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Abstract—The paper presents a novel method which generates
hopping gaits for an articulated single leg. Inspired by human
running, the flight phase is assumed to be nearly-passive. Con-
sequently, the initial joint velocities of the flight phase can be
solved by using a static optimization procedure, provided that
the boundary joint angles have been picked in advance. The
two hopping phases can then be dynamically optimized, with
the velocity jumps of the joints predicted by a simple collision
model. The direct single shooting method solves the nonlinear
constrained optimization problem. Ground reaction forces and
the Zero-Moment-Point serve as constraints. Simulation results
show that the proposed approach produces energy-efficient hop-
ping gaits.

Index Terms—One-legged hopping robot; nearly-passive flight
phase; dynamical optimization; direct single shooting method.

I. INTRODUCTION

Aiming for a stepping stone to bipedal motion in machines,
many have investigated single-legged hopping robots with a
knee and ankle. De Man et al. developed a kneed hopper,
named OLIE, whose hip joint was also located at the CoM of
the upper body [1]. Their group then examined a more general
hopper model, mimicking human legs [2]. They proposed a
simple gait generation algorithm using 5th-order polynomials.
Ikeda et al. constructed an articulated hopper [3]. Their gait
generation algorithm stems directly from sampled data of
kangaroo hopping. Hyon et al. built a hopper with a knee
and a passive ankle, also inspired by kangaroos [4]. An elastic
tendon connects the thigh and the foot; thus the kinetic energy
can be stored and released in different motion phases. To avoid
unwanted oscillations of the springy leg, the control scheme
has to be deliberately designed.

In this paper, we present an off-line gait generator for an
articulated hopping model without elastic elements. Inspired
by human running, we assume that the flight phase is nearly
passive (Section III). Based on this fundamental assumption,
the flight phase and the stance phase are treated as two-
point boundary value problems (TPBVP). An energy-efficient
hopping cycle, corresponding to the commanded step length
and commanded average forward speed, can be dynamically
optimized by using the direct single shooting method (Section
II). We describe the Matlab implementation of the proposed
approach (Section IV) and show simulation results (Section
V).

II. THE DIRECT SINGLE SHOOTING METHOD

A dynamic optimization (only the Lagrange-type is consid-
ered in this paper) minimizes the cost function

C =
∫ tf

t0

L(x(t), u(t), t)dt, (1)

subject to

ẋ(t) = f(x(t), u(t), t), (2)
x(t0) = x0, (3)
x(tf) = xf , (4)

Ψx(x, ẋ) ≤ 0, (5)
Ψu(u) ≤ 0, (6)

where
• t is the time,
• x = x(t) ∈ <n is the state vector,
• u = u(t) ∈ <m is the control vector,
• the equality constraint (2) is the state space model of the

dynamic system,
• the Lagrangian L(x, u, t) will be designed,
• t0 and tf are the initial and final time instants,
• x0 and xf are the known initial and final states (the two

points in the TPBVP),
• Ψx(x, ẋ) represents the set of all inequality constraints

on x and ẋ,
• and Ψu(u) is the set of all inequality constraints on u.

In the sequel, the set of all equality constraints may be
indicated by Φ(x, ẋ).

Numerical techniques will produce the solution to the above
nonlinear dynamic optimization problem. One can discretize
the continuous-time control vector u into piecewise constant
control signals on fixed time grid,

t0 < t1 < · · · < tN−1 < tN = tf ,

where N is the number of time intervals.
Let U = [u(0)T, u(1)T, · · · , u(N)T]T be the decision

vector, and Umin and Umax be the bounds corresponding to
Ψu(u). Plugging an estimate (or a shot) of U , denoted by Û
into (2) yields

ẋ = f(x, Û , t). (7)

With x0 known, integrating (7), one obtains a trial version
of x, denoted by x̂. Let x̂f = x̂(tf) and ex = xf − x̂f . For
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Fig. 1. The model of the articulated hopper

each Û -x̂ pair, the cost function C(x, u, t) = C(x̂, Û , t), ex

and inequality constraints Ψx(x̂, ˙̂x) need to be evaluated. Here
the cost function C may be in fact the discretized version of
(1). If the cost function does not reach a local optimum, or
one of the constraints is violated, the Û has to be updated
according to some rules. In general, the updating rules of Û
is driven by ex such that ex converges to zero quickly. This
shoot-and-update procedure, also known as the direct single
shooting method, halts when it finds a local optimum of the
cost function [5], [6].

