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Abstract—This paper presents a discrete-time recurrent neural
network (RNN) model for solving nonlinear differentiable con-
strained optimization problems, which contain the special case
of convex optimizations over constrained sets and variational
inequality problem. The qualitative analysis results about the
regularity and completeness of the proposed network have been
obtained. It is shown that all trajectories starting from any initial
point in �n converge to the equilibrium set of the recurrent
system. This RNN model shows its great simplicity in contrast
to other existing neural network solvers. Simulations for a classs
of large scale linear complementarity problems illustrate the fast
convergence and features of the proposed RNN model.

Index Terms—Discrete time recurrent neural networks, con-
vergence, nonlinear optimization, quadratic optimization.

I. INTRODUCTION

Constrained nonlinear differentiable optimization (NDO),
especially the quadratic optimization, is an important problem
in mathematical programming which has numerous applica-
tions in many fields of science and engineering. Since the
early work of [1] and [2], the construction of recurrent neural
network (RNN) for solving linear and nonlinear programming
has been an active topic in the field of neural networks ([3]–
[11]). Since there is a two-way bridge connecting the nonlinear
optimization and variational inequality problem (VIP) ([12]
and [13]), solving nonlinear optimization is also valuable in
the sense that it allows one to apply the results from NDO to
VIP. Thus, finding solutions of NDO has importance not only
in theory but also in applications. The optimization problem
over a convex subset can be described by

minimize E(x) subject to x ∈ Ω. (1)

In the recent neural network literature, there exist a few
RNN models for solving nonlinear optimization and linear
variational inequality problem over convex constraints (see,
e.g., [9], [14], [15]). In [9], a discrete-time RNN model is pro-
posed to solve strictly convex quadratic programs with bound
constraints. Sufficient conditions for the global exponential
convergence of the RNN model and several corresponding
neuron updating rules are resented in [9]. In [14], a continuous
time RNN is presented for solving bound-constrained nonlin-
ear optimization. In [15] a continuous time neural network
model based on projection-contraction (PC) method to solve

monotone linear asymmetric variational inequality problem
(LVIP) is presented.

In this paper, we propose a discrete-time RNN model for
solving nonlinear optimization with any continuously differ-
entiable objective function. Therefore, quadratic optimization
problem as the special cases of nonlinear optimization, as well
as LVIP, can also be solved by the proposed RNN model.
Furthermore, the RNN model is regular in the sense that
any constrained optimum of the objective function is also an
equilibrium point of the RNN. If the minimized function is
convex, then the RNN is complete in the sense that the set of
optima of the objective function with bound constraints is equal
to the set of equilibria of the RNN. It has the quasiconvergence
and attractivity property that all trajectories starting from
the �n, including the feasible region will converge to the
set of equilibria of the RNN. For strictly convex quadratic
optimization problems with bound constraints, the RNN model
is global exponential stable which does not require additional
conditions against the matrix. The most attracting advantages
of the proposed RNN model lie in its simplicity and its
efficiency to handle large scale optimization problems. In
addition, the discrete-time RNN model has some advantages
over the continuous-time counterpart in numerical simulation
and digital implementation.

The organization of this paper is as follows: Section II gives
some preliminaries and the problem formulation. Section III
describes the discrete time RNN model for solving nonlin-
ear differentiable optimization problems. Global exponential
stability (GES) analysis of the strictly convex quadratic op-
timization problem is given in Section IV. In section V the
performances of the network are illustrated by two illustrative
simulations. Conclusions are drawn in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

For each vector x = (x1, · · · , xn)T ∈ �n, we denote ‖x‖ =√
xT x.
Definition 1: Let Ω be a nonempty, closed and convex

subset of �n, the projection of a point y ∈ �n onto the set
Ω, denoted by ProjΩ(y), is defined as the unique solution to
the mathematical program: min ‖y − x‖, where x is a vector
in Ω.

