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Abstract—It is known that to deep systematically study the
theory in relation to general discrete fuzzy numbers always will
encounter some difficulties since the metric and the difference of
two general discrete fuzzy numbers cannot reasonably be
defined. In this paper, we define a special sort discrete fuzzy
numbers—discrete fuzzy number on a fixed set with finite
support set, on which we can study the problems of metric and
difference (we will study the problems in relation to metric and
difference in afterwards papers). And then we obtain a
representation theorem of such discrete fuzzy numbers, study the
operations of scalar product, addition and multiplication, and
obtain some results.
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1. INTRODUCTION

In 1972, Chang and Zadeh [2] introduced the conception of
fuzzy numbers with the consideration of the properties of
probability functions. Since then a lot of mathematicians have
been studying on fuzzy number, and have obtained many
results (for example, see [1,3,4,5,8,10]).

In 2001, Voxman [6] introduced the conception of discrete
fuzzy numbers, which is useful in some applications; for
example, discrete fuzzy number can be used to represent the
pixel value in the center point of a window (see [9]). And in
[6], Voxman gave out the Canonical representations of discrete
fuzzy numbers. In [9] we discussed the representation of cut-set
form of discrete fuzzy numbers, and using the representation,
we shown that the usual addition of two discrete fuzzy numbers
does not keep the closeness of the operation (at this point,
discrete fuzzy numbers are not like non-discrete fuzzy numbers
since non-discrete fuzzy numbers keep the closeness of usual
addition (see [10])), and define a new addition for two discrete
fuzzy numbers, which keeps the closeness of the operation.
And we point out that when the usual addition of two discrete
fuzzy numbers is still a discrete fuzzy number, the two
additions are identical. In [7] we also discuss the
representations and operations of scalar product, addition and
multiplication for a special kind of discrete fuzzy numbers----
fuzzy integers.

In recently, basing [9], we went on discussing the
operations of addition and multiplication for discrete fuzzy

* This work is supported by Natural Science Foundations of China
(No. 60772006 and No. 60672064).

978-1-4244-1674-5/08 /$25.00 ©2008 IEEE

Qing Zhang®, Xianjun Cui’
“Department of Computer Science, "Department of Math
Handan College
Handan, 056002, China
zhangcby@eyou.com

numbers in [11,12]. Using representations (obtained in [7]) of
discrete fuzzy numbers, we defined two new kinds of
operations of addition and multiplication for discrete fuzzy
numbers, and show that the new addition and multiplication
keep the closeness of the operation. In addition, we also
pointed out that when the usual addition of two discrete fuzzy
numbers is still a discrete fuzzy number, the usual addition and
the two new additions are identical, and the wusual
multiplication and the two new multiplications are identical.

However, for general discrete fuzzy numbers, we cannot
reasonably define metric and the operation of difference, thus,
the application is confined in some ways. In this paper, we
define a special sort discrete fuzzy numbers—discrete fuzzy
number on a fixed set, on which we can conveniently study the
problems of metric and difference (we will study the problems
relating with metric and difference in afterwards papers). We
give the representation of such discrete fuzzy numbers. And
then we study the operations of scalar product, addition and
multiplication, discuss the properties of these operations, and
obtain some results.

II.  PRELIMINARIES

Let R be the real number field. For any 4,Bc R and
k € R, we define the addition and the multiplication of 4 and
B, and the scalar product of & and A, respectively, by:
A+B={a+b:ac Abe B}, AB={ab:aec A,be B} and
kB = {ka :a e A}.

A fuzzy subset (in short, a fuzzy set) of R is a function
u: R—[0,1]. For each fuzzy set u, we denote
[u] ={xe R: u(x)=r} for any re (0,1], its r—level set.
By suppu, we denote the support of u, ie. the set
{xe R: u(x)>0}. By [u]° we denote the closure of suppu,

ie, [u]'={xeR: u(x)>0}.

Let u,v are two fuzzy set of R . It is known that u =v if
and only if [u]" =[v]" for all re [0,1].

For any fuzzy sets u, v and real number % , we define the
addition and the multiplication of u# and v, and the scalar
product of £ and u via the following:
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(u+v)(x) = sup min{u(y),v(z)}

y+z=x

(uv)(x) = sup min {u(y), (2)}

yz=x

(h)(x) = u(x/k)y if k=#0

PEEV 0 i k=0
n 1 if x=0
where, 0(x) = . .
0 if x#0

Definition 2.1'%. A fuzzy set u: R —[0.1] is a discrete
fuzzy number if the support of uis finite, i.e. there exist
XX, X, €R  with x <x,<--<x, Ssuch that
[u)’ ={x,,x,,=-,x,}, and there exist natural numbers s,t
with 1< s <t <n such that

(1) u(x)=1 for any natural number i with s <i<t;

(2) u(x,)<u(x;) for any natural numbers 1i,j with
1<i<j<s, u(x,)2u(x,) for any natural numbers i, j with
1<i<j<n.

