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Abstract— In this paper a simple infinity norm based neural
network algorithm for estimation of the principal component is
developed. It seems to be especially useful in applications with
changing environment, where the learning process has to be
repeated in on-line manner. Theoretical analysis shows the weight
vector converges to the principal eigenvector asymptotically. In
comparison with the existing algorithms, numerical simulation
shows that the proposed algorithm demonstrates fast convergence
and robustness for a slightly noisy Gaussian samples with some
points having large magnitude and angle with respect to the
principal direction.

Index Terms— Principal component analysis; Eigenvalue; Neu-
ral Network; Convergence.

I. INTRODUCTION

Principal component analysis (PCA) is a widely used statis-
tical technique in various applications such as feature extrac-
tion in pattern recognition, data compression and coding in
signal processing. In stationary case, most adaptive algorithms
are studied by explicitly solving the system of differential
equations due to the fundamental stochastic approximation
theorem [1][2].

Since Oja’s pioneer founding [3] (referred as OJA rule) that
a simple linear neuron with a constrained Hebbian learning rule
can extract the principal component from stationary input data,
there were increasing interests in the study of connections be-
tween PCA and neural networks [4][5][6][7][8][9][10]. Given a
zero mean stationary process {x(t) ∈ Rn}∞t=0 with symmetric
correlation matrix R = E(x(t)xT (t)) ∈ Rn×n, where E(·)
is the expectation operator on this stationary process. Then
the adaptive OJA rule for a simple linear neuron with weight
vector w(t) = [w1(t), w2(t), · · · , wn(t)]T ∈ Rn is as follows

w(t + 1) = w(t) + η(t)[x(t)y(t) − y2(t)w(t)], (1)

where index t = 0, 1, · · · , y(t) = wT (t)x(t) is the linear
output with current sample input x(t), and the learning rate
η(t) > 0 should be chosen to balance the stability property
and the convergence speed of the proposed algorithm.

The term x(t)y(t) is always referred to Hebbian rule. To
avoid inevitable unboundedness of w(t), a degenerated term
−y2(t) is added, which plays a central role in controlling the
stability of the OJA rule. Taking expectation on both sides of
(1), we can obtain

w(t + 1) = w(t) + η(t)[Rw(t) − wT (t)Rw(t)w(t)] (2)

with index t = 0, 1, · · · . Its stability property can be studied
by explicitly solving the following ordinary differential equa-
tions (ODE) due to the fundamental stochastic approximation
theorem [1][2].

dw(t)
dt

= Rw(t) − wT (t)Rw(t)w(t) (3)

It has been proved that eigenvector associated with the largest
eigenvalue of symmetric positive matrix R is asymptotically
stable [3].

Another normalized OJA type algorithm for extracting
principal component is proposed by Xu et al. [8] (often referred
as OJAN rule), which can be summarized as the following
ODE

dw(t)
dt

= Rw(t) − wT (t)Rw(t)
wT (t)w(t)

w(t). (4)

Luo et al. [7][9] proposed another algorithm (referred as
LUO rule) to compute principal component

dw(t)
dt

= [wT (t)w(t)]Rw(t) − [wT (t)Rw(t)]w(t), (5)

which is further studied by Zhang et al. [4]. There, analytical
solution of (5) is given and its asymptotic behavior to eigen-
vectors corresponding to largest eigenvalues is successfully
obtained.

Liu et al. [5] proposed a simpler model (referred as 2-norm
rule) as

dw(t)
dt

= Aw(t)−
[
wT (t)w(t)

]
w(t). (6)

Apparently non-negative continuous function of wT (t)w(t) =
‖w(t)‖2

2, where ‖ · ‖2 denotes the usual Euclidean 2−norm.
Thus, it is easy to see that this term also acts as preventing
trajectory w(t) tending to infinity. So, many other norm choice
of w(t) is hopeful. For example norm with respect to a
symmetric positive definite matrix B ∈ Rn×n is given as
(referred as B−norm rule)

dw(t)
dt

= Aw(t)−
[
wT (t)Bw(t)