III. MODELING OF THE HOPPER

The planar articulated hopper studied here consists of 4
links and 3 frictionless pin joints (Fig. 1). We assume the fourth
(foot) link has insignificant mass, inertia, and height. The first
three links have length and masses li and Mi (i = 1, 2, 3). The
total mass is Mt =

∑3
i=1 Mi. Each moment of inertia Ii is

taken about the CoM of the ith massive link. Each ri is a ratio
of the CoM location of the massive link to the link lengths.

The hopping motion is composed of two phases: the stance
phase and the flight phase. During the stance phase, we assume
the foot does not slip or bounce. During the flight phase, we
assume the foot link remains parallel to the ground. The CoM
and the foot of the robot are related by

Pg = Pf + f(Θ), (8)

where Pg = (Xg, Yg)T and Pf = (Xf , Yf)T are the positions
of the CoM and the foot, respectively, f(·) is a function
determined by kinematics, and Θ is defined to be (θ1, θ2, θ3)T.
Differentiating (8) once gives

Ṗg = Ṗf +
(

∂f

∂Θ

)T

Θ̇, (9)

and twice gives

P̈g = P̈f +
d

dt

(
∂f

∂Θ

)T

Θ̇ +
(

∂f

∂Θ

)T

Θ̈. (10)

In the stance phase, the foot of the robot firmly grips the
ground. Gravity and ground reaction forces (GRFs) act on the
robot. In contrast, during the flight phase gravity provides the
only external force. When completing the flight phase, the
robot foot collides with the ground with a certain velocity.
This collision causes an abrupt velocity jump at each joint. We
will discuss the flight phase first, followed by a solution to the
velocity jump due to the foot/ground collision, and finally go
on to explain the stance phase.

A. The nearly-passive flight phase

During the flight phase, the robot has 5 degrees of freedom
(DOFs). The generalized coordinate vector, qfl = (PT

g ,ΘT)T,
describes the robot’s posture in the air.

1) Equations of motion: Using the Euler-Lagrange method
leads to the equations of motion (EoM) during the flight phase

Dfl(qfl)q̈fl + Hfl(qfl, q̇fl)q̇fl + Gfl(qfl) = Bflτfl, (11)

where the superscript fl implies the flight phase, Dfl(qfl) ∈
<5×5 is the inertia matrix, Hfl(qfl, q̇fl) ∈ <5×5 contains the
centrifugal and Coriolis terms , and Gfl(qfl) ∈ <5 is the
gravitational torque vector. The vector τfl = (τfl

1 , τfl
2 , τfl

3 )T

contains the torques of the hip, the knee, and the ankle. The
term Bfl ∈ <5×3 is the constant coefficient matrix of τfl and
can be determined by using the virtual work principle (based
on the selected generalized coordinates.) For the sake of clarity,
the superscript fl disappears in the later part of this subsection.

One can partition the generalized coordinates into two parts:
q = (qT

1 , qT
2 )T, where q1 = Pg, and q2 = Θ. Partitioning the

inertia matrix D(q) produces

D(q) =
[

D1 02×3

03×2 D2(q2)

]
, (12)

where D1 = MtI2×2, and D2(q2) ∈ <3×3 contains the
moment of inertia related to the rotation of the robot’s links.
Similarly, the partitioned matrices H(q, q̇) and B become

H(q, q̇) =
[

02×2 02×3

03×2 H2(q2, q̇2)

]
, B =

[
02×3 B2

]T
.

The gravity torque vector is G(q) = (0,Mtg, 0, 0, 0)T, with g
being the gravity acceleration. The last three rows of (11) are:

D2(q2)q̈2 + H2(q2, q̇2)q̇2 = B2τ. (13)

Simplifying the first two rows of the EoM (11) yields

Ẍg = 0, Ÿg = −g, (14)

which defines the acceleration of the robot’s CoM and result
in a parabolic trajectory.

