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Abstract—The state coordination between robots in a multi- 
robot system is a crucial problem. In order to have a proper 
relative position and orientation of robots in a moving multi- 
robot formation, a coordination method is presented by using 
discrete orientation bias control. A moving structure graph for 
the formation is pre-specified. Based on the graph, a model of the 
formation is defined by two new kinds of artificial potential 
functions acting on each robot. The adjacent pair-wise robots in 
the formation are described in the cooperative leader-following 
framework without orientation constraints. The proposed control 
makes the global potential function maximum when the 
orientation bias between robots is zero. Therefore, the formation 
will follow its graph. In this case, the stability of the formation is 
proofed in the sense of Lyapunov. A simulation result of a 
marching square array with 9 robots is illustrated to validate the 
control with orientation bias. 

Keywords—multi-robot system, pair-wise, formation control, 
coordination  

I.  INTRODUCTION* 
Both cooperation and coordination are important problems 

between subsystems in a complex system. A system may be 
broken down when its coordinated control is failed. An 
intuitive example of cooperation or coordination is swarm 
behavior between members in a swarm of the natural world, 
such as in a flock of birds, a herd of land animals, and a school 
of fish [5], [7], [12]. In many man-made systems, the 
coordinated control is also investigated for a broad range of 
applications, such as multi-area power systems [1]-[2], 
complex networks [9], multi-agent systems [10] in automated 
highways, air traffic control, control of a cluster of telescopes, 
satellite formations, vehicle control involved in search and 
rescue operations, control of mobile robots capable of playing 
games, and formation flying of autonomous unmanned aerial 
vehicles (UAV), mentioned a few. Multiple mobile robots 
formation control is essentially a coordinated control for the 
position and orientation of multi-robots. Generally, there are a 
lot of approaches to modeling and solving multi-robot 
formation problems, which are based on swarm behaviors [5], 
[7]-[8], leader-follower [3], [11], virtual structures [6], graphs 
[4] and artificial potential functions [10]. Most of the 
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mentioned methods usually associate with each other as a 
combinational one. 

In order to develop a novel approach to controlling multi-
robot formation, a coordination method is presented using a 
discrete orientation bias control. First, the specification for the 
structure and motion of a multi-robot formation is described in 
the framework of graphs. In this graph, a vertex indicates a 
robot and its position and orientation. The edge is regarded as a 
relation between each pair of leaders and followers. Relative 
positions and orientations of each pairs are also defined based 
on a global heading direction of the multi-robot formation. 
Then, two artificial potential functions are defined to establish 
a model of multi-robot systems. The potential function acting 
on a robot is a function of orientation bias between the leader 
and the follower in the process of the formation following its 
graph. In the sense of orientation bias, the coordinated control 
is to make the global potential function of the formation modal 
maximum as the bias or error comes to zero. This implies that 
the multi-robot formation follows its pre-specified moving 
graph. Generally speaking, the formation structure in a two-
dimension space are composed of triangular localizations, only 
when in the narrow space its composition may switch to pair-
wise localizations [3]. However, in this paper, it is noted that 
the orientation between leaders and followers are not 
constrained. This idea allows us have a tool to deal with a 
three-robot group in a line marching on its vertical direction [4]. 
Therefore, the adjacent pair-wise robots in the formation can be 
described in the cooperative leader-following framework with 
all orientations. Finally, the stability of multi-robot formation is 
proofed in the sense of Lyapunov, witch guarantees 
convergence and collision-free stabilization of the formation, 
since all robots may be modeled as points [5], [7]. A marching 
square array of 9 robots, as an application, illustrates validity 
and feasibility of the proposed method for multi-robot 
formation control. 

The multi-robot formation of this paper is based on the 
following constraints: (i) All robots of the formation are the 
same in kinematic, dynamic and physical functions. Especially, 
each robot is as a point physically and is of a physical sensor, 
e.g., an omni-directional camera. Therefore, the robot can 
obtain the positions and orientations of its leaders and 
followers, and collisions between robots may not be happen. 
(ii) There is a virtual robot as the leader of the system, which 
not only plans a graph of moving structure and direction for the 
system, but also organizes robots into a formation by 



 

         

communication. (iii) Every robot except the virtual one in the 
system has at least one leader. (iv) The space for the multiple 
mobile robots is planar, that is, SE(2). Moreover, for simplicity, 
no static or dynamic obstacle is considered in the two-
dimension space. So the robot can always successfully step to 
its next desired position smoothly without any time delays. 

