
Short-term Traffic Flow Prediction Based on
Embedding Phase-space and Blind Signal Separation

Hong Xie,Zhonghua Liu
College of Information Engineering

Shanghai Maritime University
Shanghai, China

hongxie@cie.shmtu.edu.cn

Abstract—Accurate traffic flow forecasting is one of the impor-
tant issues for the research of Intelligent Transportation System
(ITS).The capability to forecast traffic flow has been identified as
a critical need for dynamic traffic control system. The embedding
phase-space theory treats the dynamic evolution of traffic flow as
a chaos time series, and this provides the possibility to forecast
short-term traffic flow accurately. The theory of blind signal
processing is widely used in the area of data mining. Practical
historic traffic flow can be regarded as a blind signal mixed
of real traffic flow and noise introduced by measurement tools.
Blind signal separation is a good method to reduce noise and
abstract principal components of historic traffic flow series. This
paper proposes an approach based on embedding phase-space
and blind signal separation, which enables us to realize the de-
nosing and forecasting of the traffic flow synchronously, with
another advantage of self-adaptive characteristic.

Index Terms—Embedding phase-space;blind signal separat-
ing;prediction

I. INTRODUCTION

Observation and research of traffic flow’s variety regulation,
as well as scientific and accurate traffic flow recognition in
advance, namely traffic flow forecasting, have great importance
to traffic navigation and management in ITS. Short-term traffic
flow system forecasts the traffic flow condition in a few
minutes in order to adopt proper traffic control and guidance
measurements, using the forecasting algorithms to analyze traf-
fic flow data. A variety of algorithms to forecast the short-term
traffic flow have been presented based on statistical techniques,
neural network theory, support vector machine theory, wavelet
neural network theory and so on [1] [2] [3]. These algorithms
play an important role in traffic flow forecasting, and each
has its shortcoming. For example, the wavelet neural network
theory develops a good idea to traffic flow prediction, but the
edge effect of this algorithm could affect the accuracy of traffic
flow forecasting.

Recent years, complicated dynamics character of nonlinear
systems has been studied in deeply and used widely, the
most interesting phenomenon among of them is chaos, it
revealed that some variable seem to be random phenomenon
but produced by nonlinear certain system essential in natural
world, provide possibility for high precision in short-term
traffic flow forecasting in theory. The practical traffic flows
which exist in the form of time series data are obtained from
the huge and complicated traffic system, so most of them have
the characteristic of chaos and can be analyzed by chaos theory.

During the process of collecting the traffic flow, it can
not avoid introducing measurement noise which can affect
the prediction accuracy of the forecasting model to a certain
extent. So before establishing the forecasting model in terms
of the obtained historic traffic flow series, the noise should
be removed from it. As so far, the most popular methods of
smoothing noise consist of filters, wavelet analysis and so on,
and all of them have their own advantages and disadvantages.
Because the practically obtained traffic flow data is occurred by
the huge and complicated unknown system, the traffic system
could be seem as a blind source, and traffic flow series could
be seen as a blind signal, a mixture of effective flow series and
noise, generated by this blind source. Therefore, the theory of
blind signal separation is suitable to analyze traffic flow series.

To overcome the problems mentioned above, a short-term
traffic flow forecasting method based on phase-space construc-
tion and blind signal separation. Our main contribution of
this paper is the de-noising and forecasting of the nonlin-
ear time series. For the phase-space theory is the effective
method to analyze nonlinear time series and the principal
components analysis (PCA) method is widely used in blind
signal processing and feature extracting as a data reduction
technique, this paper put forwards a new forecasting model
based on embedding phase-space and blind signal separation.
First, reconstruct the phase-space of the historic time series.
Second, extract the principal components of the series matrix
after embedding phase-space reconstruction by an orthogonal
transform, this process de-noise the data matrix synchronously.
Third, establish suitable forecasting models to predict every
principal component separately. At last, the next h (hεZ )
steps’ traffic flow forecasting data are obtained by an inverse
transform.