]
w(t), (7)

which was discussed in literature [1].
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Recently a novel model is introduced [6] to compute the
principal component of R as

dw(t)
dt

= Rw(t) − sgn(wT (t))w(t)w(t), (8)

where sgn(wT (t))w(t) is equivalent to 1−norm of w(t) by
introducing ‖w(t)‖1 =

∑n
i=1 |wi(t)|. So it is equivalent to

(referred as 1-norm rule)

dw(t)
dt

= Rw(t) − ‖w(t)‖1w(t). (9)

From the consideration of implementation for w(t), the
most appropriate and cheapest way should be the infinity
norm ‖w(t)‖∞ = max1≤i≤n |wi(t)|. Therefore, we propose
the same single linear neuron but with learning rule based
on infinity norm (referred as ∞−norm rule) for extracting
principal component as follows

dw(t)
dt

= Rw(t) − ‖w(t)‖∞w(t). (10)

Its adaptive form for a stationary process {x(t), t =
0, 1, 2, · · · } with correlation matrix R takes

w(t + 1) = w(t) + η(t)
[
x(t)y(t) − ‖w(t)‖∞w(t)

]
, (11)

where index t = 0, 1, · · · .
As for the continuous ODE models mentioned above,

theoretically analysis has shown that they are all computation-
ally equivalent. However, they behave great differences when
applied in an adaptive manner. The main reasons are twofold
below.

1) The learning rate η(t) should be selected carefully. Any
inappropriate choice of it may bring about instability of
the adaptive algorithms.

2) Possibility for some x having large magnitude and angle
with respect to the direction of w(t) also could lead to
instability to the learning rules.

In this paper, one experiment is designed to demonstrate these
two problems. The numerical result shows that the norm
based adaptive algorithms are much stable than the OJA type
algorithms. Moreover, among the three norm based algorithms,
the proposed model (10) is obviously the simplest because the
degeneration term only use one component of w(t) ∈ Rn.
Thus, when built into hardware, the proposed infinity norm is
more computationally efficient and simpler.

II. CONVERGENCE ANALYSIS

As max1≤i≤n |wi| is not differentiable, the theory of unique
existence is not so obvious for equation (10). We provide the
proof for it in the following. Assume R is a symmetric positive
matrix with eigenvalues λ1 > λ2 ≥ · · · ≥ λn > 0 and their
corresponding orthonormal eigenvectors are S1, S2, · · · , Sn,
respectively, then we have

Theorem 1: For any given ξ ∈ Rn , there exists unique
solution w = w(t) with initial condition w(0) = ξ for equation
(10).

Proof: Denote the right side of equation (10) by f(w).
For simplicity, in the following ‖ · ‖2 is abbreviated to ‖ · ‖.
Since max1≤i≤n |wi| is continuous on domain {(t, w)|0 ≤
t < ∞, w ∈ Rn}, for a locally bounded closed domain
N ⊆ Rn, there exists a constant K1 > 0 such that ‖w(t)‖∞ =
max1≤i≤n |wi| ≤ K1. For any u = (u1, · · · , un)T and
v = (v1, · · · , vn)T ∈ N , denote max1≤i≤n |ui| = |u1| and
max1≤i≤n |vi| = |v1|, we have |u1| ≤ K1 and |u2| ≤ K1.
Moreover, due to the fact that all the norms in finite dimen-
sional space are equivalent, there exists a constant K2 > 0
such that ‖u‖∞ ≤ K2‖u‖. Then we have

‖f(u) − f(v)‖
≤ ∥∥R(u − v)

∥∥ +
∥∥|u1|u − |v1|v

∥∥
≤ ∥∥R

∥∥∥∥u − v
∥∥ +

∥∥|u1|u − |u1|v
∥∥ +

∥∥|u1|v − |v1|v
∥∥

≤ (|λmax| + K1)
∥∥u − v

∥∥ + (|u1| − |v1|)
∥∥v

∥∥
≤ (|λmax| + K1)

∥∥u − v
∥∥ + K1|u1 − v1|

≤ (|λmax| + K1)
∥∥u − v

∥∥ + K1‖u − v‖∞
≤ (|λmax| + K1)

∥∥u − v
∥∥ + K1K2

∥∥u − v
∥∥

= (|λmax| + K1 + K1K2)
∥∥u − v

∥∥, (12)

which means that f(w) is locally Lipschitz continuous. From
the existence theory of ordinary differential equations [11],
there exists a unique solution w = w(t) with w(0) = ξ for
(10) on some interval [0, T ].