We denote the collection of all discrete fizzy numbers by F, .

About the contents of the representation, additions, the
multiplications and the scalar product of discrete fuzzy
numbers, we can see [7,9,11,12].

Definition 2.2, Let ue F,. If there exist s,,i,e 1 with
s, <t,, such that [u]’ ={xe I:s,<x<t}, then we call u a

fuzzy integer, and denote the collection of all fuzzy integers by
F,, where [ is the collection of all integers.

III. MAIN RESULTS

Let C be a countable (including finite) subset of real
number field R .

In the following, we define a special kind of discrete fuzzy
numbers--discrete fuzzy numbers on the countable set R so
that we can study their operation of addition, the multiplication
and the scalar product, but also can study their difference and
metric.

Definition 3.1. Let C be a countable (including finite)
subset of real number field R . A fuzzy set u: R —[0.1] is a
discrete fuzzy number on C if it satisfies the following
conditions:

(1) [u]’° = C and is finite;

(2) there exists x,€ C such that u(x,)=1;

(3) u(x,)<u(x,) forany x,,x,€ C with x, <x, <x,;

(4) u(x,)zu(x,)forany x,,x, € C with x,<x, <x,.

And we denote the collection of all discrete fuzzy numbers by
F

DC*
It is obvious that the following Theorem 3.1 holds.

Theorem 3.1. Let C be a countable (including finite)
subset of real number field R . Then

F cF,.cF,.
Let C be a countable (including finite) subset of real
number field R. For any x,,y,€ R, we denote [x,,7,].
={xe C:x,<x<y,}.In the following, we give out a cut-sets

form representation of discrete fuzzy numbers on C .

Theorem 3.2. Let C be a countable (including finite)
subset of real number field R , and ue F, .. Then

(1) for any re[0,l], there exist x,,y,€ C with x <y,
such that [u] =[x,y.]., and [x,,y,]. is finite;

(2) [u]* clu]" for any n,r,e[0]] with 0<r, <r, <1;

(3) for any r, e (0,1], there exists real number r, with
0<r/<r such that [u]®=[u]" (ie. [u] =[u]® for any
relr,rn)

Conversely, if for any re[0,1], there exists A cCR
satisfying

(i) there exist
A =[xy, and [, 3,1

x,y,€C with x <y such that

is finite;
(ii) A, < A4, forany r,r,e[01] with 0<r <r, <1;

(iii) for any r, e (0,11, there exists real number r, with
0<r/<r, such that A,=A, (ie. A=A for any
relr,rn)

Then there exists a unique ue F,. such that [u] = A, for
any re[0,1].

Proof. At first, we show that ue F,.
conclusions (1)-(3) of the theorem hold.

implies the

By the definition of [u]", we can easily see that the
conclusion (2) holds. Therefore, for any re[0,1], we have
[u]” <[u]’, so we see that [u]" is finite for any re[0,1] by
the condition (1) in the definition of discrete fuzzy numbers on
C. Let x, =min[u]” and y, =max[u]" for any re[0,1]. In
order to show that the conclusion (1) holds, we only show
[u]” =[x,,x,].. Let re[0]l] and xe [u]" . By
[u] c[u]’=C, we know xeC. In addition, by the
definitions of x, and y., we know x, <x<y, , so obtain
xe€[x,,y,].. Thus we have proved [u]" c[x,,x,].. On the
other hand, let xe [x,,y,].. By the definition of [x,,y.]., we
know x, <x<y,  and xe C. By the condition (2) in the
definition of discrete fuzzy numbers on C , we know that there
exists x,€ C such that u(x,)=1. From x, € [u]' c[u]" and
[u]” c[x,,x,]., we see x,€[x,,y,]., s0o x, <x,<y, . If

x, <x<x,, by the condition (3) in the definition of discrete



fuzzy numbers on C, we obtain u(x)=u(x,)=r, so we have
xe[u]” . Similarly, when x,<x<y, , we can also obtain
x,€[x,,y,]. from the condition (4) in the definition of
discrete fuzzy numbers on C . Therefore, we have shown
[x,,x,]c c[u]", so we have [u] =[x,,x]., ie, the
conclusion (1) of the theorem holds.