II. GRAPHS AND MODELS OF A FORMATION 
Consider that a multi-robot system with a virtual member is 

composed of n+1 robots in a two-dimension space, i.e. SE(2), 
which is described by a set R = {Ri}, i= 0, 1, 2, …, n, where, R0 
is the virtual robot with its heading direction O as a leader of R, 
subjected to constraint (ii). While each real robot Ri, i≠0, has 
the same heading direction as the one of R0 all the time.  With 
R, we associate a vertex set G={Gi} in a pre-specified 
moving digraph, where, Gi is corresponding to Ri, i= 0, 1, 2, 
…, n, respectively. Each vertex Gi in the digraph represents a 
desired position and orientation of Ri. Between vertexes Gi and 
Gj, a bidirectional edge with a direction lij or lji indicates a 
potential (a kind of attraction) acting on Ri or Rj. It is noted that 
this potential function is established by an orientation bias 
between robots Ri, i= 0, 1, 2, …, n, in the process of Ri 
following Gi. Therefore, all robots of R will form a formation 
and follow its moving digraph G. 

Assume that αi and αj are angles in polar coordinates for Gi 
and Gj, respectively. Let ∆αij = αi-αj, then, αij is defined as a 
relative angle between αi and αj by 







>∆∆−∆
≤∆∆

=
,π        ),(πsign2
,π                                ,

ijijij

ijij
ij ααα

αα
α              (1) 

Definition 1. A graph is said to be a discrete time dynamic 
digraph G(k) with a set G(k) = {Gi(k)} and a heading direction 
O(k) at time k, if its vertexes Gi(k) can be described by a triple 
(βi*(k), xi*(k), yi*(k)) in a plan, i= 0, 1, 2, …, n, where, βi*(k) is 
a directed angle clockwise from O(k) to the X-axis in Cartesian 
coordinates, while, xi*(k) = Gi(k) cos(αi(k)), yi*(k) = Gi(k) 
sin(αi(k)), both of which indicate two coordinates of Gi(k) in 
Cartesian coordinates, respectively; and if its directed edge 
between vertexes Gi(k) and Gj(k) is represented by lij(k) when 
the edge goes from Gi(k) to Gj(k) and by lji(k) when from Gj(k) 
to Gi(k). 

The above definition is commonly one to describe the 
position of robots in a formation, which can be found in the 
literatures (e.g. [3], [8]). However, it is evidently that a directed 
angle βi*(k) of Gi(k) is different from its angle αi(k). This idea 
brings a new potential function acting on Ri(k) by an orientation 
bias between Ri(k), its leaders and followers when Ri(k) is 
following Gi(k). This orientation bias depends on the relative 
angle of each pair of leaders and followers in the plan. 

According to Definition 1, a digraph for the multi-robot 
formation can be constructed by the cooperative action between 
the vertexes of G(k) as the desired position and orientation of a 
leader and/or follower in R(k). Because of constraint (ii), the 
virtual leader R0, a supervisor or a moving target, plays an 
important role in the formation. R0 arranges a pattern of the 
formation and pre-specifies a path or trajectory for the multiple 

mobile robots. It implies that R0(k) organizes original and 
future positions and orientations for Ri(k) as Gi(k) = (βi*(k), 
xi*(k), yi*(k)), i=0, 1, 2, …, n, k = 1, 2, …. Therefore, its 
diversified heading direction O(k) is always as a mobile 
direction for the formation, although the rest of R(k) may not be 
moving in the same direction instantly. Furthermore, R0(k) 
definitely choose at least one follower in R(k), which allows the 
robots to form a specified formation and moving in the 
determined direction properly. The real robots Ri(k), i=1, 2, …, 
n, may be as a follower of R0(k), and a follower and/or a leader 
of other members, which depends on both its adjacent robots 
and the decision of R0(k). All decisions and actions of Ri(k), 
i=1, 2, …, n, come from the interaction and communication 
between each other, especially the command of  R0(k). 