Property 1: The projector operator Proj(·) has the follow-
ing properties:
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(1)ProjΩ(x) = x ⇔ x ∈ Ω.
(2)(ProjΩ(y) − y)T (ProjΩ(y) − x) ≤ 0 ∀y ∈ �n,∀x ∈ Ω.
(3)‖ProjΩ(y)− ProjΩ(x)‖ ≤ ‖y − x‖, ∀y, x ∈ �n, i.e., it is
nonexpansive in �n.

Definition 2: Let Ω be a nonempty, closed and convex
subset of �n, the distance from the point y to the set Ω is
defined by

dist(y,Ω) = min
x∈Ω

‖y − x‖ = ‖y − ProjΩ(y)‖.

And we define that a sequence {y(k)} converges to Ω if
dist(y(k),Ω) → 0 as k → ∞.

Lemma 1: Let F (x) : �n → �n be a continuous mapping.
If there exist a bounded sequence x(k) ∈ �n for k ≥ 0 such
that F (x(k)) → 0 as k → ∞, then

Ω0 = {x ∈ �n|F (x) = 0}
is a closed and nonempty set and

dist(x(k),Ω0) → 0 as k → ∞.

Proof: The boundedness of x(k) implies that it has a
convergent subsequence whose limit is obviously in Ω0 from
the continuity of F (x) and the assumption that F (x(k)) → 0
as k → ∞, i.e., the set Ω0 is nonempty.

In the following, we will show dist(x(k),Ω0) → 0 as
k → ∞ by the contradiction method. It is assumed that there
exists a positive constant ε ≥ 0 such that for any positive
number K0 there exists a corresponding positive number
K ≥ K0 satisfying dist(x(K),Ω0) ≥ ε. Let x(k) has a
convergent subsequence x(kj) such that

dist(x(kj),Ω0) ≥ ε > 0 ∀j ≥ 1 (2)

where K0 ≤ k1 < k2 < · · · < kj−1 < kj < · · · < ∞ and
kj → ∞ as j → ∞. Let the vector x̄ be the limit of x(kj),
i.e., lim

j→∞
(x(kj)) = x̄, which satisfies F (x̄) = 0, i.e., x̄ ∈ Ω0.

Thus, it follows that

dist(x(kj),Ω0) ≤ ‖x(kj) − x̄‖
for all j ≥ 1. The right side of this inequality approaches
to zero if taking the limit as j → ∞. Therefore we obtain
dist(x(kj),Ω0) → 0 as j → ∞, which contradicts the initial
assumption. Thus the lemma is proved.

III. THE DISCRETE TIME RNN MODEL FOR NONLINEAR

DIFFERENTIABLE OPTIMIZATION

In this section, we will analyze the qualitative property of
the proposed discrete time RNN model to solve the nonlinear
differentiable minimization problems over convex constraints.
The discrete time neural network model is described as

xi(k + 1) = f
(
xi(k) − αi

∂E(x)
∂xi(k)

)
(3)

for all k ≥ 0, i = 1, 2, · · · , n, where αi is any positive constant.
The activation function f is a projection operator as defined
by Definition 1 and f(x) = (f1(x1), f2(x2), · · · , fn(xn))T .

The projection operator is assumed to be easily im-
plemented. For bounded constraint set, Ω = [c, d] =
{x ∈ �n|ci ≤ xi ≤ di, i = 1, 2, · · · , n}, it takes the form of,
in component wise,

fi(θ) = max(ci,min(θ, di)).

If Ω = [0,∞) = {x ∈ �n|xi ≥ 0, i = 1, 2, · · · , n}, then

fi(θ) = max(0, θ).

If we define a positive diagonal matrix Λ =
diag(α1, α2, · · · , αn), then the RNN model can be represented
by the following compact matrix form:

(N) x(k + 1) = f(x(k) − Λ∇E(x(k))). (4)

We define the solution set

Ω∗ = {x∗ ∈ Ω|E(x) ≥ E(x∗),∀x ∈ Ω}
for the minimization problem (8) and the equilibrium set

Ωe = {x ∈ �n|x = f(x − Λ∇E(x))}
for the RNN model (N). It is assumed Ω∗ 
= ∅. It can be seen
that Ω∗ and Ωe are both closed.