Since [u]° c C is finite, there exist x,,x,,--»x,€C such
that [u]° = {x,,x,,"-,x,} . No losing generality, we can
suppose x, <x, <---<x,,and denote r, =u(x,), i=12,---,n.
Then we know that there exist natural numbers s and ¢ with
1<s<t<n such that 0<r <r, <
=127y, 2---2r,>0 from the conditions (2), (3) and (4) in
the definition of discrete fuzzy numbers on C . Suppose that
there are only 7, (1<n, <n)real numbers r,r;,---,r, thatare

Sy Sl=rn=r, ==

not equal to each other in the real numbers 7,7,,---,7, and
satisfying /<7y <---<r, =1. Let r,e (0,1]. If r, <7/, then
there exists a real number 7, such that 0 <7, <r, <7/, so that
we have [u]” =[u]" =[u]’ for any re[r],r,]. If r, > 7, , then
there exists a natural number i, with 1<i, <n, such that
<r

r, <ry <r, .. Therefore, there exists a real number 7, such

<r,

g+l >

[u]” =[u]” =[u]"".
theorem. Thus, we have completed the proof of the first section
of the theorem.

’ 4
that r <r, <7, and so for any re[r,,7,], we have

This proves conclusion (3) of the

In the following, we show the second section of the
theorem.

Let A, satisty the conditions (i)--(iii) of the theorem for
any re [0,1]. Let

u(x) :{

We first show [u] =4, for any r e [0,1]. Let
1, €[01]. If xe 4, , then r, e {re[0,1]:xe 4,} . Hence,

sup{re[0,1]:xe 4,}
0

if {re[0l]:xed.}#¢
if {rel0l]:xed,}=¢

u(x)=sup{re[0,]:xe 4.} 2r,, i.e, xe[u]®. Therefore, we

obtain 4, c[u]* for any re [0,1].

Conversely, if 7, € (0,1] and xe[u]®, then u(x)=r, >0,
i.e, sup{re [0,1]:x€ 4,} = r,. By using the condition (iii),
we know that there exists 75 € (0,7,) such that 4, =4, .
that sup{re[0,1]:xe 4,}>r,>r, and by the

definition of supremum, we know that there exists
rJe sup{re[0,1]:xe A4,} suchthat ;' >r,, ie., there exists

Observe

;€ [0,1] such that xe 4, and 7y >r;, so xe 4, =4, . In
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addition, if xe[1]°, then we have u(x)> 0, and so there exists

real  number that O0<7 <u(x),

xe[u]* =4, c 4,.

a 7, such o

Therefore, we have known that

[u]® = 4, forany r, €[0,1].

From [u]’ =4, and the

condition (i) of the theorem, we see that [#]’ = C and is finite,

Secondly, we prove ue F,..

i.e, the condition (1) in the definition of discrete fuzzy
numbers on C holds. In addition, the condition (i) of the

theorem also implies 4, #¢, i.e., [u] #¢, so there exists

x, € [u]', i€, u(x,)=1. Thus, we know that u satisfies the

condition (2) in the definition of discrete fuzzy numbers on C .
And then, in the following, we show that u satisfies the
condition (3) in the definition of discrete fuzzy numbers on C .
If the condition (3) is not satisfied, then there exist x, ,x, € C

with x <x, <x, (where u(x,)=1) such that u(x, )>u(x, ).
Denote h, =u(x, ), then hye (0,]] and u(x,)<h,, ie,

hy _

x, [u]* = 4, . By the condition (i) of the theorem, we know

that there exist x,,y, €C with x, <y, such that
x, & [x;, >, 1c = 4, - On the other hand, from &, =u(x, ), we
see that x, € [u]" = A, =[x, 15 80 [x,x]c <%0 1c
(note u(x,)=1). Therefore, we know x, €[x, ,x)]c <[x, ., Ic
from x, ,x, € Cand x, <x, <x,, which contradicts to
x,, € [x,,, ¥, ]c - This shows that condition (3) in the definition

of discrete fuzzy numbers on C holds. Similarly, we can prove
that condition (4) in the definition of discrete fuzzy numbers on
C also holds. Therefore, we have ue F,..

Thus we completed the proof of the theorem.

By Theorem 3.1 and Theorem 3.1 in [9], we can directly
obtain the following Theorem 3.3.

