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Abstract— In the multisensor distributed fusion systems, ob-
servations produced by sensors typically arrive at local pro-
cessors out of sequence. The resulting problem at the central
processor/fusion center–how to update current estimate using
multiple local out-of-sequent-measurement (OOSM) updates–is a
nonstandard distributed estimation problem. In this paper, based
on three update algorithms with “Out-of-Sequence” measurement
(OOSM), we propose three optimal distributed fusion updates
with local OOSM updates, which are, under some regularity
conditions, equivalent to the centralized updates with all same
lag time OOSMs respectively.

I. INTRODUCTION

In distributed target tracking systems, there often exist vari-
ous propagation times from the sensors to the local processors,
it is clearly possible that some measurements will arrive out
of sequence, as discussed in [1]. Since the state equations
are usually defined in continuous time and then discretized, a
delayed measurements from a sensor systems arrive with a lag
time stamp τ . Typically, the distributed fusion systems usually
keep only track sufficient statistics, such as state estimates and
their covariances. The update problem with OOSM is how to
find a way to update current estimate with the older OOSM.

There have been some methods for solving the update
problem with single OOSM. The early work of [10] and
[5] presented an approximate solution to the problem to be
called “algorithm B” in [2]. The later extended the previous
work to create an algorithm with optimal output, “algorithm
A”. It was also shown by numerical examples in [2] that
the “algorithm B” is nearly optimal. All of these, however,
assumed that the lag in the OOSM was less than one time step.
Subsequently, the optimal update with OOSM for the l-step-
lag case was proposed in [12], [13], which require an iteration
back for l steps and considerable amount of storage. Therefore,
the generalized solutions of “algorithm A” and “algorithm
B” for the l-step-lag case, to be called “algorithm Al1” and
“algorithm Bl1”, were derived in [4]. The approach originally
presented in [3] was also presented independently in [6] and
[7]. The algorithms, Al1 and Bl1, have practically the same
requirements as those of algorithms A and B, respectively. It
was also shown by numerical examples that “algorithm Al1”
and “algorithm Bl1” are only slightly suboptimal compared
with the optimal procession of the measurements.

It is well known that a distributed fusion system with
multiple distributed subsystems has many advantages, includ-
ing decreases in communication bandwidth and computational
burden, as well as, increases in the reliability, robustness,
and survivability of the system since all subsystems are also
sub-processors and do not need transmit their unprocessed
observations to the fusion center (see [14]). In [8], [9], based
on Kalman filtering, an optimal distributed Kalman filtering
fusion was discussed, which was proved, under some regularity
conditions, to be equivalent to the centralized Kalman filtering
with all “in sequence” sensor measurements. The result, how-
ever, can not be used to fusion update problem with OOSMs
(see Figure 1). In this paper, we focus on optimal distributed
fusion update problem with local OOSM updates. We discuss
two cases of OOSMs. The first case is the locate processors
receiving same lag time OOSMs. The corresponding results
can be extended to the case of some locate processors without
receiving OOSMs.
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Fig. 1. Distributed Dynamic System with OOSMs.

Based on “Algorithm A”, “Algorithm Al1” and “Algorithm
Bl1”, we present three optimal distributed fusion updates
respectively, which can be proved, under some regularity
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conditions, to be equivalent to the centralized updates with
all same lag time OOSMs respectively. An advantage of these
optimal distributed fusion update algorithms is that we need
not calculate the inverse of the high dimensional matrix in
the centralized update algorithms. Note that if the received
multiple OOSMs at central processor have same lag times,
we stack the multiple OOSMs as a single OOSM, then the
“Algorithm A”, “Algorithm Al1” and “Algorithm Bl1” are still
valid as the centralized update algorithms (in [11]).

This paper is organized as follows. In Section 2, problem
formulation is given. Based on “Algorithm A” “Algorithm
Al1” and “Algorithm Bl1”, three optimal distributed fusion
algorithms are proposed in Sections 3-5 respectively. Section
6 concludes. All proofs are omitted in the conference version.

