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Abstract—Similarity search in high frequency time series of 
domains as diverse as finance, marketing and industry has 
attracted much research attention recently. The main notions 
used in similarity search for time series are defined in a formal 
way. And a fast algorithm of similarity search based on random 
projection for high frequency time series is proposed. In order to 
achieve the high-level representation of time series, this algorithm 
uses the random projection method to map the original time 
series to the lower space. Then, the spatial data index structure 
such as R* tree is built using the high-level representation of the 
original time series, and the Euclidean distance is used as the 
similarity measurement. It is a fast similarity searching algorithm 
with high accuracy for high frequency time series. The 
experimental results demonstrate that the method is effective and 
efficient. 

Keywords—similarity search, random projection, high 
frequency time series, data mining 

I. INTRODUCTION 
Time series data which depict the trends in the observed 

value over time arise naturally in many real world domains as 
diverse as stock market, weather forecasts, medicine and 
industry. Similarity search is useful in its own right as a tool for 
exploring time series databases, and it is also an important 
essential subroutine in many data mining applications such as 
clustering, classification and association rules discovery. 

There has been an explosion of interest in time series 
similarity search recently. Agrawal et al. [1] developed one of 
the first solutions to this problem. They transformed the time 
series to the frequency domain by using DFT. And later, they 
reduced the number of dimensions to a feasible size by storing 
the first few frequency coefficients. Faloutsos et al. [2] 
introduced Generic Multimedia INdexIng (GEMINI) 
framework which can exploit any dimensionality reduction 
method to allow efficient indexing.  Eamonn Keogh et al. 
proposed Piecewise Aggregate Approximation, Adaptive 
Piecewise Constant Approximation, Symbolic Aggregate 
Approximation and a bit level time series representation with 
implications [3][4][5][6][7]. Aiguo Li et al. [8] addressed a 
systemic method of time series similarity searching based on 
Piecewise Polynomial Representation that is to map each sub-
sequence into a small set of multidimensional rectangles in 
feature space which is spanned by base of linear polynomial. 

Hui Xiao et al.[9] proposed Feature Points Segmentation and 
the feature points segmented time warping distance defined 
based on it.  

Most existing time series similarity searching methods until 
now have focused on the slow-altered (low frequency) time 
series such as year/month/day stock exchange data, statistic 
data of commercial goods and the Web traffic etc., in that 
finance and marketing are the most active application domains 
of the data mining technique. However, with the requirement 
raising of analysis precision and the application domains 
widely spreading of data mining, the high frequency time series 
such as the transaction by transaction data or tick by tick data 
in the trades and quotes database of financial market and the 
vibration, current or voltage senor data sampled from the 
industry field etc. is becoming another important point of time 
series similarity searching research. The traditional methods 
can not handle the high frequency time series suitably, for this 
kind of time series are massive, super-multidimensional, 
frequently volatilizable in short term and noisy which are 
different from the low-altered ones. 

In this paper we defined the main notions used in similarity 
search for time series, and proposed a novel fast algorithm of 
similarity search based on Random Projection for high 
frequency time series. Random Projections (RP) have recently 
appeared as a tool for dimensionality reduction and have been 
successfully used for image and text data. The similarity search 
method introduced here uses the RP method to map the original 
time series to the lower space, and then indexes the high-level 
representation of the time series using the spatial data index 
structure R* tree. The analysis was done from synthetic high 
frequency time series data and vibration severity data collected 
from rotating machines and the performance of the new 
approach indicate it is not sensitive to impulse noise and 
suitable to achieve high quality high frequency time series 
similarity search.  

The render of the paper is organized as follows. Section II 
defines the main notions of time series similarity search 
systemically. Section III introduces the theory of the basic 
Random Projections method. Section IV proposes a time series 
similarity search method based on RP. And in Section V, the 
application of the method to a synthetic dataset and a rotating 



         

machine observations dataset is demonstrated. Section VI 
concludes the paper. 