II. EMBEDDING PHASE-SPACE PROBLEMS

A. Reconstruction of Embedding Phase-spce

Given the time series {x(n)}nεZ , with zero mean (The
practical time series such as traffic flow data are always non-
zero-mean-value and should be removed mean value first.
This paper assumes that the time series used in this paper is
non-zero-mean-value), suppose the delay step and embedding
dimension of the embedding phase-space be τ and d separately,
and then the vector of embedding phase-space is defined as

Xi = (x (i) , x (i − τ) , · · · , x (i − (d − 1) τ))T (1)
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where iε((d − 1)τ + 1, n).Time delay method is used to
construct (n − (d − 1)τ) × d dimensional orbit matrix with
series {x(1), x(2), · · · , x(n)}. Let m = n − (d − 1)τ , matrix
X is defined as

X =




XT
(d−1)τ+1

XT
n−1
...

XT
n




=




x((d − 1)τ + 1) x((d − 2)τ + 1) . . . x(1)

.

.

.
.
.
.

. . . . . .
x(n − 1) x(n − 1 − τ) . . . x(n − 1 − (d − 1)τ))

x(n) x(n − τ) . . . x(n − (d − 1)τ))



(2)

Each row of matrix X represents a vector of embedding
phase-space, namely a phase point in embedding phase-space.
m = n − (d − 1)τ is the number of points in the constructed
phase-space attractor [4].

B. The Algorithm of Selecting The Optimal Delay Step And
Embedding Dimension of Embedding Phase-space

The most important thing of embedding phase-space theory
is how to select proper delay step and embedding dimension
of the reconstructed embedding phase-space. Chaos theory
always faces the problem of ’dimension disaster’. This paper
adopts an algorithm of selecting the optimal delay step and
embedding dimension synchronously to avoid this problem.
Let delay step be τ , embedding phase-space dimension to be
d, and then the vector of the embedding phase-space is defined
as formula (1). Let dynamic system equation be:

Xn+1 = F (Xn) (3)

where F : Rd → Rd is a smooth mapping. For every reference
point:

Xm = (x (m) , x (m − τ) , · · · , x (m − (d − 1) τ))T (4)

take a small number r , define its r-neighborhood U (Xm, r)
as a set of points satisfying the following condition:

U (Xm, r) = {Xn : ‖Xn − Xm‖ ≤ r, n �= m} (5)

where ‖ · ‖ is Euclid norm, that is:

‖Xn − Xm‖ =

(
d−1∑
i=0

(x (n − iτ) − x (m − iτ))2
) 1

2

(6)

As F is a smooth mapping, if r is properly small, for an
arbitrary point Xs ∈ U (Xm, r) , we have the following
expression:

Xs+1 − Xm+1 = F (Xs) − F (Xm)

≈ J (Xm) (Xs − Xm) (7)

where J (Xm) is the Jacobin matrix of F at point Xm. Define
the first component of the above formula as:

x (s + 1) − x (m + 1) =
d∑

k=1

ak (x (s − (k − 1) τ) − x (m))

(8)
This is a linear equation. If there are enough points in
neighborhood U (Xm, r), we can estimate the coefficients
{ak}(k = 1, 2, · · · , d) of (8), using the least square method.

To estimate the coefficients of (8), the number of points
included in U (Xm, r) should not be less than d , at the same
time we must ensure that the vector set {x (s)−x (m)} is linear
independent. In order to stably estimate the coefficients, the
points included in U (Xm, r) should be as more as possible,
this usually needs to select a bigger neighborhood radius r
and may lose the approximate linear character of the dynamic
system described by formula (7). In order to balance this
contradiction and make this algorithm to be effective all the
time, we select r which satisfies that the number of points
contained U (Xm, r) is 2d.

