, the image in reality is fuzzy and the edges aren’t 
clear.   

In 1966, Bellman and Zadeh firstly put forward fuzzy 
clustering analysis [2], and the idea of fuzzy clustering quickly 
becames an efficient method to solve fuzzy edge detection in 
image processing. Among numerical fuzzy clustering 
methods, fuzzy c-means clustering method provides 
foundation for other fuzzy clustering methods from the 
theories and applications, and is used widely. In essence, fuzzy 
c-means clustering method is a kind of local searching 
algorithm. It is so sensitive to the initial value that it easily 
traps into local minimum value. To solve the disadvantage, 
some algorithms such as genetic algorithm (GA) [3] and 
immune evolutionary algorithm (IEA) [4], have been used to 
optimize the fuzzy clustering, which result in good effects to 
some extent. However, some disadvantages of GA and IEA, 
such as slow convergence speed and instability, affect the 
accuracy of clustering.  

In this paper, a novel fuzzy clustering method based on the 
optimization of chaos small-world algorithm is proposed and 
used in image edge detection. In the proposed algorithm, first, 
the initial population is generated by logistic mapping, and the 
chaos disturbance is used to improve the searching efficiency 
of SWA after local short-range search; secondly, the FCM is 
optimized by the chaos small-world; finally, the CSWFCM is 
used in image edge detection. The paper is organized as 
follows: The fuzzy clustering method is presented in Section 
II. The small-world phenomenon and small-world 
optimization algorithm are described in Section III. The chaos 
optimization algorithm is presented in Section IV. Section V 
discusses the fuzzy clustering method based on chaos small-
world algorithm. The experiments and corresponding analyses 
about CSWFCM are described in Section VI. Finally, Section 
VII states some conclusions. 

II. FUZZY CLUSTERING METHOD 

Supposing the finite set },,,{ 21 nxxxX =  is belonged 

to the p  dimensional Euclidean space pR , namely 

∀ nk ,,2,1= , p
k Rx ∈ . FCM partitions X  into c  

fuzzy groups, and finds a clustering center in each group, such 
that the objective function based on distance is minimal. The 
objective function for FCM is defined as follows: 
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Where, U is the fuzzy matrix of X ,V is the clustering 
center set of X , ),1( +∞∈m  is the weight coefficient, 

∀ ci ≤≤1 , nk ≤≤1 , ikik vxd −=  is the Euclidean 

distance between kx and iv , Xik ∈µ  is the degree of 

membership of data kx relevant to the ith clustering center iv , 

and ikµ  satisfies the following restriction: 
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The concrete operating sequences of FCM are as follows: 

Step1 Set parameters: n , m , c , 0=t . 



         

Step2 Initialize clustering center randomly: =)(tV  
},,,{ 21 cvvv . 

Step3 Calculate )(tU . 

∀ cji ≤≤ ,1 , nk ≤≤1 , 

If  0≠kid , 
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Otherwise    if ji = , 1=kiµ ; 

             if ji ≠ , 0=kiµ . 

Step4 Calculate )1( +tV . 

∀ ci ≤≤1 , ∑ ∑
= =

=
n

k

n

k
kikkii xv

1 1
/ µµ  (4) 

Step 5 Choose an appropriate matrix norm to compare  
)1( +tV  and )(tV . If ε≤−+ )()1( tVtV , end; 

otherwise 1+= tt  and go to Step 3, where ε  is a positive 
and small enough real number.  