Let us denote the time instants at take-off and touchdown
by subscripts to and td, respectively, and the step length by
Ls. Assuming that the foot positions at take-off and touchdown
are Pf,to = (0, 0)T and Pf,td = (Ls, 0)T, respectively, and θto

and θtd have been picked in advance, equation (8) produces
Pg,to and Pg,td.

In this work, the robot is commanded to hop in a constant
average forward speed, Vx, on an even ground. Hence, the



horizontal velocity Ẋg,to = Ẋg,td = Vx. The flight lasts for
the duration

T fl = (Xg,td −Xg,to)/Vx. (15)

The initial and final vertical velocity of the flight phase are

Ẏg,to = (Yg,td − Yg,to +
1
2
g

(
T fl

)2
)/T fl, (16)

and
Ẏg,td = Ẏg,to − gT fl. (17)

2) Angular momentum about the CoM: In the flight phase
gravity acts as the only external force at the CoM. Thus the
angular momentum of the robot about the CoM is conserved.
That is,

Γg,to(Θto, Θ̇to) = Γg,td(Θtd, Θ̇td), (18)

where Γ stands for the angular momentum about the CoM.
3) Energy analysis: The total energy of the robot can

be decomposed into three parts: translational kinetic energy,
rotational kinetic energy, and potential energy. The total trans-
lational kinetic energy plus potential energy is conserved in
the flight phase. The rotational kinetic energy of the robot in
the flight phase is

Ωrot(Θ, Θ̇) =
1
2
q̇T
2 D2(q2)q̇2 (19)

which depends on the joint torques. Making use of the skew-
symmetric property of Ḋ2− 2H2 (see [7]), one can show that
d(Ωrot)

dt = q̇T
2 B2τ . During the flight phase, τ is usually not 0,

and thus d(Ωrot)
dt 6= 0. Therefore, the rotational kinetic energy

is not conserved.
However, analysis of human jumping motion [8] reveals that

the flight phase consumes much less energy than the stance
phase does, and thus it may be viewed nearly passive. This
understanding leads to Ωrot,to ≈ Ωrot,td. With this in mind,
we propose an objective function

O1 = γΩrot,to + (1− γ) [Ωrot,to − Ωrot,td]2 , (20)

where the constant γ ∈ [0, 1] is a weighting factor. Note that
O1 is a function of Θ̇to and Θ̇td, provided that Θto and Θtd

have been chosen in advance. Minimization of the first term on
the right hand side (RHS) of (20) implies a minimal take-off
rotational kinetic energy that guarantees the required hopping
motion defined by the two commanded parameters Ls and
Vx. Minimization of the second term on the RHS of (20)
is inspired by the assumption that the flight phase is nearly
passive. In real hopping motion, |Ωrot,td − Ωrot,to| is usually
a small positive quantity. In the case that Ωrot,to has been
minimized, the minimization of (Ωrot,to−Ωrot,td)2 means that
Ωrot,td is also minimized. Thus, a second, more concise, novel
objective function becomes

O2 = γΩrot,to + (1− γ)Ωrot,td. (21)

In practice, (21) outperforms (20) in two aspects. It results
in more energy-efficient gaits, and also, γ can be chosen in a
larger range.

4) Boundary joint velocities: The boundary joint angles are
picked manually, but the boundary joint velocities have to be
determined. The problem can be stated as:

Solving for Θ̇to and Θ̇td, such that the objective function
(21) is minimized. The equality constraints could be

Ṗg,to = [Vx, Ẏg,to]T, Ṗg,td = [Vx, Ẏg,td]T, Γg,to = Γg,td.