Estimate the coefficients of (8) by using the points in
U (Xm, r), and let δ (Xm) represent the mean square error of
the estimation. Further, suppose all reference points selected
are {Xm1 ,Xm2 , · · · ,XmD

} (D = 2d), then we can define
global approximating mean square error as:

Γ (τ, d) =
1
D

D∑
k=1

δ (Xmk
) (9)

The actual meaning of Γ (τ, d) is the average value of
the mean square error of the local linear approximation. For
reference points, if there are not too many phase points in the
reconstructed phase-space, all phase points can be selected as
reference points to calculate Γ (τ, d), otherwise some sample
points can be randomly selected as reference points for the
sake of saving computing time.

Then give a range of τ and a upper bound dmax of d,
let 1 ≤ τ ≤ TN , 2 ≤ d ≤ dmax. For every group of τ
and d, calculate Γ (τ, d), and then select the τ and d value
which make Γ (τ, d) minimum as the optimal delay step and
embedding dimension of the embedding phase-space.

For determining the range of delay step τ , the method
presented in this paper is computing the autocorrelation coef-
ficients of {x (n)} first, and then let the corresponding delay
time be TN when the autocorrelation coefficients firstly arrive
the negative local maximum, thus the searching range of τ is
1 ≤ τ ≤ TN . The maximal d value dmax is appointed to a
proper number by experience.

III. PRINCIPAL COMPONENTS ANALYSIS

For matrix X defined in formula (2), every column of the
orbit (data) matrix X is the observations of each delay coor-
dinate at different moment, and the number of the coordinate
delay variables is d. Coordinate system composed of these d
variables is always non-orthogonal. PCA [5] is therefore the
method to do an appropriate transform of matrix X , making



the transform result satisfy the orthogonal characteristic in new
coordinate system.

Principal Components Analysis (PCA) has been widely
studied and used in pattern recognition and signal processing.
In fact it is important in many engineering and scientific
disciplines, e.g., in data compression and feature extraction,
noise filtering, signal restoration and classification. Often the
principal components (PCs) (i.e., directions on which the input
data have the largest variances) are regarded as important,
while those components with the small variances are minor
components (MCs) are regarded as unimportant or associated
with noise. PCs are also regarded as the components with
lager energy of the input data, corresponding to the main
physical quantities. Extracting and separating PCs equal to
blindly extracting the main components from the blind signal
(blindly eliminating other components). The method of extract-
ing principal components from mixed signals called PCA is a
basis method of blind signal processing.

Traditional PCA method analyzes the blind signal as a
vector; this paper puts forward a new PCA method based on
reconstructed phase-space of the blind signal.

For matrix X defined in formula (2), generally d < m , X
can be decomposed as

X = V SUT (10)

where S is d × d dimensional diagonal matrix, its element
is

Sij = δij

√
λi, i, j = 1, 2, . . . , d (11)

V is m × d dimensional matrix, satisfying column vector
orthogonal

(V T V )ij = δij (12)

U is d × d dimensional diagonal matrix, satisfying that

(UT U)ij = (UUT )δij (13)

The covariance matrix A of X is

A = (XXT ) (14)

The covariance matrix A is d × d dimensional symmetric
matrix, its element is

Aij =
m∑

k=1

(xi+k−1xj+k−1), i, j = 1, 2, . . . , d (15)

The value of (15) reflects the correlation degree of coordi-
nate vector i and j. Using formula (10) instead of X in formula
(14), (14) becomes

A = XT X = USV T V SUT = US2UT (16)

Thereby

UT U = (XU)T XU = S2 = Λ = diag{λ1, λ2, . . . , λd}
(17)

It’s obvious that UT AU is covariance matrix of matrix Y ,
of which the elements equal to zero except those of diagonal.

This means that the variable i and j of the new matrix Y ,
transformed from matrix by coordinate transformation Y =
XU , are independent.Thus the coordinate system formed by
variables of matrix Y has orthogonal characteristic.