In the framework of digraph G(k) corresponding to R(k),  if 
Gi(k), i= 1, 2, …, n, has m followers, then, there are m outgoing 
edges named leader-attraction from it to its followers. While, if 
Gi(k) follows l leaders, then, there are l incoming edges from its 
leaders to itself. The opposite ones, from Gi(k) to its leaders, 
are regarded as follower-attraction. Therefore, the sum of all 
outgoing (or incoming) edge numbers of Gi(k) is m+l, where, m 
≥ 0, l ≥ 1, 1 ≤ m+l ≤ n. Distinguishingly, for G0(k), l = 0. 

Moreover, suppose that Gi(k) is a leader of Gj(k), i, j= 1, 2, 
…, n. From Definition 1 and (1), Lij(k) is defined as a leader-
attraction edge with direction lij(k), attraction point Lij along 
lij(k), and leader-attraction angle θij(k). On the other hand, Fji(k) 
is defined a follower-attraction edge with direction lji(k), 
attraction point Fji along lji(k), and follower-attraction angle 
ϕji(k). The relations between leader-attraction and follower-
attraction is as following: 

| Lij(k)| = |Fji(k) |,    |θij(k)-ϕji(k)| = π.              (2) 

A part of digraph for G(k) is shown in Figure 1. The first 
part of Figure 1 shows that the relations of leader-attraction and 
follower-attractions for a pair of vertexes Gi(k) and Gj(k). That 
the vertex Gi(k) has one leader G1(k) and two followers G2(k) 
and G3(k) are also illustrated as a second part of Figure 1.  

For convenience, suppose that the formation is dynamic and 
time discrete in SE(2) at time k, short for tk. Corresponding to 
desired G(k) ={Gi(k)} of  Definition 1, the set R={Ri} can also 
describe real positions and orientations of member Ri, i= 0, 1, 
2, …, n, by R(k) = {Ri(k)} with a triple (βi(k), xi(k), yi(k)) of its 
robot Ri(k). If Ri(k) is a leader of Rj(k), then, the position 
coordinates of attraction points Lij or Fji are given by (xij(k), 
yij(k)) and (xji(k), yji(k)). 
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Figure 1. A part of digraph for G(k) 



 

         

Now, let us introduce two potential functions based on the 
orientation bias. 

Definition 2. Let δθ1, δθ2, δθ3, λ and µ are positive 
constants, δθ1 ≤δθ2<<π/2, δθ3＞π/2, λ<1, µ<1, then the two 
potential functions PL(∆α) and PF(∆α) for leader-attraction and 
follower-attraction are, respectively, defined by 
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The curves of potential functions PL(∆α) and PF(∆α) are 
shown in Figure 2. 

To impose these two potential functions for the model of a 
multiple mobile robot system, a transformation has also to be 
taken into account, that is, 

∆α=π∆l/D                                 (5) 

where, ∆l represents a distance bias, D is a positive constant, a 
transformation coefficient. 

By Definition 2 and (5), if Ri(k) is a leader of Rj(k) and a 
follower of Rh(k), then, the leader-attraction and follower-
attraction potential functions acting on Ri(k) are represented by, 
respectively, 

PL(Rij(k))=PL(βj(k)-βi(k))+ 

+PL(π∆l(xj(k)-xij(k))/D)+ PL(π∆l(yj(k)-yij(k))/D), 

PF(Rih(k))=PF(βh(k)-βi(k))+ 

+PF(π∆l(xh(k)-xih(k))/D)+ PL(π∆l(yh(k)-yih(k))/D). 