Theorem 1: The discrete time RNN model (N) is regular,
i.e., Ω∗ ⊆ Ωe. Furthermore, if the objective function E(x) is
convex on Rn, then the RNN model is complete, i.e., Ω∗ = Ωe.

Proof: Let x∗ ∈ �n be a minimizer of the minimization
problem (8), if and only if it satisfies the first-order necessary
optimum condition

∇E(x∗)T (y − x∗) ≥ 0,∀y ∈ Ω. (5)

This inequality coincides with the variational inequality prob-
lem. By the fundamental results in [12] (see also [13]), any
solution to variational inequality problem is equivalent to be
an equilibrium of the recurrent system (N). This proves that
Ω∗ ⊆ Ωe.

In order to prove that the RNN model is complete, it
remains to show that Ωe ⊆ Ω∗. Let xe be an equilibrium
of the system (N), i.e.,

xe = f(xe − Λ∇E(xe)),

which is equivalent to

(x − xe)T Λ∇E(xe) ≥ 0,∀x ∈ Ω.

Since Λ > 0, we obtain the first-order optimum condition as
(5). Thus xe ∈ Ωe. The proof is completed.

In contrast to the continuous time dynamical systems (see,
e.g., [14]), the solution trajectory of the discrete time system
(N) starting from any initial point in �n will be mapped into
the constraint set after the first iteration, and it will remain in
this set, i.e., dist(x(k + 1),Ω) = 0,∀k ≥ 0. Clearly, Ω is a
positive invariant and attracting set ([19]) of the system (N).

Theorem 2: Any solution trajectory of the discrete time
system (N) starting from the inside of Ω converges to Ωe.



Proof: Without loss of generality, we establish the proof
by showing each component of any solution trajectory of the
discrete time system (N) from the inside of Ω converges to
Ωe.

Let hi(k) = αiE(x(k)) and

yi(k) = xi(k) − αiE(x(k)), αi > 0,

for i = 1, 2, · · · , n,∀k ≥ 0 , we have

∆hi(k) = hi(k + 1) − hi(k)
= (αi∇E(xi(k)))T (xi(k + 1) − xi(k))
= [(xi(k) − fi(yi(k))) + (fi(yi(k)) − yi(k))]T

[fi(yi(k))) − xi(k)]
[use Property 1]

≤ −‖xi(k) − fi(xi(k) − αi∇E(xi(k)))‖2

= −‖ei(k)‖2

≤ 0.

Here ‖e‖ =
√∑n

i=1 ‖ei‖2 is called an error bound which
measures how much x(k) fails to be in Ωe. Since

hi(k + 1) = ∆hi(k) + hi(k)

Repeatedly, we have

hi(k + 1) =
k∑

j=0

∆hi(j) + hi(0)

≤ −
k∑

j=0

‖ei(j)‖2 + hi(0). (6)

Consider the boundedness of hi(k), ‖ei(k)‖ → 0 as k → ∞,
i.e.,

xi(k) − fi[xi(k) − αi∇E(xi(k))] → 0 as k → ∞.

Therefore, from Lemma 1, we obtain

dist(xi(k),Ωe) → 0

as k → ∞, i = 1, 2, · · · , n,
In other words, every component of any solution trajectory

converges to Ωe. This completes the proof.
Let Ω be a nempty subset of �n and let F be a mapping

from �n onto itself. The variational inequality problem, de-
noted by VIP(Ω, F ), is to find a vector x∗ ∈ Ω such that

F (x∗)T (y − x∗) ≥ 0 ∀y ∈ Ω. (7)

When F (x) is an affine function of x, i.e., F (x) = Mx + q
for some given vector q ∈ �n and matrix M ∈ �n×n, the
problem VI reduces to the linear variational inequality problem
(LVIP). If F (x) be the gradient of a real-valued differentiable
function E : �n → �, and E is a convex function, then solving
VI(Ω, F ) is equivalent to find the solution of the following
optimization problem over a convex subset [13]:

minimize E(x) subject to x ∈ Ω. (8)