II. PROBLEM FORMULATION

A. Problem Formulation of m-sensor Distributed Linear Dy-
namic System with OOSMs

The m-sensor distributed linear dynamic system is given as
follows. The state equation is

x(k) = F (k, k − 1)x(k − 1) + v(k, k − 1), (1)

where F (k, k−1) is the state transition matrix to tk from tk−1

and v(k, k − 1) is the cumulative effect of the process noise
for this interval, with the weak assumptions about the noises
as zero-mean, white with covariances E(v(k, j)v(k, j)′) =
Q(k, j). The measurement equations of local processors are

zi(k) = Hi(k)x(k) + wi(k), i = 1, . . . , m, (2)

The stacked equation is written as

z(k) = H(k)x(k) + w(k), (3)

where

z(k) = (z1(k)′, . . . , zm(k)′)′, (4)

H(k) = (H1(k)′, . . . , Hm(k)′)′, (5)

w(k) = (w1(k)′, . . . , wm(k)′)′, (6)

and the covariance of the noise w(κ) is given by

cov(w(k)) = R(k), (7)

cov(wi(k)) = Ri(k), (8)

cov(wi(k), wj(k))′ = 0, i, j = 1, . . . , m, (9)

where R(k) and Ri(k) are both invertible for i, = 1, . . . ,m.
Similarly to (1)

x(k) = F (k, κ)x(κ) + v(k, κ), (10)

where κ is the discrete time notation for τ , which is the “time
stamp” assumed to such that tk−l < τ < tk−l+1. The above
can be rewritten backward as

x(κ) = F (κ, k)[x(k) − v(k, κ)], (11)

where F (κ, k) = F (k, κ)−1 is the backward transition matrix.
Similarly to (2)1

zi(κ) = Hi(κ)x(κ) + wi(κ), i = 1, . . . , m. (12)

To compare performances between the centralized update with
OOSMs and the distributed fusion update with the local OOSM
updates, the stacked measurement equation is written as

z(κ) = H(κ)x(κ) + w(κ), (13)

where

z(κ) = (z1(κ)′, . . . , zm(κ)′)′, (14)

H(κ) = (H1(κ)′, . . . , Hm(κ)′)′, (15)

w(κ) = (w1(κ)′, . . . , wm(κ)′)′, (16)

and the covariance of the noise w(κ) is given by

cov(w(κ)) = R(κ), (17)

cov(wi(κ)) = Ri(κ), (18)

cov(wi(κ), wj(κ))′ = 0, i, j = 1, . . . , m, (19)

where R(κ) and Ri(κ) are both invertible for all i.
Define the centralized OOSM update x̂(k|κ), the local

OOSM updates x̂i(k|κ), i = 1, ...,m and corresponding co-
variances as

x̂(k|κ) , E[x(k)|Zκ], P (k|κ) , cov[x(k)|Zκ], (20)

where

Zκ , {Zk, z(κ)}, Zk , {z(j)}k
j=1; (21)

and

x̂i(k|κ) , E[x(k)|Zκ,i], P i(k|κ) , cov[x(k)|Zκ,i], (22)

where

Zκ,i , {Zk,i, zi(κ)}, Zk,i , {zi(j)}k
j=1. (23)

The problem is similar to the problem in [8], [9], that is, can
we still express the the centralized OOSM update x̂(k|κ) in
terms of the local OOSM updates x̂i(k|κ), i = 1, ...,m.

B. Summary of the Optimal Update Algorithm with 1-step-lag
OOSM

To deduce the optimal distributed fusion update with two
same 1-step-lag OOSM updates, we firstly summarize the
optimal update “algorithm A” with a 1-step-lag OOSM (see
[2]). To be easy to read and express simply, we use the same
notation of [2].

Summary of the optimal solution for 1-step-lag OOSM is
as follows (see also [2]).

1If the i-th local processor does not receive a out-of-sequence measurement,
we let Hi(κ) = 0, F i(k, κ) = F i(κ, k) = 0, Q(k, κ) = 0, then the last
three fusion algorithms are unified.