One may also add some inequality constraints, such as the
velocity bounds. With this static optimization procedure, Θ̇to

and Θ̇td can easily be solved. In fact, Θ̇to is needed, and
the true value of Θ̇td can then be searched by using dynamic
optimization

5) Foot velocity regulation: According to [2], energy loss
due to the collision between the foot and the ground is pro-
portional to the foot velocity immediately before the collision.
Thus, if the foot velocity were 0, the robot would lose no
energy when it collides with the ground. However, this setting
may result in a dramatic increase of the control effort in the
upcoming stance phase. In this work, the foot velocity at the
moment of touchdown is

Vf,td =
[

kx 0
0 ky

]
Vg,td, (22)

where the constants kx ∈ [0, 1] and ky ∈ [0, 1] are recom-
mended, trading off efficiency and control effort. A small kx

implies acceleration, and a large kx slows down the robot.
When kx and ky are both large, the energy loss due to the
foot/ground collision is large, but the energy consumption in
the stance phase may be small.

B. Collision between the foot and the ground

The collision of the support foot with the ground is assumed
to be instantaneous and inelastic. The impulsive force applied
by the ground to the robot causes abrupt jump of joint
velocities, while joint angles remain unchanged. Equation (8)
can be re-arranged into

Pf = f1(qfl) := Pg − f(Θ).

A Jacobian matrix J is defined as

J =
(

∂f1

∂qfl

)T

. (23)

Let the time instants immediately before and after the collision
be denoted by superscripts − and +, respectively. According
to [9],

q̇+ =
(

I5×5 −
(
Dfl

)−1
JT

(
J

(
Dfl

)−1
JT

)−1

J

)
q̇−, (24)

where Dfl = Dfl(q) and J = J(q) are evaluated at the
touchdown. That is, q = qtd is inserted. Similarly, q̇− = q̇td.

C. The stance phase

During the stance phase, the hopper has 3 DOFs, assuming
that the foot is firmly in contact with the ground. We choose
the convenient generalized coordinate vector qst = Θ, which
results in the dynamic model of the hopper in stance phase:

Dst(qst)q̈st + Hst(qst, q̇st)q̇st + Gst(qst) = Bstτ st, (25)



where Dst ∈ <3×3 is the inertia matrix, Hst ∈ <3×3

contains centrifugal and Coriolis terms, and Gst ∈ <3 is the
gravitational torque vector. The matrix Bst ∈ <3×3 is the
coefficient matrix and depends on the choice of the generalized
coordinates.

In the stance phase, the time duration, boundary joint
velocities, GRFs, and the Zero-Moment Point (ZMP) have
to be determined or bounded. The GRFs include the normal
support force of the ground, and the tangential friction force
between the foot and the ground.

1) Time duration of the stance phase: We assume that the
average forward speed in the stance phase is equal to the
horizontal speed in the flight phase (V̄ st

g = Vx). Time duration
of the stance phase becomes

T st = (Xi+1
g,to −Xi

g,td)/Vx, (26)

where the superscript i means the ith hopping cycle, and
X i+1

g,to −X i
g,td is the horizontal distance that the robot’s CoM

travels in the stance phase.
2) Boundary joint velocities: The stance phase is a typical

TPBVP. The joint angles at the two boundary points are chosen
manually. The boundary joint velocities can be determined by

Θ̇i,st
initial = Θ̇i,+

td , Θ̇i,st
final = Θ̇i+1

to ,

where the superscripts i and + have the same meaning as
before, and the subscripts initial and final indicate the two
boundary points.

3) The normal GRF: The support force of the ground is
always upward. One can formulate this component as

Fy = Mt(g + Ÿ st
g ) ≥ 0, (27)

and hence Ÿ st
g ≥ −g.

Since the foot/ground collision is assumed to be instanta-
neous, during the collision, the resultant normal GRF may be
extremely large. To prevent the robot from damage, an active
force control could be useful for online gait adaptation. In this
off-line gait generator, an upper bound of the normal GRF is
considered, Fy ≤ Fy,max.

At the end of the stance phase, the normal GRF reduces in
amplitude, and vanishes at the take-off of the next flight phase.
This implies that F st

y,final = 0, and

Ÿ st
g,final = −g. (28)

4) The tangential friction force: To ensure that the robot
stands on the ground firmly, the horizontal inertial force of the
robot must be less than the static friction force between the
foot and the ground. That is

|Ẍst
g | ≤ µFy/Mt. (29)

Clearly, if the ground, and hence µ, has been determined,
smaller horizontal acceleration is preferred.