(6) 

 
Figure 2. The curves of potential functions PL(∆α) and PF(∆α) 

If Ri(k), i= 1, 2, …, n, has m followers and l leaders, where, 
m ≥ 0, l ≥ 1, 1 ≤ m+l ≤ n, then the global potential function 
acting on Ri(k) is given by 

P(Ri(k)) = PL(Ri(k))+ PF(Ri(k)) 

= m
j 1=Σ PL(Rij(k))+ l

h 1=Σ PF(Rih(k)).                      (7) 

From (7), it is easy to see that P(Ri(k)) acting on Ri(k) will 
obtain maximum value when all biases of relative angles from 
Ri(k) to its leader and/or follower are zero. When all the global 
potential functions acting on every robot of R(k) = {Ri(k)} with 
a triple (βi(k), xi(k), yi(k)), i= 0, 1, 2, …, n, have reached their 
maximum value, the robots comes to its specified formation. 
As a discrete time dynamic model of the multi-robot formation, 
(7) characterizes the positive attraction aspect of robots in the 
system. This model combined with the digraph G(k) will give a 
basis for us to coordinate and control the formation. 

III. FORMATION CONTROL 
The formation control for the multi-robot system is based 

on the model established in Section 2 and under the constraints 
given in Section 1. Consider G(k)={Gi(k)} in Definition 1, i= 0, 
1, 2, …, n, which specifies the robots R(k)={Ri(k)} with a triple 
(βi(k), xi(k), yi(k)), i= 0, 1, 2, …, n,  respectively, at time k= 0, 
1,…. For each robot Ri(k), i= 0, 1, 2, …, n, its heading direction 
O(k) will not change at instant time k, unless it is in a period of 
time (k, k+1). The distance and velocity of Ri(k) moving a step 
∆Si(k) may be variant  in a period (k, k+1). 

The motion of the virtual robot R0(k) of R(k) with a triple 
(β0(k), x0(k), y0(k)) is decided by the vertex G0(k) of the digraph 
G(k) with a triple (β0*(k), x0*(k), y0*(k)). The model of R0(k) is 
given by Definition 2, then its control can be constructed by 

S0(k+1)= S0(k) + ∆S0(k), 

β0(k+1)= β0(k) + ∆β0(k), 

x0(k+1)= x0(k) + S0(k+1)cos(β0(k+1)), 

y0(k+1)= y0(k) + S0(k+1)sin(β0(k+1)),                 (8) 

where, ∆S0(k) and ∆β0(k) are a moving step and a deviation of 
directed angle of R0(k) at time k, inputted by the digraph G0(k) 
or an external controller. The initial moving step S0(0)≥0. 

The robot Ri(k) of R(k) with a triple (βi(k), xi(k), yi(k)) is 
also driven by the vertex Gi(k) of the digraph G(k) with a triple 
(βi*(k), xi*(k), yi*(k)). To increase the value of the global 
potential function for Ri(k), its control is  designed by 

Si(k+1)= S0(k), 

βi(k+1)= βi(k) + λ∆βi(k), 

xi(k+1)= xi(k) + Si(k+1)cos(βi(k+1))+λ∆xi(k), 

yi(k+1)=yi(k)+Si(k+1)sin(βi(k+1))+λ∆yi(k), i=1,2,…,n,  (9) 

where, λ is a step coefficient defined in Definition 2, (∆βi(k), 
∆xi(k), ∆yi(k))  is an increment of the triple (βi(k), xi(k), yi(k)), a 



 

         

orientation bias, which can be obtained by solving the gradient 
of P(Ri(k)) in (6), i.e., ∇P(Ri(k)). 

Definition 3. Let δθ1, δθ2, δθ3, λ and µ are positive 
constants, δθ1 ≤ δθ2<<π/2, δθ3 ＞ π/2, λ<1, µ<1, then, the 
derivatives of two potential functions PL(∆α) and PF(∆α) for 
leader-attraction and follower-attraction are defined by, 
respectively, 
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From Definition 3 and (6) and (7), three parts of the gradient 
∇P(Ri(k)), i= 1, 2, …, n, is given by 

∆βi(k) = ∂P(Ri(k))/∂βi(k),  ∆xi(k) = ∂P(Ri(k))/∂xi(k), 

∆yi(k) = ∂P(Ri(k))/∂yi(k).                     (12) 

To guarantee stability of the formation, the constraint 

λ(l+µ m)≤1                              (13) 

is required, where, l and m are the leader and follower numbers 
of Ri(k). 

When Ri(k) of R(k) is driven by the controller of (9), it 
implies that constraint (i) must be satisfied. If all the real robots 
of R(k) have reach their desired positions in a period of time (k, 
k+1), the next step will be considered. 

