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Abstract—Different multiattribute decision making (MADM) 
methods often produce inconsistent ranking outcomes for the 
same problem. In group decision settings, individual ranking 
outcomes made by individual decision makers are often 
inconsistent with the group ranking outcome. To address the 
inconsistency problem of ranking outcomes, this paper develops a 
new validation approach for selecting the most valid ranking 
outcome among all feasible outcomes. Based on four 
normalization procedures and three aggregation procedures, nine 
MADM methods are developed to solve the general group 
MADM problem that requires cardinal ranking of the decision 
alternatives. The validation approach selects the group ranking 
outcome of an MADM method which has the highest consistency 
degree with its corresponding individual ranking outcomes. A 
scholarship student selection problem is used to illustrate how the 
approach works. The approach is applicable to large-scale 
multiattribute group decision problems where inconsistent 
ranking outcomes often exist between different MADM methods 
and between different decision makers. 
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I.  INTRODUCTION 
Multiattribute decision making (MADM) has been widely 

used in supporting decisions in ranking or selecting one or 
more alternatives from a finite number of alternatives with 
respect to multiple criteria or attributes. Quite a few MADM 
methods have been developed for a wide variety of decision 
problems [1][2]. These decision problems can be solved by 
various MADM methods. However, there is no best method for 
the general MADM problem, due to the multiplicity and 
complexity of multiattribute decisions. In decision situations 
where cardinal ranking of all or a subset of the alternatives is 
required, different methods often produce inconsistent ranking 
outcomes for the same problem [3][4]. As such there is a need 
to apply all the methods available to solve an MADM problem 
and select the most valid method that best reflects the values of 
the decision makers [5][6]. 

Validation in MADM research have been conducted to 
address three main issues including the problem formulation in 
relation to the definition and scoring of attributes, the 
quantification of weights, and the selection of the MADM 
methods [7]. The results of MADM research suggest that the 
validation of MADM methods remains a major challenging 
issue [8]. In this paper, we focus on the validation of decision 

outcomes produced by various MADM methods for a given 
group MADM problem. In this group MADM problem, a 
collective or group decision is to be made for evaluation or 
selection of alternatives based on the opinions of all individual 
decision makers involved with respect to a set of conflicting 
criteria or attributes. 

The issue of the MADM method selection has been 
addressed from various decision contexts along two lines of 
development: (a) experimental comparisons of MADM 
methods for examining their appropriateness of use and/or 
theoretical validity, and (b) method selection procedures for 
specific characteristics of the decision problem and distinct 
features of available methods in the form of decision support 
systems or as general selection principles [3]. These studies 
cannot result in a set of guidelines or practical decision support 
systems that enable decision makers to select a proper MADM 
method for a specific problem in practice. Due to their implicit 
and explicit assumptions, these studies do not normally 
examine the validity of the decision outcome. To address this 
validation issue in MADM research for supporting group 
multiattribute decisions, we present a new validation approach. 
The approach can select the most valid ranking outcome from a 
number of ranking outcomes produced by available MADM 
methods in the context of group decision making. 

The most widely used theory in solving MADM problems 
probably is the multiattribute utility theory or multiattribute 
value theory (MAVT) [9]. With simplicity in both concept and 
computation, MAVT-based MADM methods are intuitively 
appealing to the decision makers in practical applications. 
These methods are particularly suited to decision problems 
where a cardinal preference or ranking of the decision 
alternatives is required. In addition, these methods are the most 
appropriate quantitative tools for group decision support 
systems [10][11]. As such, this paper considers three main 
MAVT-based MADM methods which are applicable to large-
scale decision problems where the ranking outcomes produced 
by different methods are most likely to be significantly 
different. 

Despite their diversity, MAVT-based MADM problems 
often share the following common characteristics: (a) a finite 
number of comparable alternatives, (b) multiple attributes 
(evaluation criteria) for evaluating the alternatives, (c) non-
commensurable units for measuring the performance rating of 



         

the alternatives on each attribute, and (d) attribute weights for 
representing the relative importance of each attribute. The 
performance ratings of the alternatives on all attributes are to 
be aggregated with the attribute weights using an MADM 
method in order to obtain an overall preference value for each 
alternative. The resultant overall preference values provide a 
cardinal ranking of the alternatives. 

In subsequent sections, we first discuss the general MAVT-
based group MADM problem together with available methods. 
We then present the new approach for validating the ranking 
outcomes produced by available methods. Finally we conduct 
an empirical study of a scholarship student selection problem to 
demonstrate the effectiveness of the approach. 

II. THE GROUP MADM PROBLEM 
The group MADM problem involves a finite set of m 

decision alternatives Ai (i = 1, 2, ..., m), which are to be 
evaluated by a group of p decision makers DMk (k = 1, 2, …, p) 
with respect to a set of n attributes or criteria Cj (j = 1, 2, ...,n). 
These evaluation criteria are measurable quantitatively or 
assessable qualitatively, and are independent of each other. 
Assessments are to be made by each decision maker DMk (k = 
1, 2, …, p) to determine (a) the weight vector Wk = (wk

1, wk
2, 

…, wk
n) and (d) the decision matrix Xk = {xk

ij, i = 1, 2, …, m; j 
= 1, 2, …, n}. 