The retrodiction of the state to κ from k is

x̂(κ|k) = F (κ, k)[x̂(k|k)

− Q(k, κ)H(k)′S(k)−1v(k)], (24)

where

S(k) = cov[z(k)|Zk−1]

= H(k)P (k|k − 1)H(k)′ + R(k), (25)

v(k) = z(k) − ẑ(k|k − 1)

= z(k) − H(k)x̂(k|k − 1). (26)

The covariances associated with the state retrodiction are

Pvv(k, κ|k) = Q(k, κ) − Q(k, κ)
×H(k)′S(k)−1H(k)Q(k, κ), (27)

Pxv(k, κ|k) = Q(k, κ) − P (k|k − 1)
×H(k)′S(k)−1H(k)Q(k, κ), (28)

P (k|k) = P (k|k − 1) − P (k|k − 1)
×H(k)′S(k)−1H(k)P (k|k − 1), (29)

The covariance of the state retordiction is

P (κ|k) = F (κ, k)[P (k|k) + Pvv(k, κ|k)
− Pxv(k, κ|k) − Pxv(k, κ|k)′]F (κ, k)′, (30)

The covariance of the retrodicted measurement is

S(κ) = H(κ)P (κ|k)H(κ)′ + R(κ), (31)

The covariance between the state at k and this measurement
is

Pxz(k, κ|k) = [P (k|k) − Pxv(k, κ|k)]F (κ, k)′H(κ)′. (32)

The gain used for the update is

W (k, κ) = Pxz(k, κ|k)S(κ)−1. (33)

The update with the OOSM z(κ) of the most recent state
estimate x̂(k|k) is

x̂(k|κ) = x̂(k|k) + W (k, κ)[z(κ) − H(κ)x̂(κ|k)]. (34)

The covariance of the updated state estimate is

P (k|κ) = P (k|k) − Pxz(k, κ|k)S(κ)−1Pxz(k, κ|k)′. (35)

III. OPTIMAL DISTRIBUTED FUSION UPDATE ALGORITHM
FA

In this section, based on algorithm A, we derive the optimal
distributed fusion algorithm with two local 1-step-lag OOSM
updates.

From (34), the centralized update with OOSMs z(κ) of the
most recent state estimate x̂(k|k) is

x̂(k|κ) = x̂(k|k) + W (k, κ)[z(κ) − H(κ)x̂(κ|k)]

= [I − W (k, κ)H(κ)F (κ, k)]x̂(k|k)

+ W (k, κ)H(κ)F (κ, k)Q(k, κ)H(k)′S(k)−1v(k)

+ W (k, κ)z(κ), (36)

the last equation is from the definition of x̂(κ|k) (24).
The terms in (36) are equivalent to

W (k, κ)H(κ)F (κ, k)

= [P (k|κ) − P (k|k)][P (k|k)

−Q(k, κ)P (k|k − 1)−1P (k|k)]−1, (37)

H(k)′S(k)−1v(k)

= P (k|k − 1)−1[x̂(k|k) − x̂(k|k − 1)]. (38)

To avoid calculating the inverse of high dimensional matrix
S(κ) (31), P (k|κ) can be calculated as follows

P (k|κ)−1

= {P (k|k)−1 + [I + [P (k|k)−1 − P (k|k − 1)−1]

·Q(k, κ)]PFHR[I − Q(k, κ)P (k|k − 1)−1]}

·{I + Q(k, κ)PFHR[I − Q(k, κ)P (k|k − 1)−1]}−1,

(39)

where

PFHR , F (κ, k)′H(κ)′R(κ)−1H(κ)F (κ, k)

=
m∑

i=1

F (κ, k)′Hi(κ)′Ri(κ)−1Hi(κ)F (κ, k)

=
m∑

i=1

P i
W

−1
[P i(k|k) − P i(k|κ)]P i(k|k)−1

·P i(k|k − 1)[P i(k|k − 1) − Q(k, κ)]−1, (40)

P i
W , P i(k|κ)[P i(k|k)−1 − P i(k|k − 1)−1]Q(k, κ)

+P i(k|κ) − Q(k, κ). (41)



Similarly, the centralized can be defined as

PW , P (k|κ)[P (k|k)−1 − P (k|k − 1)−1]Q(k, κ)

+P (k|κ) − Q(k, κ). (42)

To express the centralized update x̂(k|κ) in terms of the
local updates x̂i(k|κ), i = 1, . . . ,m, W (k, κ)z(κ) can be
equivalent to

W (k, κ)z(κ)

= PW F (κ, k)′H(κ)′R(κ)−1z(κ)

= PW

m∑
i=1

F (κ, k)′Hi(κ)′Ri(k)−1zi(κ)

= PW

m∑
i=1

P i
W

−1{x̂i(k|κ)