5) The ZMP: As assumed, the foot does not rotate during
the stance phase, therefore, the ZMP should be located within
the foot range. Following the arguments by Popovic et al. [10],
one can derive the ZMP for the planar hopper as

Xzmp =

∑3
i=1 Mi

[
Xst

g,i

(
Ÿ st

g,i + g
)
− Y st

g,iẌ
st
g,i

]
+

∑3
i=1 Iiθ̈i

Mt

(
Ÿ st

g + g
) .

(30)
Suppose front and rear lengths of the foot, separated by the
ankle, are lf1 and lf2. One may have −lf2 ≤ Xzmp ≤ lf1.

IV. IMPLEMENTATIONS OF THE GAIT GENERATOR

The TPBVP optimization (we use fmincon() in Matlab)
solves the flight phase and stance phase separately. Each phase
has a unique dynamic model, and also differs in constraints.
However, the implementation method of the dynamic models,
the definitions of the decision vectors, and the cost functions
are almost identical for the two hopping phases.

A. Model implementation

The second-order dynamic models (11) and (25) are im-
plemented with Simulink blocks. However, the direct single
shooting method can cause the term H(q, q̇)q̇ to become too
large. To avoid crashing the simulation, a saturation block
limits the output of this term.

B. The decision vector

The decision vector is defined as

U =
[
τ(0)T, τ(1)T, · · · , τ(N − 1)T

]T
, (31)

where τ(k) = [τ1(k), τ2(k), τ3(k)]T, and k indicates the kth

discretized time interval. Û0, the initial estimate of U , is taken
a zero vector with same dimension as U . The torque limits
of the joints form the bounds of the decision vector and thus
Umin ≤ U ≤ Umax.

C. The cost functions

The cost functions in the two hopping phases have the same
form

C1 =
1
2
UTU∆t, (32)

where ∆t is the time interval with an assumption that the phase
duration, T fl or T st, is discretized equally. The number of time
intervals, N , may be different in the two phases. Clearly, this
cost function implies the least control effort.

D. Constraints in the flight phase

In the flight phase, the boundary values and (22) are the
equality constraints. The physical ranges of the joints constitute
the linear inequality constraints

θfl
1,min ≤ θfl

1 ≤ θfl
1,max,

αfl
min ≤ θfl

2 − θfl
3 ≤ αfl

max,

θfl
3,min ≤ θfl

3 ≤ θfl
3,max,

where α is the relative angle between θ2 and θ3. One may
add new linear inequality constraints, such as joint velocity
bounds. All the inequality constraints form the set Ψfl

x(x, ẋ).



TABLE I
THE CONSTANTS IN THE IMPLEMENTATION

Parameters Values Units Parameters Values Units
M1 8 kg I1 0.4 kg-m2

M2 2 kg I2 0.02 kg-m2

M3 0.8 kg I3 0.01 kg-m2

l1 0.6 m r1 0.4 -
l2 0.35 m r2 0.6 -
l3 0.4 m r3 0.6 -
lf1 0.15 m lf2 0.05 m
g 9.81 m/s2 - - -

θ1,min 45 deg θ1,max 90 deg
αmin 0 deg αmax 150 deg

θ3,min 30 deg θ3,max 120 deg
τ1,min −40 N-m τ1,max 40 N-m
τ2,min −30 N-m τ2,max 30 N-m
τ3,min −30 N-m τ3,max 30 N-m

TABLE II
THE PARAMETERS FOR THE SIMULATED CASE

Parameters Values Units
Ls 0.25 m
Vx 0.5 m/s

Θto (80, 110, 75)T deg
Θtd (75, 115, 95)T deg

γ 0.3 -
µ 0.6 -

kx 0.5 -
ky 0.5 -

Fy,max 2Mtg N

E. Constraints in the stance phase

In the stance phase, the boundary values and (28) are the
equality constraints. The linear inequality constraints could be

θst
1,min ≤ θst

1 ≤ θst
1,max,

αst
min ≤ θst

2 − θst
3 ≤ αst

max,

θst
3,min ≤ θst

3 ≤ θst
3,max,

and other linear inequality constraints on joint velocities can
also be added. The bound values in the stance phase may
not be equal to their counterparts in the flight phase, but in
our implementations, the corresponding bounds are designed
to be identical. Constraints on the normal GRF, the tangential
friction force, and the ZMP are the nonlinear inequality con-
straints. All linear and nonlinear inequality constraints form
the set of Ψst

x (x, ẋ).