For the case of LVIP(Ω,M, q), the objective function E(x)
is not known a-priori, in order to employ the network (N),
we should construct an equivalent differentiable function. Let
F (x) = Mx + q, then the objective function is given as

E(x) = −F (x)T (f(x)− x)− 1
2
(f(x)− x)T (f(x)− x). (9)

Clearly, E(x) is continuously differentiable and its gradient is
given by

∇E(x) = F (x) − (∇F (x) − I)(f(x) − x), (10)

where I is an identify matrix (see Theorem 3.2, [16]).

IV. GES ANALYSIS FOR STRICTLY CONVEX QUADRATIC

OPTIMIZATION OVER BOUND CONSTRAINTS

Quadratic optimization is an important case of nonlinear
optimization problem. In this section, we consider the strictly
convex quadratic optimization over bound constraints. This
class of optimization problem can be described by

min
{

1
2
xT Ax + xT b

∣∣∣∣ x ∈ Ω
}

, (11)

where A is positive definite.
We will use the following neural network to solve this

problem:

(NQ) x(k + 1) = f
(
x(k) − α(Ax(k) + b)

)
, (12)

where α > 0 is some constant.
Definition 3: The neural network (NQ) is said to be glob-

ally exponentially converge, if the network exists a unique
equilibrium xe and there exist constants η > 0 and µ ≥ 1
such that

‖x(k + 1) − xe‖ ≤ µ‖x(0) − xe‖ exp (−ηk)

for all k ≥ 0. The constant η is called a lower bound of the
convergence rate of the network (NQ).

Since A is a positive definite matrix, then all of its eigen-
values are positive. Let λi > 0(i = 1, · · · , n) be all the
eigenvalues of A. Denote λmin and λmax the smallest and
largest eigenvalues of A, respectively.

Since the constraint region is a convex set, the strict convex
quadratic optimization problem has a unique minimizer x∗ ∈
Ω and Ω∗ = Ωe = {x∗}. The following lemma about the
existence and uniqueness of the equilibrium point was proved
in [9], which can also be derived from the completeness of the
network (NQ) (Theorem 1 in the last section).

Lemma 2: For each α > 0, the network (NQ) has a unique
equilibrium point and this equilibrium point is the minimizer
of the quadratic optimization problem (11).

Exponential stability is an important dynamical property for
recurrent neural networks, and the exponential convergence
rate can be calculated explicityly as reported in [17]. In the
previous work [18], the following theorem has been proved.

Theorem 3: For each α, if

0 < α <
2

λmax



then the network (NQ) is globally exponentially converge with
a lower bound of convergence rate

η(α) = − ln r(α) > 0.

Remark 1: To further improve the numerical stability and
convergence speed of the network, we can use the precondi-
tioning technique in [3] to reduce the conditioner number of
the matrix A. We first define a diagonal matrix P with the
diagonal elements pii = 1/

√|aii|(i = 1, · · · , n), then some
transformations are performed such that

Ã = PAP, b̃ = Pb, c̃ = P−1c, d̃ = P−1d.

Since tra(Ã) = n, the network (NQ1) becomes

(NQ2)




x̃(k + 1) = f
(
x̃(k) − 2

n (Ãx̃(k) + b̃)
)

x(k + 1) = P x̃(k + 1)
(13)

for k ≥ 0.

V. NUMERICAL SIMULATIONS

In this section, we apply the proposed discrete time RNN
model to a special class of linear variational problems, namely
the linear complementarity problem: Find a vector x∗ ∈ Ω such
that

(Mx∗ + q)T (y − x∗) ≥ 0 ∀y ∈ Ω (14)

where Ω is the nonnegative orthant of Rn, i.e., Ω = [0,+∞).
To apply the proposed recurrent neural network model (4),

an equivalent optimization function is firstly to be defined. It
follows from equation (9) that

E(x) = −(Mx + q)T (f(x) − x) − 1
2
(f(x) − x)T (f(x) − x).