In fact, Λ = diag{λ1, λ2, . . . , λd} (The d eigenvalues are
organized with respect to decreasing values of themselves,
i.e.λ1 > λ2 > · · · > λi > · · · > λd ) is the d eigenvalues
of covariance matrix A and U =

[
u1 u2 . . . ud

]
is the

corresponding orthogonal eigenvector referred to as principal
eigenvectors. Assume that the d eigenvalues Λ of A mutually
different, the corresponding eigenvectors matrix U is exclusive.

Because the vector u has d values, the data matrix X has
projections correspondingly, especially yi is the projection of
X to ui

yi = Xui, i = 1, 2, . . . , d (18)

yi is called principal component (PC).
The coordinate transformation to extract PCs is

Yp = XUp (19)

where Yp is the output matrix called the matrix of principal
components (PCs), and UP =

[
u1 u2 . . . ui

]
is the set

of signal subspace eigenvectors. On the other hand, the (d− i)
minor components are given by

YM = XUM (20)

where UM =
[
ui+1 ui+2 . . . ud

]
consists of the (d−i)

eigenvalues associated with the smallest eigenvalues.
For formula (19) and (20), an important thing to do is to

determine the value of i, namely the number of the PCs. In
terms of computing the ”accumulative variance contribution
rate”

Y p =
i∑

j=1

λj/

d∑
j=1

λj (21)

of the first i components, we can judge the proper i value.
If the first i components’ ’accumulative variance contribution
rate’ is big enough, and has little change while i takes a bigger
value, the other (d− i) components can be regarded as noises,
and i is the number of PCs.

IV. FORECASTING MODEL BASED ON
EMBEDDING PHASE-SPACE AND BLIND SIGNAL

SEPARATION

Having determined the optimal delay step τ and embed-
ding dimension d of a time series’ embedding phase-space,
and having abstracted this phase-space’s principal components
matrix Yp , the next thing to do is constructing the forecasting
model of the time series {x(n)}.

For UP =
[
u1 u1 . . . ui

]
, formula (19) could be

written

YP = X
[
u1 u1 . . . ui

]
=
[
Xu1 Xu1 . . . Xui

]



=
[
y1 y1 . . . yi

]
=




y11 y12 . . . y1i

y21 y22 . . . y2i

...
...

. . .
...

ym1 ym2 . . . ymi


 (22)

For each column vector of Yp , construct an appropriate
forecasting model such as AR model and then proceed h steps
prediction separately. The prediction matrix Ŷp of Yp is written

ŶP =
[

YP
YP f

]
=




y11 y12 . . . y1i
y21 y22 . . . y2i

.

.

.

.

.

.

.
.
.

.

.

.
ym1 ym2 . . . ymi

y(m+1),1 y(m+1),2 . . . y(m+1),i

.

.

.

.

.

.

.
.
.

.

.

.
y(m+2),1 y(m+2),2 . . . y(m+2),i


 (23)

where Ŷp is h × i dimensional matrix. Then the h (hεZ)
steps’ forecasting data of time series {x(n)} are obtained by
the inverse transform of Ŷp

X̂ = ŶpU
T
P =

[
YP UT

P

YPfUT
P

]

=




x̂((d − 1)τ + 1) x̂((d − 2)τ + 1) . . . x̂(1)
x̂((d − 1)τ + 2) x̂((d − 2)τ + 2) . . . x̂(2)

.

.

.

.

.

.

.
.
.

.

.

.
x̂(n) x̂((n − 1) . . . x̂(n − d + 1)

x̂((n + 1)) x̂(n) . . . x̂(n − d + 2)

.

.

.

.

.

.

.
.
.

.

.

.
x̂((n + h)) x̂(n + h − 1) . . . x̂(n − d + h)


 (24)

From formula (24), it is obvious that the last h values
(x̂(n), (x̂(n+1), . . . , (x̂(n+h)) of the first column of matrix
X̂ are just the 1 ∼ h step forecasting value of {x(n)}. For
accurate prediction, h should not be too large.

As mentioned above, we can see that this forecasting model
has the advantage of simple computation and can realize h
steps. As a conclusion, the algorithm approved by this paper
can be summarized as Fig. 1.