II. TIME SERIES SIMILARITY SEARCH 
A time series X can be considered as a point in p-

dimensional space. More formally, we describe it by the 
following definition: 

Definition 1 A time series X is defined as a data sequence 
on the time axis, X={x1, x2, ..., xp}, where each data element  
xi=(ti,a1,a2,…,am), 1 i p≤ ≤ ; aj�R, 1 j m≤ ≤ , m is the dimension 
of X and equal to 1 in general, ti�R, ti-ti-1=∆, ∆ is a constant 
more than zero, | X |=p is the length of X. 

Definition 2 Given a set nS = { 1X , 2X ,…, nX }, where 

1X , 2X , … , nX  are n time series, we denote nS  is a time 
series set. And p

nS denotes the set of which length of any 
element are equal viz. | |iX p=  for any i. 

Definition 3 Given a time series X, | |X p= , F ＝

Feature( X ) = { 1f , 2f ,..., kf }, where if  is a data point in some 
feature space, and k<<p in general, we denote F is a 
representation of the original time series X, k is the 
representation length, Feature( X ) is the representation 
function of X. 

Definition 4 Given a time series set nS , | iX |=pi ，

1 i n≤ ≤ , Q is a query time series, |Q|=q, iq p≤ . FX=Feature 
( X ), FQ=Feature (Q), a similarity measure model d and a 
searching strategy find (.), time series similarity search problem 
is defined as: 

{ | ( ( , ), )}TR n Q X nS X S find d F F S= ∈                (1) 

That is to find the time series set TRS  consist of the time 
series similar to Q among the time series nS  based on the 
similarity measurement d. Here the elements XTRi of TRS  have 
equal length. 

There are essentially two ways the time series data might be 
organized: 

• Whole Matching, here iq p= ; 

• Subsequence Matching, here iq p< . 

It is possible to convert subsequence matching to whole 
matching by sliding a “window” of length n across the longer 
time series. 

The discovery of relation between time series involves 
mainly three tasks: 

1) Similarity Measures: define a similarity measure 
between time series, in order to determine if they match. 
Generally we use some distance metric to express similarity, 
and choosing it must depends on the application domains, 
analysis task, and ever the data itself. Euclidean distance is the 
simplest and most widely used similarity measurement. 

2) Indexing: to build index of the massive time series 
database in order to promote the searching efficiency. As 
mentioned a time series can be considered as a point in p-
dimensional space. This immediately suggests that time series 
could be indexed by Spatial Access Methods such as the R-tree 
and its many variants, k-d tree, quad tree and grid files. 

3) Representations: the representation and modeling of the 
data sequence in a suitable form. The indexing efficiency will 
be falling down with the increase of the data dimensionality. 
The ability of the R tree might be similar to the sequence scan 
when the dimensionality exceeds 6-20, and most spatial access 
methods begin to degrade rapidly at dimensionalities greater 
than 8-12[3]. However, usually the length of time series must 
be head and shoulders above the range, indexing time series 
using spatial access methods directly might lead the 
dimensionality curse. Therefore, it is necessary to choose a 
suitable representation of time series to achieve dimension 
reduction and feature extraction. Here Feature (.) function 
should remain the similarity relation between the original time 
series as perfectly as possible. 

The common time series representation methods include: 
Discrete Fourier Transform (DFT), Discrete Wavelet 
Transform (DWT), Singular Value Decomposition (SVD), and 
so on [16]. 

There are two important kinds of queries that we would like 
to support in time series database: 

• Range queries, return all time series within an epsilon 
of the query time series; 

• k nearest neighbors, return the k closest time series to 
the query time series. 

This paper focus on the k nearest neighbors query of 
subsequence matching. 

III. RANDOM PROJECTIONS 
Random Projections have recently emerged as a powerful 

method for dimensionality reduction. Theoretical results 
indicate that the method preserves distances quite nicely. And 
this method has been successfully used for images and text 
documents while indicating that it is not sensitive to impulse 
noise.  