V. SIMULATION RESULTS AND DISCUSSIONS

In the simulation, the robot hops with a periodic gait on
even ground (with parameters listed in Tables I, II). The
step length Ls and the average forward speed Vx are the
commanded inputs. In the stance phase, the CoM of the robot
behaves like an elastic inverted pendulum (Fig. 2). The joint
angle trajectories are intuitively satisfying from the perspective
of achieving human-like motion (Figs. 3). The foot/ground
collision causes large velocity jump at the knee (Fig. 4). The
joint torques fall within reasonable values for achieving in a
real robot ( Fig. 5).

The ZMP trajectory, the horizontal and vertical acceler-
ations of the robot’s CoM, and normal GRF in one stance

Fig. 2. The synthesized hopping cycles

Fig. 3. The joint angles

phase are presented in the three panes of Fig. 6, respectively.
Clearly, the ZMP is within the support foot, and hence the
robot will not tip over. It is also observed that the vertical
acceleration of the CoM, represented by the dashed curve in
the middle pane, grows up from −5.9m/s2 to g, and then
decreases to −g. This implies that the normal GRF (see the
third pane) increases from 45.6N to Fy,max, then decreases
dramatically, and finally vanishes at the take-off. Due to (29),
the horizontal acceleration of the CoM, specified by the solid
curve in the middle pane, becomes 0 at the end of the stance
phase. Therefore, the horizontal acceleration of the CoM is
continuous over the whole hopping cycle.

The maximum normal GRF, Fy,max, is set to be 2 times of
the robot weight. The limit seems to be reasonable for a real
running robot, according to [11]. When a real running robot is
built, the foot has to be specially made such that large impact
impulse can be partly absorbed. The static friction coefficient,
µ, is chosen to be 0.6, which is a typical value in real world.

If smaller Fy,max and µ have to be used, one may reduce
Vx to achieve safe hopping.

In each hopping cycle, the energy consumed in the flight
phase and the stance phase are 4.2 Joules and 39.0 Joules,
respectively, and the flight phase is indeed nearly-passive, as



Fig. 4. The joint velocities

Fig. 5. The joint torques

assumed. The cost of transportation of the robot is about 1.6
J/N-m, and is about half of the Honda Asimo’s walking [12].

The use of the ZMP criterion in synthesis of running-like
gaits is controversial [13], and it may be too conservative
for high-speed motions. Using it here as nonlinear inequality
constraints proves that the proposed approach works well, even
under such strict constraints. An energy-efficient hopping gait
can easily be searched, if the ZMP constraints are not used.

VI. CONCLUSIONS

This paper presents an off-line running-like gait generator.
Assuming the flight phase is nearly passive, one can solve
the boundary joint velocities of the flight phase by a static
optimization procedure, provided that the boundary joint an-
gles are pre-determined. Then, the flight phase and the stance
phase can be dynamically optimized, with the velocity jumps
of the joints being predicted by a simple collision model. The
well known direct single shooting method synthesizes the gait.
Simulation results show the robot hopping as predicted, with
an energy efficient and intuitively satisfying gait.

The proposed method has been extended to deal with
hopping up stairs, jumping across an obstacle, and bipedal
running in simulations. The synthesized gaits are elegant

Fig. 6. The ZMP trajectory, horizontal and vertical acceleration of the CoM,
and the normal GRF in one stance phase

with satisfactory energy-efficiency in the sense of cost of
transportation. The effectiveness of the proposed method needs
further verifications by experiments on real robots. This issue
is left as our future work.
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