III. SMALL-WORLD OPTIMIZATION ALGORITHM 
In the 1960s, social psychologist Stanley Milgram 

performed a small-world experiment of tracing out short paths 
through the social networks of the United States [5]. He asked 
a few hundred people in Omaha to forward a letter to a 
“target” stranger in Boston through personal contacts, and 
ended up with 60 completed chains of letters that averaged six 
senders——the famous “six degrees of separation” [6]. The 
small-world phenomenon reveals a most effective mode of 
information transmission of a lot of complex networks in 
reality, namely, a high clustering subnets including “local 
contacts” nodes and some random long-range shortcuts are 
useful to increase efficiency of information transmission [7][8]. 
In 1998, Duncan Watts and Steve Strogatz presented rigorous 
Watts-Strogatz model and constructed small-world network 
from the theory in Nature [9]. Complex networks theory has 
been widely paid attentions since then and successfully used in 
route optimization [10], disease propagation [11], and so on 
now, yet little discussion about small-world phenomenon has 
been found in the field of optimization algorithm. Kleinberg 
points out that the small-world phenomenon is an efficiency 
question about routing algorithm, where local knowledge 
suffices to find effective paths to get to destination [12]. 
Inspired by the mechanism of small-world phenomenon, Du 
firstly produced small-world algorithm (SWA) for function 
optimization [13]. He took the optimization as a process that 
information transmits from candidate node (i.e. candidate 
solution) to optimal node (i.e. optimal solution) in network (i.e. 
searching space). The SWA includes local short-range 
searching operator and random long-range searching operator. 
The two-dimensional space searching of SWA is schematically 
shown in Fig. 1. From the figure, we can see that a candidate 
node moves to optimal node through local short-range search 

and random long-range search, and the transition information 
is the solution of optimization model during the search. 

 
Figure 1.  Two-dimensional space searching principle of SWA 

Without loss of generality, the following global 
optimization model is considered: 
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Where, )(xf is the objective function, q  is the 
dimension of vector x . ],[ iii udx ∈ . 

According to [13], let S  be the N  - dimensional 
transmission node population. ∀ node Ss ∈ , 

maaas 21=  is the binary coding of q - dimensional 

variable x . ∀ ia , qi ≤≤1 , 
iiliii aaaa ′′′= 21 ，

}1,0{∈′ija ， ilj ≤≤1 ，  il  dependents on the binary 

coding precision σ . ia  is called the coding of variable ix , 

and described as )( ii xea = , where )(•e  is the coding 

manner. ix  is called the decoding of  node  ia , and described 

as )(1
ii aex −= , where )(1 •−e is the decoding manner.  

Definition 1: ∀ ia , qi ≤≤1 , the decoding manner is 
defined as follows: 
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Definition 2:  ∀ Ssi ∈ ，the l  neighborhood set of the 

node is  can be defined as follows: 

        },0|{)( Ssssss jjiji ∈≤−<= llζ  (7)



         

Where, • is the Hamming distance. 

Definition 3:  ∀ Ssi ∈ ，the non- l  neighborhood set of 

is  can be defined as follows: 

},|{)( Ssssss jjiji ∈>−= llζ  (8) 

The SWA inspired by the mechanism of small-world 
phenomenon includes local short-range searching operator Ψ  
and random long-range searching operator Γ . 

Supposing ))(()( kskR ii
lζ⊆  is the local searching of 

node )(ksi , the main action of  Ψ  is transmitting the 

information from node )(ksi  to the node )1( +ksi , which 

is the nearest node to the optimization model in )(kRi . The 
process can be described as follows: 

))(()1( ksψks ii ←+  

))((|)({ 1 ∗−∗ ∈= iii sefkRs  

))))}((((min 1
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∀ )()1( ii sks lζ∈+ , the main action of Γ  is 

transmitting the information from )(ksi  to )1( +ksi  at 

given preset long-rang searching probability cp . The 
process can be described as follows: 

))(()1( ksΓks ii ←+  

()}rand,))(()(|)({ =∈′′<′′= pksksppks iici
lζ：  

 (10) 

The concrete operating processes of Ψ and Γ  are shown 
in [13] . 

IV. CHAOS OPTIMIZATION ALGORITHM 

In SWA, the main operation of Ψ is randomly searching a 
node in ))(( ksi

lζ . The operating manner is so easy that the 
local searching efficiency of SWA is decreased. To improve 
the searching efficiency, the chaos optimization is used in 
SWA. First, making use of the characteristics of ergodicity and 
randomness of chaotic variables, the initial population is 
generated by logistic mapping; secondly, the local search of 
individual is performed by chaos disturbance after local short-
range search. 

Considering the Logistic Equation is more convenient and 
the calculated amount is less than other chaos iteration 
equations, we use the following (11) to generate initial 
population )0(S . 

))(1)(()1( kzkzkz −=+ η  (11) 

Where, η  is the chaos attractor, the chaos space is [0, 1] 
when 4=η , )(kz  is the chaos variable at kth iteration, 

)1,0()( ∈kz and }75.0,5.0,25.0{)( ∉kz . Let υ  be the 
total iteration times of mapping. 