In random projection, the set of points of size n in original 
p-dimensional Euclidean space is projected to a k-dimensional 
(k<<p) subspace through the origin, using a random p k×  
matrix R whose columns have unit lengths in order to achieve 
dimension reduction. The mapping process is: 

×
RP
n k n p p kX X R× ×= ,                               (2) 

where p kR ×  is the random matrix, n pX ×  is the original 

observations set of size n in p-dimension, and ×

RP

n k
X  is the 

projection in k-dimension subspace. 

The idea of this method is motivated by the Johnson and 
Lindenstrauss (JL Theorem) states.  



         

 

Lemma 1 Johnson and Lindenstrauss embeddings.  

Given 0ε >  and an integer n, let k be a positive integer 
such that 2

0
( log )k k O nε −≥ = . For every set P of n points in pℜ  

there exists : p kf ℜ → ℜ  such that for all ,u v P∈ : 

2 2 2(1 ) || || || ( ) ( ) || (1 ) || ||u v f u f v u vε ε− − ≤ − ≤ + −              (3) 

This means a p-dimensional point set P can be embedded 
into k-dimensional space where k is independent of p. 
Euclidean distance are preserved within a factor (1 )ε± . Further, 
this map can be found in randomized polynomial time.  

In the last few yeas, JL Theorem has been useful in solving 
a variety of problems such as ε -approximate nearest neighbor 
problem, clustering and the context of “data-stream” 
computation etc. 

Dasgupta and Gupta [13] present a simpler proof of the JL 
Theorem, giving tighter bounds on ε and k, as follows: 

2 3
14 ( ) ln( )

2 3
k n

ε ε −≥ × −                                (4) 

They also indicate that a matrix whose entries are normally 
distributed represents such a mapping with probability at least 
1/n, and therefore doing O(n) projections will result in 
projection with an arbitrarily high probability of preserving 
distances. 

There are many proposals for the choice of the random 
matrix. Typically, the elements in 

p kR ×
 are Gaussian distributed. 

Performing such a projection, while conceptually simple, is 
non-trivial, especially in a database environment. Moreover, its 
computational cost can be prohibitive for certain applications.  
Achlioptas [14] shows that there are simpler ways of producing 
random projections. 

Theorem 1 Given a set P of n points in pℜ  (in form of an 

matrix n pX × ), choose , 0ε β >  and 0 2 3

4 2
log

/ 2 / 3
k n

β
ε ε

+
=

−
. For 

integer 0k k≥ , let R be a random matrix with R(i, j)=rij, 
1 i p≤ ≤ , 1 j k≤ ≤ , where { rij } are independent random 
variables from either on of the following two probability 
distribution: 

{ 1 / 2

1 / 2

1
r

1
ij

with probability

with probability

+
=

−

     

     
,                     (5) 
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Let                  ×

1RP
n k n p p kX X R

k
× ×=                         (7) 

Let : p kf ℜ → ℜ  map the ith row of n pX ×  to the ith row 

of ×
RP
n kX , 1 i n≤ ≤ . With probability at least 1 n β−− , for 

all ,u v P∈ : 

2 2 2(1 ) || || || ( ) ( )|| (1 ) || ||u v f u f v u vε ε− − ≤ − ≤ + −              (8) 

As in lemma 1, the parameter ε  controls the accuracy in 
distance preservation, while here β  controls the probability of 
success. 

IV. TIME SERIES SIMILARITY SEARCH BASED  
ON RANDOM PROJECTIONS 

A. Time Series Representation Algorithm 
A time series X, |X|=p, might be considered as a point in 

pℜ space.  The dimensionality of all the time series in the set 

nS  and the query time series Q must be reduced by the same 
representation function Feature (.).  The pseudo code with a 
detailed explanation of the time representation algorithm 
Feature_RP is presented as Algorithm 1. 