IV. STABILITY OF FORMATION CONTROL 
The problem of stability for the multi-robot formation is 

described as following: with the conditions (13) satisfied, the 
robots are driven by two controllers (8) and (9) defined for the 
virtual robot R0(k) and the real robots Ri(k), i= 1, 2, …, n, 
respectively. If there is a finite positive integer K such that 
when the time k≥K, the robots forms a pre-specified formation 
according to the digraph G(k) with ∆S0(k)=0 and ∆β0(k)=0, then 
the system is stable, otherwise unstable. 

For simplicity, assume ∆S0(k)=0 and ∆β0(k)=0 when k≥K, 
|βi(k)-βj(k)|<π for any robots Ri(k) and Rj(k) of R(k). 
Therefore, the orientation error of the triple (β(k), x(k), y(k)) 
between R(k) and G(k) is represented by 

e1i(k)=βi(k)-β0(k),   e2i(k)=xi(k)-xi*(k),   e3i(k) =yi(k)-yi*(k), 

i= 0, 1, 2, …, n,           (14) 

and the formation system can be rewritten as 

ej0(k+1)=0, 

e1i(k+1)= e1i(k+1)+ λ∆βi(k), 

e2i(k+1)= e2i(k)+ λ∆xi(k)+S(cosβi(k)-cosβ0(k)), 

e3i(k+1)= e3i(k)+ λ∆yi(k)+S(sinβi(k)-sinβ0(k)), 

i= 1, 2, …, n,  j= 1, 2, 3.   (15) 

Theorem 1. There exists a finite positive integer K such 
that a vector E1(k) =(e1i(k)) =0, i= 0, 1,…, n, for any time k≥K. 

Proof: Consider a real robot Ri(k). From (12) and (15), we 
get E1(k) =(e1i(k)) =0, i= 0, 1,…, n, as a discrete, time-invariant, 
nonlinear system, with its state equilibrium at the origin of the 
space. Construct a Liapunov function V(E1(k))=max(|e1i(k)|, 
i=1, 2, … ,n) and its differential ∇V(E1(k))=V(E1(k+1))-
V(E1(k)). Let ERi(k)=(e1i(k), e1h(k), e1j(k)), h=1, 2,…, l, j=1, 
2,…, m, emax= max(ERi(k)), emin=min(ERi(k)). From (1), (10)-
(13), ∇PF(Ri(k)) ≤0 ⇒ e1i(k+1) ≤ e1i(k) + λ∇PL(Ri(k)) ≤e1i(k)+ 
emax - e1i(k)= emax. While, ∇PF(Ri(k))>0, there exist at least one 
e1j(k), j= 1, 2,…, m, such that emax-e1i(k)- δθ2≥e1j(k) -e1i(k)- 
δθ2>0 ⇒emax >e1i(k)+δθ2 ⇒ emax >e1i(k)+δθ1. 

Therefore, in the case e1h(k)-e1i(k)≤δθ1, we have e1i(k+1) 
<e1i(k)+ δθ1 +λmµ(emax-e1i(k)- δθ2) = (e1h(k)+ δθ1 )+λmµemax -
λmµ(e1i(k)+δθ2) <emax+ λmµ(e1i(k)+ δθ1)-λmµ(e1i(k)+ δθ2)< 
emax. In the case e1h(k)- e1i(k)>δθ1, then, e1i(k+1) <e1i(k)+ λ( 
emax-e1i(k))+ λ mµ(emax-e1i(k)- δθ2)≤emax-λmµδθ2< emax. The 
two cases above imply that e1i(k+1) ≤emax, h= 1, 2,…, l. 

In the same way, we also get emin≤e1i(k+1), then emin≤
e1i(k+1)≤emax implies |e1i(k+1)|≤max(|emin|, |emax|)≤V(E1(k)). 

As Ri(k) is an arbitrary real robot, we obtain V(E1(k+1))≤
V(E1(k)), that is, ∇V(E1(k))= V(E1(k+1))- V(E1(k))≤0. 