Theorem 2: Let w = w(t) on 0 ≤ t ≤ T be a solution for
(10), then ‖x(t)‖ is bounded, i.e.,

min{‖w(0)‖, λmin} ≤ ‖w(t)‖ ≤ max{‖w(0)‖,√nλmax}
(13)

for all t ∈ [0, T ]. Therefore, w(t) can be extended to the
infinite time interval [0,∞).

Proof: Consider nonnegative function

E(t) =
1
2
‖w(t)‖2. (14)

Using the chain rule, we obtain the derivative of E(t) with
respect to t along trajectory of (10) as follows

dE

dt
= wT dw

dt
= wT Rw − ‖w‖∞wT w. (15)

Since λminw
T w ≤ wT Rw ≤ λmaxw

T w, then

wT w[λmin − ‖w‖∞] ≤ dE

dt
≤ wT w[λmax − ‖w‖∞] (16)

So, if w(0) is initialized as a random vector such that
‖w(0)‖∞ > λmax, then we know by equation(16) that

dE(t)
dt

∣∣∣∣
t=0

< 0 (17)

So from the continuity of dE(t)
dt we have ‖w(t)‖ ≤ ‖w(0)‖ for

all t ≥ 0. Otherwise, when ‖w(0)‖∞ ≤ λmax, obviously x(t)
will never get to a point ξ such that ‖ξ‖∞ > λmax, which
means that ‖w(t)‖∞ ≤ λmax for all t ≥ 0. Then, from the
fact ‖w(t)‖ ≤ √

n‖w(0)‖∞, it can be concluded that

‖w(t)‖ ≤ max{‖w(0)‖,√nλmax}. (18)



Similarly, we have

‖w(0)‖∞ < λmin ⇒ ‖w(t)‖ > ‖w(0)‖ (19)

and

‖w(0)‖ ≥ λmin ⇒ ‖w(t)‖∞ ≥ λmin ⇒ ‖w(t)‖ ≥ λmin.
(20)

Therefore, we can conclude that

‖w(t)‖ ≥ min{‖w(0)‖, λmin} (21)

This completes the proof.
Theorem 3: If ξ 
= 0 is an equilibrium point of the

differential equation (10), then ξ is an eigenvector associated
with the eigenvalue ‖ξ‖∞. Conversely, if w∗ is an eigenvector
corresponding to an eigenvalue of symmetric matrix R, there
exists a nonzero number α such that αw∗ is an equilibrium
point of the differential equation (10).

Proof: The proof is straightforward, thus is omitted here.

Recurring to the properties of real symmetric matrices, we
know S1, · · · , Sn construct a normalized perpendicular basis
of Rn. So, w(t) ∈ Rn can be expressed as

w(t) =
n∑

i=1

zi(t)Si (22)

Theorem 4: If the initial values of the weight vector satisfy
z1(0) = ST

1 w(0) 
= 0, then lim
t→∞

w(t)
z1(t)

= S1, which is an

eigenvector corresponding to λ1.
Proof: Substituting (22) into the formula (10), we get

d

dt
zi(t) = λizi(t) − ‖w(t)‖∞zi(t), (i = 1, · · · , n). (23)

Denote ‖w‖∞ by σ(t), we have

zi(t) = zi(0) exp
(

λit −
∫ t

0

σ(s)ds

)
, (i = 1, · · · , n). (24)

Obviously, zi(t) 
= 0 (t > 0) only if zi(0) 
= 0. For nonzero
initial value x(0) =

∑n
i=1 zi(0)Si, denote r = min{i|zi(0) 
=

0, 1 ≤ i ≤ n}. It is easy to obtain that

zi(t)
zr(t)

=
zi(0)
zr(0)

exp[(λi − λr)t] (25)

for t ≥ 0. Clearly, if λi < λr(i = r + 1, · · · , n), we have

lim
t→∞

zi(t)
zr(t)

= 0 (26)

So, under the assumption that z1(0) 
= 0, we can conclude that

lim
t→∞

zi(t)
z1(t)

= 0, (i = 2, · · · , n). (27)

By theorem 2, we have z1(t) is bounded. So we have

lim
t→∞

w(t)
z1(t)

= lim
t→∞

n∑
i=1

zi(t)
z1(t)

Si

= S1 +
n∑

i=2

zi(t)
z1(t)

Si

= S1 (28)

which means that w(t) tends to be an eigenvector in eigen-
space associated with λ1. This completes the proof.