−P i(k|κ)P i(k|k)−1x̂i(k|k)

+P i(k|κ)[P i(k|κ)−1 − P i(k|k)−1]

·[Q(k, κ)−1 − P i(k|k − 1)−1]−1

·P i(k|k − 1)−1x̂i(k|k − 1)}. (43)

Substituting (37) (38) (43) into (36), we have the centralized
update x̂(k|κ) in terms of the x̂(k|k), x̂(k|k−1) and the local
estimates x̂i(k|κ), x̂i(k|k), x̂i(k|k − 1), that is,

x̂(k|κ)

= P (k|κ)P (k|k)−1x̂(k|k)

− P (k|κ)[P (k|κ)−1 − P (k|k)−1]

·[Q(k, κ)−1 − P (k|k − 1)−1]−1

·P (k|k − 1)−1x̂(k|k − 1)

+ PW

m∑
i=1

P i
W

−1{x̂i(k|κ)

−P i(k|κ)P i(k|k)−1x̂i(k|k)

+P i(k|κ)[P i(k|κ)−1 − P i(k|k)−1]

·[Q(k, κ)−1 − P i(k|k − 1)−1]−1

·P i(k|k − 1)−1x̂i(k|k − 1)}. (44)

where the weighting matrices are the combination of P (k|k),
P (k|k−1), Q(k, κ) and the local P i(k|κ), P i(k|k), P i(k|k−
1). If we let Wi, i = 1, . . . , 5 are the weighting matrices of the
x̂(k|k), x̂(k|k − 1) and the local estimates x̂i(k|κ), x̂i(k|k),
x̂i(k|k − 1) respectively, then

∑5
i=1 Wi = I .

IV. OPTIMAL DISTRIBUTED FUSION UPDATE ALGORITHM
FA`

The work of [4] generalizes the 1-step-lag algorithms to
l-step-lag algorithms while preserving their main feature of
solving the update problem without iterating.

Similarly, the optimal distributed fusion algorithm FA with
1-step-lag OOSMs can be generalized to the optimal dis-
tributed fusion algorithm FAl with l-step-lag OOSMs while
preserving their main feature.

The difference between FA and FAl is that the x̂(k|k − 1),
P (k|k − 1), P i(k|k − 1) in FA are replaced by x̂(k|k − l),
P (k|k − l), P i(k|k − l) respectively.

The optimal distributed fusion algorithm FAl based on
suboptimal update algorithm Al1 is as follows.

The centralized estimate x̂(k|κ) can be obtained in terms
of the x̂(k|k), x̂(k|k − 1) and the local estimates x̂i(k|κ),
x̂i(k|k), x̂i(k|k − l), that is,

x̂(k|κ)

= P (k|κ)P (k|k)−1x̂(k|k)

− P (k|κ)[P (k|κ)−1 − P (k|k)−1]

·[Q(k, κ)−1 − P (k|k − l)−1]−1

·P (k|k − l)−1x̂(k|k − l)

+ PW

m∑
i=1

P i
W

−1{x̂i(k|κ)

−P i(k|κ)P i(k|k)−1x̂i(k|k)

+P i(k|κ)[P i(k|κ)−1 − P i(k|k)−1]

·[Q(k, κ)−1 − P i(k|k − l)−1]−1

·P i(k|k − l)−1x̂i(k|k − l)}. (45)

where the weighting matrices are the combination of P (k|k),
P (k|k− l), Q(k, κ) and the local P i(k|κ), P i(k|k), P i(k|k−
l),

PW , P (k|κ)[P (k|k)−1 − P (k|k − l)−1]Q(k, κ)

+P (k|κ) − Q(k, κ). (46)

P i
W , P i(k|κ)[P i(k|k)−1 − P i(k|k − l)−1]Q(k, κ)

+P i(k|κ) − Q(k, κ). (47)

P (k|κ)−1

= {P (k|k)−1 + [I + [P (k|k)−1 − P (k|k − l)−1]

·Q(k, κ)]PFHR[I − Q(k, κ)P (k|k − l)−1]}



·{I + Q(k, κ)PFHR[I − Q(k, κ)P (k|k − l)−1]}−1

(48)

where

PFHR , F (κ, k)′H(κ)′R(κ)−1H(κ)F (κ, k)