 
Algorithm 1 Time series representation 
Procedure  [FQ, k

mS ] = Feature_RP(Q, nS , k, w_step) 
Input: Q: query time series; nS : time series set; k: length of 

representation;  w_step: step of gliding window 
Output:  FQ : the representation of  Q; k

mS : the set composed 

of the representation of the time series of nS  
1:          lQ = Length(Q); 
2:          TBoriginal = SegmentWin( nS , lQ,  w_step); 
3:           m = Count (TBoriginal); // the count of time series in TBoriginal 
4:          ( 1)m pX + ×  = OriginalMatrix(TBoriginal, Q); 

5:          p kR ×  = RP_SparseMatrix (k, p); 

6:           [ QF , k

mS ] = ( 1)m p p kX R+ × ×× ; 

 
For every incoming query Q the representation routine 

Fearture_RP is invoked with: a sample time series set nS ; the 
length of the final representation of the time series k; and the 
step of the gliding window for segmentation w_step. 
Fearture_RP uses SegmentWin to obtain a database TBoriginal of 
time series with the length equal to Q by a step w_step gliding 
window. OriginalMatrix create a matrix size of ( 1)m p+ ×  



         

composed of Q and all the time series in TBoriginal. Finally, the 
representation of sample time series and query time series Q 
are computed based on (6) and (7). Fx1, Fx2,…, Fxm the row 
vectors of k

mS  are the representation of the sample time series 
in TBoriginal. 

Before the query, every time series to be used including Q 
must be pretreated by noise removal and normalization. The 
entry structure of database TBoriginal and k

mS  is: 

1 2, , , , ,...,id id id jT t x x x x  

Where j is p and k respectively, idT  is the ID of original 
time series

i
X , and idt is the ID of the subsequence segmented 

from the origin time series. 

The lengths of the query time series Q and the sample time 
series in TBoriginal is successfully decreased from p to k, k<<p, 
by the similarity searching algorithm Feature_RP based on 
Random Projections. That achieves the map : p kf ℜ →ℜ  and the 
effect of the representation function Feature (.). 

B. Similarity Searching Algorithm 
The metric space index structure R* tree is a variation of 

the initial R tree. R trees are hierarchical data structures based 
on B+ tree. They are used for the dynamic organization of a set 
of k-dimensional geometric objects representing them by the 
Minimum Bounding k-dimensional Rectangles (MBRs). We 
apply R* tree to index the random projections representation of 
the sample time series Fx1,Fx2,…,Fxm as follows: 

All leaves reside on the same level. Each leaf contains pairs 
of the form (Sid, Fx), where id id idS T t= + is the only id of the 
subsequence in the TBoriginal, 1 2( , ,..., )X x x xkF f f f= is a vector 
with the elements which is the coordinates of subsequence time 
series as a point in the k-dimensional space. 

Each non-leaf node of the R* tree corresponds to the 
minimum MBR that bounds its children. The leaves of the tree 
contain pointers to the database objects, instead of pointers to 
children nodes. The nodes are implemented as disk pages. The 
MBRs that surround different nodes may be overlapping. 
Besides, an MBR can be included in many nodes, but can be 
associated to only one of them. This means that a spatial search 
may visit many nodes, before confirming the existence or not 
of a given MBR. Every non-leaf node contains pairs of the 
form (MBRi, Childi), where Childi is a pointer to a child of the 
node and MBRi is the MBR that contains spatially the MBRs 
contained in this child. 

The Random Projections method is a mapping operation in 
the Euclidean space. The Euclidean distance relations among 
the multidimensional points in this space can be preserved 
nearly perfectly. In this paper we choose the Euclidean distance 
function as the similarity measurement of time series d. Given 
two time series 1 2, ,..., pX x x x=  and 1 2, ,..., pQ q q q=  with 
equal length, their Euclidean distance is defined as: 

 2

1

( , ) ( )
i p

i i
i

d X Q x q
=

=

= −∑                          (9) 

The time series k-nearest neighbors searching algorithm 
based on Feature_RP procedure and the R* tree index structure 
Find_RP is described in Algorithm 2. 