III. NUMERICAL EXPERIMENT

In the following, we will provide a simulation result to
illustrate the performance of our proposed neural network
model. A data set Dx = {(xi, yi), i = 1, · · · , 500} comes
from the Gaussian distribution with correlation matrix

R =
[

10 9
9 10

]
.

To show the robustness of the norm based algorithms, we
have randomly generated some noise with large magnitude
as shown in Fig. 1(a). Thus the unit principal eigenvector
S1 = [0.70710, 0.70710]T with eigenvalue λ1 = 10.9. We
simply choose the learning rate η(t) = 0.05

t which satisfies
conditions specified by the theory of stochastic approximation
[1][2].

In order to compare the performances, we compute esti-
mated eigenvalue for each learning algorithm at each iteration
step by λ̃ = y2(t) for the OJA model (1). Similarly, λ1

is estimated by λ̃ = y2(t)
wT (t)w(t)

for both the OJAN and

LUO algorithms. For the three norm based algorithms, λ̃ is
given by ‖w(t)‖1, ‖w(t)‖2

2 and ‖w(t)‖∞ respectively. Af-
ter 5000 iterations, we get the estimated principal direction
ξ = [0.69739, 0.71669]T by the proposed infinity norm based
PCA algorithm (11) which is shown in Fig. 1(b). Therefore,
the proposed algorithm can successfully extract the principal
direction of the dataset. As the correlation matrix R is not
known beforehand in practice, we thus compute the real-
time estimation of λ1 by λ̃ specified above. The error per-
formances ε(t) = λ̃(t) − λ1 for the OJA type algorithms
and the norm based algorithms are shown in Fig. 2(a) and
Fig. 2(b), respectively. Obviously, the OJA type algorithms
behave more oscillations than the norm based algorithms for
this noisy dataset. Furthermore, as is shown in Fig. 2(a), unlike
the LUO algorithm, the OJA and OJAN algorithms behave
nearly the same after some iterations, which means that they
are essentially of the same type for both the ODE and the
adaptive algorithm. In the case of norm based algorithms, as is
shown in Fig. 2(b), the infinity norm based algorithm behaves
similar to the 1−norm based algorithm. However, the proposed
infinity norm based algorithm gives the best estimation of λ1

among the three algorithms. Then, we reach the conclusion
that the proposed infinity norm based algorithm demonstrates
fast convergence and robustness. Meanwhile, when all of these
algorithms are implemented by electronic devices, infinity
norm based algorithm (10) may be a better choice due to its
simplicity of implementation.

IV. CONCLUSION

This paper studies two types of learning algorithms for
PCA, i.e. the OJA type and the norm based algorithms. Inspired
by the existing 1-norm and 2-norm based PCA algorithms, a
simple infinity norm based algorithm is proposed. Theoretical
analysis shows that it is qualified to extract the principal
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Fig. 1. Experiment result of the infinity norm based PCA algorithm: (a) Dataset drawn from Gaussian data with noise of large magnitude; (b) Asymptotical
tendency of w(t) = [w1(t), w2(t)]T to principal direction [1, 1]T .
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Fig. 2. Error performance ε(t) = λ̃(t) − λ1 of the two different types of algorithms: (a) ε(t) computed by OJA type algorithms; (b) ε(t) computed by norm
based algorithms;

component. Numerical simulation further shows its fast con-
vergence and robustness compared to the OJA type algorithms.
However, it should be noticed that the error ε(t) = λ̃(t) − λ1

is still unsatisfactory even after w(t) reaches its equilibrium as
shown in Fig 2.(b). So, further studies should be focused on
improving the performance of the proposed algorithm, while
maintaining its robustness.
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