The chaos disturbance is defined as follows: 

( ) )(1)( * kk αββαβ +−=′  (12) 

Where, )( ∗∗ Θ= xβ  is the optimal chaos variable, ∗x  is 
the current optimal solution of optimization model, )(•Θ  is 

the mapping from solution space to chaos space, let )(1 •Θ−  

be the inverse mapping, namely ))(()( 1 kkx β−Θ= , )(kβ  
is the chaos variable at kth iteration, )(kβ ′  is the chaos 
variable after chaos disturbance, α  is the adjustment 
coefficient and defined as follows: 

                                
p

k
k 11 −−=α  (13) 

Where, p is an integer and 2=p  in this paper, k  is the 
iteration times. Let γ  be the total iteration times of chaos 
disturbance. 

V. FCM BASED ON CHAOS SMALL-WORLD 

According to the objective function mVUJ ),( , we can 
know that the final target of fuzzy clustering is to obtain the 
clustering center V and fuzzy matrix U  of finite set X . 
Since V  and U  is interrelated, we can take either of them as 
the optimization variable. Considering the computation cost, 
we choose to code on V  by binary in this paper. The objective 
function mVUJ ),(  is taken as the fitness function of 
optimization problem.  

Based on the above fuzzy cluster method, small-world 
optimization algorithm and chaos optimization algorithm, we 
can depict a novel FCM based on chaos small-world as 
follows: 

Step1 Initialization: binary coding precision σ , clustering 
center number c , weight coefficient m , population size N , 
neighborhood size l , long-range searching probability cp , 
total iteration times of mapping υ , total iteration times of 
chaos disturbance λ , maximal generation maxk , 0←k . 

Step2 Extract datum. 

Step3 Generate initial population of clustering centers 
)0(S  according to (11) . 



         

Step4 Execute the optimization of population 
)}(,),(),({)( 21 kskskskS N=  based on small-world 

optimization algorithm. 

Step 4.1 )()( kSkS ←′ ; 

Step 4.2 Finish random long-range search according to 
given cp : ))(()1( ksΓks ii ′←+′ , )()( kSksi ′∈′ , 

Ni ≤≤1 ; 

Step 4.3 Finish local short-range search : 
))1(()1( +′←+′′ ksψks ii , Ni ≤≤1 ; 

Step 4.4 If )))((()))1((( 11 kseJkseJ ii
−− <+′′  then  

)1()( +′← ksks ii , Ni ≤≤1 . 

Step 5 Execute the optimization of )(kS  based on chaos 
disturbance. 

Step 5.1 Choose )( Nfix ⋅µ  individuals whose fitness 
values are smaller in )(kS , and form the population 

)}(,),(),({)( 21 kskskskS l=′ , )( Nfixl ⋅= µ , where, 
)(•fix  is the round function; 

Step 5.2 Transforming from coding space to chaos space: 
∀ )()( kSksi ′∈ , )(1 Nfixi ⋅≤≤ µ , ))(()( ksekx i← ; 

))(()( kxk Θ←β ; 

Step 5.3 Execute chaos disturbance to )(kβ  according to 
(12) (13). 

Step 6 Judge whether the terminating condition is satisfied. 
If not, go on the following process, otherwise output the 
optimal cluster centers and end. 

Step 7 1+← kk , and go to Step 4. 

VI. SIMULATION RESULTS AND ANALYSIS 
To verify the validity of our proposed algorithm in image 

edge detection, two images of 256×256 pxiels2, namely Lena 
and Cameraman, are tested with MATLAB7.0 on an Intel 
Pentium IV 2.99GHz computer with 512MB RAM. We 
compare the detection results among FCM, GAFCM and 
CSWFCM. In CSWFCM, m is 2, N  is 30, l  is 1, cp  is 0.8, 

σ  is 10-5, υ  is 300, λ  is 30 and maxk  is 50. In GAFCM, the 
population size is 30, crossover probability is 0.8, mutation 
probability is 0.1, and maximal generation is 50. The 
parameters of FCM are the same as the corresponding 
parameters in CSWFCM. During the image edge detection, 
four values are chosen for the cluster number c , namely 2, 3, 4 
and 5. Considering the randomness, each algorithm is tested 
for twenty times.  