Algorithm 2 Similarity Searching Algorithm 
Procedure  TRS  = Find_RP( k

mS , QF , K) 

Input: k
mS : a representations set of the sample time series; 

QF : the representation of the query time series Q; 
 K: the number of the nearest neighbors 

Output:  TRS : the set of the results of k-nn classify 
 
1:         R_index = RstarIndexBuildup( k

mS ); 

2:         condition = QF MBR⊂ ; 
3:          S_MBR = SearchIndex(R_index, condition); 
4:         TRS  = zeros (K); //a array of K zero objects. 
5:          while (S_MBR){  

// XiF is the element time series of S_MBR 

( , )Xi QD d F F= ;  

if  (D > STR[0].distance) { 
      STR[0].distance = D; 
      STR[0].timeseries = XiF ; 
      SortArray(STR, ASC); 
} 

                } 
6:          return STR; 

The input of the Find_RP algorithm k
mS and QF are the 

results of the Feature_RP procedure. The algorithm search K 
nearest neighbors of the query time series through the R* tree 
structure R_index built up with the sample time series in k

mS . 
S_MBR is the time series whose rectangles overlap the 
rectangle of QF  in R_index. For every element XiF  of S_MBR, 

if D the distance between it and QF  is larger than the minimum 
value of the K nearest neighbors so far, the STR needs to be 
update with XiF  and D. 

Given a sample time series set p

nS , mapping it to k
nS  needs 

the multiplication by the random matrix p kR × . So forming the 
random matrix p kR ×  and projecting the p n×  data matrix p

nS  
into k dimensions is of order O (pkn), and if the random matrix 

p kR × is sparse with about c nonzero entries per row, the 
complexity is of order O (ckn). For high frequency time series, 
the lengths of them are huge in general, the values of p will 
outclass the values of k. So the high frequency time series 
representation algorithm should be of order O (cn). 



         

Reference [3] introduces a dimensionality reduction 
technique called PAA (Piecewise Aggregate Approximation) 
and theoretically and empirically compares it to the SVD 
(Singular Value Decomposition), DFT (Discrete Fourier 
Transform) and DWT (Discrete Wavelets Transform) methods. 
The time complexity of this method appears to be O(nm), 
where m is the size of sliding window. Thus it can be seen the 
Random Projections similarity search methods proposed in this 
paper could be as fast as the PAA method. Moreover, when the 
random matrix is a sparse matrix with the form of (6), the 
searching method based on Random Projections may save 2/3 
computational time, which has higher efficiency for massive 
high frequency time series similarity search. 

V. EXPERIMENTS FOR SIMILARITY SEARCH METHOD BASED 
ON RANNDOM PROJECTIONS FOR HIGH FREQUENCY TIME SERIES 

A.  Data Collection 
We performed all the experiments with two kinds of time 

series datasets: synthetic high frequency time series dataset 
(dataset A1 and dataset A2) and the vibration signal data 
observed from a rotor test rig (dataset B).  

1) The time series data in the dataset A are obtained 
synthetically by the following formula: 

1 1 1 2 2 2sin(2 ) sin(2 ) ttx A f t A f t zπ φ π φ= + + + +             (10) 

where A1 and A2 are 100 and 50 respectively, 1f  and 
2f  are 

256 and 512 respectively, 1φ  and 2φ  are 0 and 32 respectively. 

tz  is white noise, and Time series { | 1,2,..., }
t A

X x t n= = . 
Calculate by (10) to obtain two time series set 1024

500S  (dataset A1) 
and 2048

500S  (dataset A2) with two sliding windows respective size 
of 1024 and 2048 and step of 4096 and 2048 respectively. The 
length of elements in the set is 1024000.   