Theorem 3.3. Let C be a countable (including finite)
subset of real number field R , and u,ve F, ., ke R. Then for

any re 0],
(D) [u+v]" =[u] +D]";
(2) [ku]” =k[u]";
3) [wv] =[u]'[v]".

Theorem 3.4. Let C be a countable subset of real number
field R . If u,ve F,., ke R. Then

(1) kue F,. if C satisfies kxe C forany xe C ;

(2) u+ve F,. if C preserve the closeness of the
operations of addition and difference.
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Proof. In order to show ku, u+v, uve F,.,

we only need
to show [ku]", [u+v]" and [uv]" satisfy conditions (i), (ii) and
(iii) of Theorem 3.2. From [ku]" = k[u]", we can easily see that
[ku]" satisfies conditions (i), (ii) and (iii) of Theorem 3.2 since

[u]" satisfies these conditions and kxe C for any xe C .

In the following, we show that [u+v]", i.e. [u]" +[v]" (by
(1) of Theorem 3.3) satisfies conditions (i), (ii) and (iii) of
Theorem 3.2. For any »<[0,1], from u,ve F,., we know that
exist x,,.,,,%,,,,, €C with x <y and x,. <y, . such that
[u]” = [ Po v = [x,, 7 ]c, and (%405 Vuoles
[x,0,Y,0]c are finite. Let x€ [x,,,y,.]c +[x,,,»,,]c. Then
there exist yelx,,.,y,.lc and ze[x,,,»,,.]o such that
x=y+z. From x,y,x, ,.,y,,.%,,,¥,,€C, x,,<y<y,
and x,, <z<y ., wese x,x, +x,,¥,+y,€C

and x,, +x, <x<y, +y,, so xe€lx, +x,, ¥, .+, ]c-

u,r

Hence we obtain[u]” +[v]" c[x,, +x,,..v,,+y,,.]lc.
Conversely, if xe[x,,+x,,.,y,,+»,,]c, then we have
If

xu,r + yv,r 2 xv,r + yu,r ’ then xu,r + xv,r sxs xu,r + yv,r

X, xu,r +xv,r’ yu,r +yv,r € C and xu,r + xv,r S X S yu,r +yv,r N
or xv,r +yu,r < xs yu,r +yv,r ’ i'e" X = xu,r € [xv,r’yv,r]f
or x_yu,r € [xv,rﬂyv,r]f > SO0 x = xu,r + (x_ xu,r)e [u]r + [v]r
X = yu,r + (x_yu,r)e [u]r +[v]r .

X, +¥,,2x,,+,,, we can also obtain xe&[u]" +[v]". Hence

or Similarly, when

we haVC that [u]r + [v]r o [xu,r + xv,r > yu,r + yv,r]C > SO

(W] +[v]" =[x,, +x
Theorem 3.2 holds. For any #,r, €[0,1] with 0<7 <7, <1,
[u]” < [u]" [u]? < [u]", see that
[u+v]? =[u]® +[v]® c[u]® +[v]" =[u+v]", the
conditions (ii) of Theorem 3.2 holds. Since u e F,., for any

vroYur TV, 1o 1.6, the conditions (i) of

from and we

ie.,

r, € (0,1], there exists real number 7, with 0<r, <7, such
that 4, =4, (ie. 4,=4, for any reflr,r]). Similarly,
there exists real number 7, with 0 <r, <7, such that 4, =4,
(i.e. 4, = 4, forany relr,,r]). Let r, =min(r,,r,), then we
have thatO<r <r, and Ay =4, (e A4, =4, for any
relr),r,]), ie., the conditions (iii) of Theorem 3.2 holds.
Therefore, we completed the proof of the theorem.

Remark 3.1. Although, on the surface, we can also obtain
the similar result (u,ve F,. and C preserves the closeness of

the operations of multiplication and division = uve F,.)
with (2) of Theorem 3.4 for the operation of multiplication, it
has any meaning because there no exists countable (including
finite) subset (of R ) which not only preserves the closeness of
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the operations of multiplication and division but also exist
ue F,. suchthat [u]’ c C and is finite.

Remark 3.2. Generally speaking, the condition in (1) of
Theorem 3.4: “C satisfies kxe C for any xe C ” and the
condition in (2) of Theorem 3.4: *“ C preserve the closeness of
the operations of addition and difference” can not be omitted
(see the following Example 3.1).