Table I is the performance comparison of edge detection 
among three algorithms. From the table we can see that with 
the increase of clustering center number c , the average and 

best fitness mVUJ ),(  both decreases, which indicates that the 
fuzzy clustering effects are better and better. Aiming at any 
certain clustering center number c , the fitness of CSWFCM is 
better than FCM and GAFCM. The differences of average and 
best fitness are not obvious when c is 2, 3 and 5, however, 
when c  is 4, FCM always traps into local minimum value, 
GAFCM and CSWFCM can avoid the deceptive problem and 
get better results. All in all, through table I, we can see that 
CSWFCM can converge to a global optimal value and get 
better edge detection effect than other two methods to some 
extent.  

TABLE I.  PPERFORMANCE COMPARISON OF EDGE DETECTION AMONG 
THREE ALGORITHMS 

Image C J(U,V)m FCM GAFCM CSWFCM 

Average 1418.04 1407.70 1403.82 
2 

Best 1417.97 1407.26 1403.26 
Average 893.11 885.02 880.36 

3 
Best 892.18 881.27 880.01 

Average 883.11 559.01 530.39 4 
Best 856.73 543.86 528.11 

Average 412.83 382.37 372.43 

lena 

5 
Best 384.90 370.59 368.61 

Average 1006.56 996.03 995.21 
2 

Best 1002.75 995.32 995.13 
Average 531.30 514.39 506.03 

3 
Best 525.71 507.81 500.98 

Average 537.66 404.76 394.81 
4 

Best 497.67 398.712 393.32 
Average 319.14 304.16 299.70 

camer-
aman 

5 
Best 304.56 300.31 294.80 

In order to see the edge detection results in reality, we take 
the lena image as an example and see the differences of edge 
detection among three algorithms when c =3 and c =4. Fig. 2 
is the original lena image. Fig.3 and Fig. 4 are the comparisons 
of edge detection about lena image among three algorithms 
when c =3 and c =4 respectively. 

 
Figure 2.  Original lena image  



         

 
(a) FCM 

 
(b) GAFCM 

 
(c) CSWFCM 

Figure 3.  Comparisons of edge detection about lena image among three 
algorithms when c =3 

 
 (a) FCM 

 
(b) GAFCM 

 
(c) CSWFCM 

Figure 4.  Comparisons of edge detection about lena image among three 
algorithms when c =4 



         

As the best fitness mVUJ ),(  about lena image of FCM, 
GAFCM and CSWFCM is close when c =3, we can see that 
edge detections based on above three algorithms all get good 
effects and the differences of edge detections aren’t obvious 
from Fig. 3. When c =4, it is obvious that the edge detections 
of GAFCM and CSWFCM are better than FCM for theirs 
global optimization capacity, and the detection of CSWFCM 
has more detail and clearer contour, such as the continuities of 
face and hat brim, than FCM and GAFCM. 

    
Figure 5.  Convergence curves of best fitness  about lena image of three 

algorithms when c =3 

 
Figure 6.  Convergence curves of best fitness about lena image of three 

algorithms when c =4 

Fig. 5 and Fig. 6 are the convergence curves of best fitness 
about lena image of FCM, GAFCM and CSWFCM when c =3 
and c =4 respectively. When c =3, although the best fitness of 
three algorithms is close, the convergence speed of CSWFCM 
is quicker than FCM and GAFCM, and the convergence of 
FCM has fluctuation as shown in Fig. 5.  When c =4, from Fig. 
6, we can see that FCM traps into local minimum value, 

GAFCM and CSWFCM avoid local minimum and get good 
results to some extent, and the convergence speed of 
CSWFCM is quicker than GAFCM. 

VII. CONCLUSIONS  
In this paper, a novel fuzzy clustering methods based on 

chaos small-world algorithm is presented to solve the image 
edge detection, and the edge detection results of two images are 
compared with FCM and GAFCM. According to the simulation 
experiments, we can draw the following conclusions: (1) 
Inspired from the mechanism of small-world phenomenon, the 
small-world algorithm is an efficient optimization algorithm, 
and chaos optimization further improves the searching 
efficiency of SWA; (2) FCM based on the optimization of 
CSWA avoids the sensitivity to the initial value of clustering 
center and trapping into local minimum value; (3) The image 
processing results of CSEFCM are better at detail and clearness 
of contour than FCM and GAFCM; (4) CSWFCM has the 
higher convergence speed and stability than FCM and 
GAFCM. 
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