2) The dataset B is vibration severity observations dataset. 
Experiments were carried out on a rotor test rig, which can 
simulate the operation status of many rotating machine 
equipment, such as gas turbines, compressors, pump etc. It is 
composed of a rotor and a stator, a driving motor, journal 
bearings and couplings, as shown in Fig. 1. Vibration signals 
were collected from the rotor system using magnetoelectric 
sensors and non-contact eddy-current sensors at a sampling of 
2 kHz.  

 
 

Figure 1.  The rotor test rig 

The vibration severity measurement, the root mean square 
(RMS) of the vibration speed is the ISO recommended method 
for general machine condition monitoring. Below is the 
equation that is used to calculate Vrms the vibration severity 
value of a vibration speed signal data series, xn over length N. 

2

1

1 N

rms n
n

V x
N =

= ×∑
                                  (11) 

B. Time series similarity searching results 
We made a large amount of numerical tests with the two 

types of data sets, the following are the forested results of two 
sets of each them (we achieved similar results on the other data 
sets). 

Firstly, we compare the running times of the method 
proposed in this paper (RPS for short) and the PAA method in 
[3]. Select one time series from the datasets stochastically, and 
perform 1-nn query on the corresponding dataset. Let RPSTime 
and PAATime represent the running time of RPS method and 
PAA method that have run 100 times. Choose the length range 
of representation to be 6-20. The query time comparison results 
are showed in Fig.2 and Fig.3. 

 
Representation Length k 

Figure 2.  The comparison of RPSTime and PAATime 
 based on dataset A1 

 
Representation Length k 

Figure 3.  The comparison of RPSTime and PAATime 
 based on dataset B 

We can see that RPS method is faster than PAA method. 
Moreover, the longer the representation length k selected, the 
more running time of PAA needs. But keeping a low level, the 
running time of RPS is not sensitive to k.  

To evaluate the similarity searching accuracy, we took one 
nearest neighbor query for example. Select 200 time series to 
be the random query time series Q, and choose the length range 
of representation to be 6-36.  Fig.4 illustrates the accuracy rate 
results of RPS method with different data and representation 
length. 

The distances between multidimensional points are 
preserved approximately through the mapping, because 

Ti
m

e 
(s

) 
Ti

m
e 

(s
) 



         

Random Projections method is a mapping with probability 
condition restrictions. So there exist certain extent calculation 
errors. However, Fig.4 demonstrates that the accuracy rate of 
RPS method is promoted evidently with the increase of the 
representation length. The accuracy achieves higher level 
(above 81.5%) at representation length points of 16, 17, and 19. 
It has been confirmed above that the capability of performing 
fast of RPS method is not sensitive to the representation length, 
so that RPS method can achieve a fast high frequency time 
series similarity search with high accuracy rate around the 
representation length of 20. 

 
Representation Length k 

Figure 4.  The accuracy rate of the RPS method  

VI. CONCLUSIONS 
This paper defines the main notions used in similarity 

search for time series and proposes a novel similarity search 
method for high frequency time series that are generally 
massive, super-multidimensional, noisy and frequently 
volatilizable in short term which are different from the low-
altered ones. This approach applies improved Random 
Projections method that has advantages of lower computational 
cost and powerful ability of preservation of Euclidean distance 
between multidimensional points to be the high level 
representation of time series, and then searches to obtain the 
similar time series to the queries through a spatial data structure 
R* tree built up with the RP representation of time series. The 
accuracy and efficiency of this new approach is validated and 
illustrated by synthetic high frequency time series datasets and 
a vibration severity dataset observed from a rotating machine. 
The results show that keeping high accuracy, the similarity 
search approach can achieve a fast query for high frequency 
time series. In future work we intend to further apply this 
proposed approach to the real field data to validate the 
feasibility of it. 
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