Example 3.1. Let C ={1,2,3,4,5,6,8,10,12,16}, and
u:R—[0,]1] and v: R—[0]] be defined respectively by

1 if x=3
% if x=24
u(x)=12
5 lf X = 1,5
0 if x#12345,
and
1 if x=4
% if x=35
v(x) =12
g lf X = 2,6
0 if x#234,5,6

then wu,ve F,., but from Theorem 4.3, we see that
1 1 1 1

[u]? +[v]*> ={5,6,7,8.9}, so [u]®>+[v]? C. Hence by

Theorem 4.2, we know wu+ve F,.. This shows that the

condition in (2) of Theorem 3.4: “C preserve the closeness of
the operations of addition and difference” cannot be omitted.
Similarly, we can also set up an example to show that the
condition in (1) of Theorem 3.4: “C satisfies kxe C for any
xe€ C” cannot be omitted.

Remark 3.3. Generally speaking, directly using the
definition of the operations of addition and multiplication to
carry the concrete operations addition and multiplication of
discrete fuzzy numbers on C is not easy. Theorem 3.2 and
Theorem 3.3 provide us a feasible method about the concrete
operations addition of discrete fuzzy numbers on C. The
following Example 3.2 shall show how to carry the concrete
operations using Theorem 3.2 and Theorem 3.3.

Example 3.2. Let C={2k:k=0+1,42,--4, and u: R —[0,1]
and v: R—[0]1] be defined respectively by

1 if x=8
Loy x=a610
u(x)=1 1
3 x=21204
0 if x#2,4,6810,214

and



1 if x=0
1 if x=-224
v(x) = %
3 if x=-6,-4,6
0 if x#-6,-4,-2,0,2,4,6

so u,ve F,. and

1
8 if —<r<li
{8} 5 <7
[u] =1[4,10] if l<r<l
T 372
[2,14]. if OSrS%
o if L<r<i
S<rs
[v]" =4[-2,4] if 1 <r <l
T 372
[-6,6]. if 0<r S%
Then we have that
8 if L<r<i
5 <
. | 1
[u+v] =4[2,14]. if §<rSE
[-4,20]. if O0<r S%
SO
1 if x=8
1 if xe[2,14].
u+v)= 12
3 if xe[—4,20].
0 if xe[-4,20].

For ue F,., we denote u, =min[u]" and u, = max[u]".

Then by Theorem 3.2, we have [u]" = [ﬂ,Z]C .

Definition 3.2. Let C be a countable (including finite)

subset of real number field R, and u,ve F,., ke R. We
define
kofu] = Kte Fude k20
lku,, kule if k<O
[W) @ =[u, +v,, u, +v,]c
and
W] @] =[x, ®,, 1, ®,]
where
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V.,

<

u,-v,

{ur

U, @, =minfl, v, Uy Vs UV,

And

u,-v

r

= |

u, ®v, =max{u, Vo U,

ro ur'vr}‘

ro

Theorem 3.5. Let C be a countable subset of real number
field R. If u,ve F,., ke R. Then kol[u]", [u]" ®[v]" and
[u] ®[v]" (re[0,1]) satisfy the conditions conditions (i), (ii)
and (iii) of Theorem 3.2.

Definition 3.2. Let C be a countable subset of real
number field R . If u,ve F,., ke R. By Theorem 3.5 and 3.2,
we know that ko[u]", [u] ®[v]" and [u] ®[v]" (re[0,1])
determine, respectively, unique discrete fuzzy number on C .

We define, respectively, the unique discrete fuzzy numbers on
Carekou, u®v and u®v.

Therefore we have the following result.

Theorem 3.6. Let C be a countable subset of real number

field R. If uyveF,., keR. Then kou, u®v and
u®ve F,., and
ku if k=0
ko), =11 7
— lku, if k<0
ku, if k=0
(o, =1 ¥
ku, if k<O
u®v), =u, +v,
W®v), =u, +v,
@®v), =minfu, -v,, u, -V, U, -V, U,v,}
and
W®v), = max{u, v, u, v, u,-v,, 4}

IV. CONCLUSION

In this paper, in order to overcome the defect that the metric
and the difference of two general discrete fuzzy numbers
cannot reasonably be defined, we introduce the concept of
discrete fuzzy number on a fixed set, give a representation
theorem of such discrete fuzzy numbers, and obtain some
properties of the operations of scalar product, addition and
multiplication for such discrete fuzzy numbers. We also point
out the conditions that make the usual operations of scalar
product, addition and multiplication keep the closeness, define
a new kind of operations of scalar product, addition and
multiplication, and set up the relationship of the usual
operations and the new operations. This make us can study
conveniently the problems in relation to metric and difference.
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