The weight vector Wk represents the weights (relative 
importance) of the attributes Cj (j = 1, 2, ...,n) given by the 
decision maker DMk using a cardinal scale. Cardinal weights 
are usually normalized to sum to 1, in order to allow the weight 
value to be interpreted as the percentage of the total importance 
weight. The decision matrix Xk represents the performance 
ratings (xij) of alternative Ai (i = 1, 2, ..., m) with respect to 
attributes Cj (j = 1, 2, ..., n), which are either objectively 
measured (for quantitative attributes) or subjectively assessed 
by the decision maker DMk (for qualitative attributes) using 
cardinal values. 

The cardinal values given in the weight vector Wk and the 
decision matrix Xk represent the absolute preferences of the 
decision maker DMk. These individual weight vectors and the 
decision matrices are averaged to represent the group weight 
vector W and group decision matrix X. As such, the group 
weight vector is given by  

 W = (w1, w2, …, wn)                                           (1) 

where    wj = pw
p k

j
k
∑

=1
;   j = 1, 2, …, n. 

The group decision matrix X is given by 
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where  xij = px
p k

ij
k
∑

=1
;    i = 1, 2, …, m;  j = 1, 2, …, n.  

The W in (1) and X in (2) indicate that the opinions of all p 
decision makers on attribute weights and alternatives’ 
performance ratings are weighted equally. 

Given the group weight vector W and the group decision 
matrix X, the objective of the problem is to rank all the 
alternatives by giving each of them an overall preference value 
with respect to all attributes. 

III. MADM METHODS 
The general group MADM problem presented above can be 

solved by MAVT-based methods, such as (a) the simple 
additive weighting (SAW) method, and (b) the technique for 
order preference by similarity to ideal solution (TOPSIS) and 
(c) the weighted product (WP) method. The main differences 
between these methods lie in (a) the normalization procedure 
for comparing all performance ratings measured using non-
commensurable units on a common scale, and (b) the 
aggregation procedure for combining the normalized decision 
matrix and weight vector for obtaining an overall preference 
value for each alternative [3]. Due to these structural 
differences, the ranking outcome produced by these methods 
may not always be consistent for a given decision matrix and 
weight vector. In fact, the empirical study presented in this 
paper shows that the individual rankings are so different from 
the group rankings that the relative effectiveness of the MADM 
methods used needs to be examined to help make rational 
group decisions. 

An MADM method in essence involves two key 
procedures: normalization and aggregation. In general 
applications, quantitative performance ratings of the 
alternatives are often assessed by different measurement units. 
MADM methods thus use a normalization procedure in order to 
make the comparison across performance ratings under 
different units in a decision matrix compatible. For example, 
SAW uses the normalization procedure of linear scale 
transformation (max), and TOPSIS uses the vector 
normalization procedure. However, there are other 
normalization procedures that can be used with MADM 
methods, independent of the aggregation procedure used. The 
following lists four available normalization procedures for 
MADM methods [12]. 

A. Normalization Procedures 
1) Vector Normalization (N1) 

This procedure divides the performance ratings of each 
attribute in the decision matrix by its norm. The normalized 
performance ratings (rij) of xij in the decision matrix are 
calculated as 

∑
=

=
m
i ij

ij
ij

x

x
r
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                                                (3) 

The vector normalization procedure implies that all 
attributes have the same unit length of vector. The main 
advantage of this procedure is that every attribute is measured 
in dimensionless units, thus making it easier for inter-attribute 
comparisons. The main disadvantage is that it does not lead to a 
measurement scale of equal length because the minimum and 
maximum values of the scales are not equal to each attribute. 



         

Due to a non-linear scale transformation, a straightforward 
comparison is hard to make [2]. 

2) Linear Scale Transformation, Max-Min Method (N2) 
This procedure uses the following formulas to normalize 

the decision matrix (xij) for benefit (the larger xj, the greater the 
preference) attributes and cost attributes (the smaller xj, the 
greater the preference) respectively. 
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where max
jx  and min

jx are the maximum and minimum values of 
the jth attribute respectively. The advantage of this 
normalization procedure is that the scale of measurement 
ranges precisely from 0 to 1. The lowest normalized 
performance rating of a attribute is 0, while the highest 
normalized performance rating is 1. A possible drawback of 
this procedure is that the scale transformation does not lead to a 
proportional change in performance ratings [2]. 

3)  Linear Scale Transformation - Max Method (N3) 
This procedure divides the performance ratings of each 

attribute by its maximum value. The normalized value of xij for 
benefit and cost attributes is given respectively as 
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where max
jx  is the maximum value of the jth attribute. The value 

of the normalized rij ranges from 0 to 1, and the attribute is 
more favorable as rij approaches 1. The significance of the 
scale transformation is that all performance ratings are 
transformed in a linear (proportional) way, so that the relative 
order of magnitude of the performance ratings remains equal 
[2]. 