(15)
Then its gradient is derived from (10):

∇E(x) = Mx + q − (M − I)(f(x) − x). (16)

Hence, the general RNN model (4) is reduced to such an
explicit dynamic system: k ≥ 1

g(k) = Mx(k) + q − (M − I)(f(x(k)) − x(k)),
x(k + 1) = f(x(k) − Λg(k)). (17)

In the following simulations, the error estimation is ‖e‖∞ ≤
10−6 for the stopping criterion.

Example 1: Consider a classical linear complementarity
problem LCP(Ω,M, q), where q = (−1, · · · ,−1)T ∈ �n and
M is an n × n upper triangular matrix

M =




1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1




which is positive definite but asymmetric. This problem has a
unique solution x∗ = (0, · · · , 0, 1)T for any n.

This example is the same as the second example in [15]
where a continuous time neural network model based on
projection-contraction (PC) method is employed to handle this
problem. The network based on PC method, which involves
several steps to calculate a descent direction of a distance
function, demonstrates its advantages in faster convergence
speed in a linear programming example compared with three
classes of neural network models investigated in [7] and in
the above asymmetric LCP compared with Damped-Newton
method.

Since M is positive definite, the LCP can be solved
by the discrete time RNN model (N) for general nonlinear
differential objective functions presented in Section III. By
running the dynamical equation (17), we simulate the problem
of dimensions from n = 8 up to n = 4000, although it still
works well for larger dimensions for this problem. Let the
scaling constants αi = 0.6, i = 1, 2, · · · , n. All elements of
the starting vectors are randomly uniformly distributed in the
range (0, 1). Table I gives the iteration numbers of the solution
trajectories converging to the unique solution with respect to
different dimensions.

TABLE I
RESULTS BY THE PROPOSED RNN MODEL

n 8 16 32 64 128 256 512 1000 2000 4000
k 11 11 11 11 10 11 11 11 11 10

n=Dimension of the problem, k=Iteration number.

We depict the last five components of the trajectory starting
from a randomly initial point in �n for the problem of 40,
400 and 4000 dimensions in Figs. 1, 2 and 3, respectively.
For all different dimensionalities of the problem, tt is found
that the network converges to the unique solution after about
11 iterations. This simulation example illustrates that the
proposed network has a very fast convergence behavior, and
the computation cost does not scale up when the scale of the
simulated problem increased.

The searching trajectories are significantly different for the
proposed network behavior and the gradient projection method.
For example, when the current point lies within the constraint
region, the gradient projection searches along the minus gra-
dient direction in the next iteration; while this behavior only
happens with the network when all the αi take the same value
[9]. Such behaviors imply that parallel implementation for the
proposed discrete time network is direct. In addition, from
the programming point of view, the implementation of the
presented network model is simpler than that of neural network
based on gradient projection method which involves several
steps to compute a descent direction.

VI. CONCLUSIONS

In this paper we have proposed a general discrete time
recurrent neural network model for nonlinear differentiable
constrained optimization and obtained the qualitative analysis
results about the regularity, completeness, and attractivity of
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Fig. 1. The trajectories of the last five components of x for n = 40, α = 0.6.
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Fig. 2. The trajectories of the last five components of x for for n = 400, α =
0.6.

the RNN model. All the solution trajectories starting from any
point in �n converge to the equilibrium set of the network.
The network is globally exponentially convergent for strictly
convex quadratic optimization problem and it does not impose
additional requirements over the matrix. Simple and practical
conditions are derived to guarantee this property. The network
demonstrates fast convergence for a quadratic optimization and
a classical LCP and great insensitivity to different dimensions
of the latter hard problem. Its technical simplicity suggests it
to be suitable for digital implementation and a good choice for
real-time solver.
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Fig. 3. The trajectories of the last five components of x for for n = 4000, α =
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