=
m∑

i=1

F (κ, k)′Hi(κ)′Ri(κ)−1Hi(κ)F (κ, k)

=
m∑

i=1

P i
W

−1
[P i(k|k) − P i(k|κ)]P i(k|k)−1

·P i(k|k − l)[P i(k|k − l) − Q(k, κ)]−1. (49)

V. OPTIMAL DISTRIBUTED FUSION UPDATE ALGORITHM
FB`

The algorithm Bl1 is simpler than the algorithm Al1 while
also being nearly optimal, it was recommended for practical
applications in [4]. Thus, in this section, we generalize the
optimal distributed fusion algorithm FAl based on algorithm
Al1 to the optimal distributed fusion algorithm FBl based on
algorithm Bl1.

The optimal distributed fusion algorithm FBl based on
suboptimal update algorithm Bl1 is as follows.

The centralized estimate x̂B(k|κ) can be obtained in terms
of the x̂(k|k) and the local estimates x̂Bi(k|κ), x̂i(k|k), that
is,

x̂B(k|κ)

= [PB(k|κ) − PB
xv(k, κ|k)′]PB

kxv

′−1
x̂(k|k)

+ PB
W

m∑
i=1

PBi
W

−1{x̂Bi(k|κ)

−[PBi(k|κ) − PBi
xv (k, κ|k)′]PBi

kxv

′−1
x̂i(k|k)} (50)

where

PB
W = PB

kxv + [PB(k|κ) − P (k|k)]PB
kxv

′−1
PB

kxvv,

(51)

PB(k|κ) = P (k|k) − PB
kxvPFHRPB

kxv

′
PB

U

−1
, (52)

PB
xv(k, κ|k) = P (k|k)P (k|k − l)−1Q(k, κ), (53)

PB
kxv = P (k|k) − PB

xv(k, κ|k), (54)

PB
kxvv = P (k|k) + Q(k, κ)

− PB
xv(k, κ|k) − PB

xv(k, κ|k)′, (55)

PFHR =
m∑

i=1

PBi
W

−1
[PBi(k|k) − PBi(k|κ)]PBi

kxv

′−1
,

(56)

PB
U = I + PB

kxv

′−1
PB

kxvvPFHRPB
kxv

′
, (57)

and

PBi
W = PBi

kxv + [PBi(k|κ) − P i(k|k)]PBi
kxv

′−1
PBi

kxvv,

(58)

PBi
xv (k, κ|k) = P i(k|k)P i(k|k − l)−1Q(k, κ), (59)

PBi
kxv = P i(k|k) − PBi

xv (k, κ|k), (60)

PBi
kxvv = P i(k|k) + Q(k, κ)

− PBi
xv (k, κ|k) − PBi

xv (k, κ|k)′. (61)

Note that PB(k|κ), PB
W can be expressed by P (k|k), P (k|k−

l), Q(k, κ), PBi(k|κ), P i(k|k), P i(k|k − l), and PBi
W can be

expressed by PBi(k|κ), P i(k|k), P i(k|k − l), Q(k, κ). Thus,
the weighting matrices are the combination of P (k|k), P (k|k−
l), Q(k, κ) and the local PBi(k|κ), P i(k|k), P i(k|k − l).

VI. CONCLUSION

We have presented the optimal distributed fusion algorithm
FA with the local 1-step-lag OOSM updates. Then, it is gen-
eralized to the optimal distributed fusion algorithm FAl1 and
algorithm FBl1 with the local l-step-lag OOSM updates based
on algorithm Al1 and algorithm Bl1 respectively. Although
both the local update algorithms Al1 and Bl1 with l-step lag
OOSMs are suboptimal in comparison with the optimal algo-
rithm with l-step lag OOSMs proposed in [13], the distributed
fusion algorithms based on algorithm Al1 and algorithm Bl1
are optimal in the sense that the distributed fusion updates
based on algorithm Al1 and algorithm Bl1 are equivalent to the
centralized updates based on algorithm Al1 and algorithm Bl1
respectively. Note that the three fusion algorithms are suitable
for the cases that there are same lag time OOSMs or some local
processors without OOSMs. Thus, a more interesting problem
is how to optimally fuse the local updates with different lag
time OOSMs, which is a new challenge in the future.
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