Fig. 1. Flow of chart of forecasting algorithm approved by this paper

TABLE I
PREDICTION ERRORS OF TWO METHODS(BASED ON DATA OF

WEEKDAYS ONLY)

forecasting method SSE MARE

Forecasting algorithm approved by this paper 5.18185 2.2138
Wavelet neural network algorithm 7.9091 3.2778

V. EXPERIMENT RESULTS

For actual traffic flow data prediction, we use the analysis
method and forecasting algorithm mentioned above. In order to
obtain an accurate prediction, the traffic flow data for weekdays
and weekends should be discussed separately because there are
great differences between the characteristics of them. That is
to say, the model based on the historical traffic flow data for
weekdays (weekends) is used to forecast the next weekday’s
(weekend’s) traffic flow only.

This paper discusses the real traffic flow data of a section
of a highway that collected by the CATT Lab [10]. The
historic data was collected from 0:00 of Dec.1 to 15:00 of
Dec.28, 2006 (the sampling interval is five minutes). Use
these data to establish the forecasting model approved by this
paper and predict the traffic flow from 15:05 to 15:55 (the
prediction interval is five minutes, too). During the process
of constructing the forecasting model, we determine that the
optimal delay step and embedding dimension of embedding
phase-space are 12 and 5 separately, and the number of PCs
is 3, by the algorithm approved in this paper. The forecasting
results are plotted in Fig. 2. In order to verify the accuracy
and validity of the method approved in this paper, we use
a wavelet neural network model as comparison, the curve of
11 steps ahead forecasting data using wavelet neural network
approach is also plotted in Fig.2, too.
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Fig. 2. Comparison 1 between real data and prediction data with two
algorithms

This paper adopts two error measures: summary squares of
prediction error (SSE), mean absolute relative error (MARE),
the calculating result is shown in Table 1.

If the forecasting model is constructed with the historic flow
data including the data of weekends, the forecasting traffic flow
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Fig. 3. Absolute average errors with method this paper approves

TABLE II
PREDICTION ERRORS OF TWO METHODS(BASED ON DATA OF

ALL DAYS)

forecasting method SSE MARE

Forecasting algorithm approved by this paper 5.4545 2.2416
Wavelet neural network algorithm 8.7273 3.4985

from 15:05 to 15:55 of Dec.28, 2006 are plotted in Fig.4 and
the prediction errors are shown in Table II.
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Fig. 4. Comparison 2 between real data and prediction data with two algorithms

From the tables and pictures listed above, we can verify that
we should use forecast traffic flow of weekdays and weekends
separately. Also we can see that both the error parameters
of the algorithm approved in this paper are smaller than
the method using wavelet neural network. So the algorithm
approved in this paper is possibly superior to wavelet neural
network method for short-term traffic flow forecasting, and
has a certain application prospect. Fig.3 shows the relationship
between the forecasting steps and the absolute average errors.
It can be observed the forecasting steps of the model presented
by this paper should not be too large, and this model can
provide accurate short-term traffic flow forecasting.

VI. CONCLUSION

In recent years, people use a large number of forecasting
methods to forecast traffic flow, and have obtained great

achievements. This paper improves the forecasting model
based on the embedding phase-space, firstly introduces the
blind signal separation theory into the constructing of fore-
casting model, and then proposes a new algorithm which can
de-noise and predict the historic traffic flow series. On the
other hand, this forecasting model based on embedding phase-
space and blind signal separation has the characteristic of
self-adaptive by modifying the orthogonal transform matrix
UP real-time, and the analysis process of the historic data is
simple. But the main weakness of this forecasting model is
that we must use large number of historic data to construct
embedding phase-space. Another weakness is that we consider
no other factors that influence the traffic flow in this model.
The status of roads and weather greatly influence the traffic
flow, so how to include these factors in the traffic flow
forecasting model and construct an accurate forecasting model
with less data are problems need to be studied further.
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