Obviously, ∇V(E1(k)) will be not always equal to zero when 
V(E1(k))≠0. By using Liapunov stability theorem, we can 
derive limk→∞E1(k)=0. There must be a finite time K1 such that 
for any real Ri(k) and any k≥K1, |e1i(k)| ≤ δθ1/2 implies 
e1i(K1+1)= e1i(K1). So if e1h(K1)=0, then e1i(K1+1)=0; and if 
e1h(K1)≠0, then at K1+n, e1i(K1+n)=0. Let K=K1+n, we can 
derive E1(k)=0 when k≥K. 

Theorem 2. There exists a finite positive integer K such 
that a vector E(k) =(eji(k)) =0, i= 0, 1, 2, …, n, j= 1, 2, 3, for 
any time k≥K. 

Proof: Construct two Liapunov functions based on (15), 
V(Ej(k))= max(|eji(k)π/D|, i=1,2,…,n, j= 2, 3), by the way of 
proofs for Theorem 1, then the proof is straight forward. 

V. SIMULATIONS 
In this section, a formation of marching square array with 9 

robots is taken as an example to show the validity and 
feasibility of the proposed method for the multiple mobile 
robot formation control. Let R0 be a moving target, which will 
turns π/90 clockwise at a step, and the moving direction of 
which will not change after 45 steps. The specified digraph 
G(k) and the parameters of the swarm formation are the 



 

         

following: D=2.4, λ=0.19, δθ1=π/90, δθ2=π/30, δθ3=4, 
S0(k)=0.22; vertexes Gi(k) associated with robots Ri(k), i=1, 2, 
…, 9, have their leaders Gi(k), i=0, 1, …, 8, interval 3 and 
leader-attraction angle π, except that the interval between G0(k) 
and G1(k) is 2; G1(k) and G4(k) are the leaders of G4(k) and 
G7(k) with interval 2 and leader-attraction angle -π/2, 
respectively. 

By using the orientation bias control, two cases are 
considered. µ=0 is in Case one and µ=0.3 in Case two. Figure 3 
and Figure 4 show the both simulation results of two cases, 
when the formation comes to 60 steps and 80 steps. 

From Figures 3 and 4, a formation of marching square array 
is obtained under pre-specified digraph and constraints. The 
robots move along the specified path stably. Furthermore, it is 
clearly to see that the robot moving trajectories in Case one are 
converged a little bit fast than, but are not as smooth as those in 
Case two. The reason is that the coordination between the 
leader and follower is not considered in Case one when µ=0. In 
Case two, when µ=0.3, the potential functions of both leader-
attraction and follower-attraction are taken into account as in 
[11]. Each robot Ri(k) by this orientation bias control acts as a 
coordinator negotiating between its leaders and followers. The 
collaboration of the robots makes the formation harmony as a 
result of tradeoff in Figure 4. 

VI. CONCLUSIONS 
There are three main contributions in this paper. First, a 

pre-specified discrete time dynamic digraph G(k) with a virtual  
leader has been introduced for a basis of orientation bias 
formation control, where the real robots of the system may be 
of more than one leader and/or follower. The potential 
functions of both leader-attraction and follower-attraction then 
have been defined for modeling of the multi-robot formation. 
The considered follower-attraction can make the multi-robot 
formation harmony in its moving process. In the framework of 
coordination, the global potential function comes to maximum 
when the orientation bias reduced to zero, and the formation 
control algorithm is convergent and stable. Second, the stability 
of the formation control has been proofed in the sense of 
Lyapunov. The gradient of the global potential function has 
been calculated and helped for the proof. Finally, a simulation 
result of a formation of marching square array with 9 robots 
has been obtained in order to validate the proposed method for 
multi-robot formation control. The future research work may 
be introducing the leader-repulsion and follower-repulsion into 
our artificial potential functions. The action of leader- repulsion 
and follower-repulsion may help robots to prevent collision 
each other and to avoid barriers in the space. Although the 
repulsion is not considered in this paper as in the most 
literatures, the proposed coordinated control is promising for a 
swarm formation in a three-dimension space. 
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(a) 60 steps                                                 (b) 80 steps 

Figure 3.  A formation turns π/2 clockwise (µ=0). 

     
(a) 60 steps                                              (b) 80 steps 

Figure 4. A formation turns π/2 clockwise (µ=0.3). 

 