4) Linear Scale Transformation - Sum Method (N4) 
This procedure divides the performance ratings of each 

attribute Cj (j = 1, 2, …, n) by the sum of performance ratings 
for that attribute, as follows: 

∑
=

=
n
j j

ij
ij x

x
r

1
                                                        (6) 

where xj is performance rating for each alternative Ai (i = 1, 2, 
..., m) with respect to attribute Cj (j = 1, 2, …, n). With the 
normalized decision matrix, an aggregation procedure can be 
applied to obtain an overall preference value for each 
alternative, on which the alternative ranking can be based. The 
following lists three aggregation procedures available in 
MAVT-based MADM methods [3][6]. 

B. Aggregration Procedures 
1) The Simple Additive Weighting (SAW) Method 

The SAW method, also known as the weighted sum 
method, is probably the best known and most widely used 
MADM method [2]. The basic logic of the SAW method is to 
obtain a weighted sum of the performance ratings of each 
alternative over all attributes. With a normalized decision 
matrix (rij) and a weight vector (wj), the overall preference 
value of each alternative (Vi) is obtained by 

ijji r
n

j
wV ∑

=
=

1
 ; i = 1, 2, …, m.                               (7) 

The greater the value (Vi), the more preferred the alternative 
(Ai). Research results have shown that the linear form of trade-
offs between attributes used by the SAW method produces 
extremely close approximations to complicated nonlinear 
forms, while maintaining far easier to use and understand [2]. 

2) The Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) 

The TOPSIS method is based on the concept that the most 
preferred alternative should not only have the shortest distance 
from the positive ideal solution, but also have the longest 
distance from the negative ideal solution [2]. With a 
normalized decision matrix (rij) and a weight vector (wj), the 
positive ideal solution A+ and the negative ideal solution A- can 
be determined based on the weighted normalized performance 
ratings (yij) by 

ijjij rwy  = ; i = 1, 2, …, m;  j = 1, 2, …, n.              (8) 
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ideal solution, and the distance (Di
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the negative ideal solution can be calculated respectively by 
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The overall preference value of each alternative (Vi) is 

given by 
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The greater the value (Vi), the more preferred the alternative 
(Ai).  



         

The advantages of using TOPSIS have been highlighted by 
(a) its intuitively appealing logic, (b) its simplicity and 
comprehensibility, (c) its computational efficiency, (d) its 
ability to measure the relative performance of the alternatives 
with respect to individual or all attributes in a simple 
mathematical form, and (e) its applicability in solving various 
practical MAVT-based MADM problems [13]. Despite its 
merits in comparison with other MADM methods, the TOPSIS 
method does not consider the relative importance (weight) of 
the distances from the positive and the negative ideal solutions 
[14]. This issue has been addressed by modifying TOPSIS to 
incorporate attribute weights in the distance measurement 
[13][15]. In the modified TOPSIS procedure, (8) and (10) in 
the aggregation procedure are replaced with (12) and (13) 
respectively, given as follows: 

ijij ry = ;       i = 1, 2, …, m;  j = 1, 2, …, n.          (12) 
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In this study we use the modified TOPSIS procedure to 
weight the distance between the alternative and the positive (or 
negative) ideal solution. This modified TOPSIS procedure 
reflects the interrelationship between the distance and the 
corresponding attribute weight as implied by the concept of the 
degree of optimality used [13]. 

3) The Weighted Product (WP) Method 
The WP method uses multiplication for connecting attribute 

ratings, each of which is raised to the power of the 
corresponding attribute weight. This multiplication process has 
the same effect as the normalization process for handling 
different measurement units, as such it requires no 
normalization procedure presented in the previous section. The 
logic of WP is to penalize alternatives with poor attribute 
values more heavily. With a decision matrix (xij) and a weight 
vector (wj), the overall preference score of each alternative (Si) 
is given by 

∏
=

=
n

j
xS ij

j
i

w

1
;   i = 1, 2, …, m.                              (14) 

where .1
1

=∑
=

n

j
jw  wj is a positive power for benefit attributes and 

a negative power for cost attributes. In this study, for easy 
comparison with other methods, the relative overall preference 
value of each alternative (Vi) is given by 

∏

∏
=

=

=
n

j
j

w

n

j

w

x

x
V

j

ij
j

i

1
*

1

)(
;  i = 1, 2, …, m.                             (15) 

where ijxx
i

j max* =  and 0 ≤ Vi ≤ 1. The greater the value (Vi), 

the more preferred the alternative (Ai). 

C. MADM Methods 
Combining the four normalization procedures (N1, N2, N3, 

and N4) with the first two aggregation procedures (SAW and 
modified TOPSIS) will result in 8 different methods, named as 
SAW-N1, SAW-N2, SAW-N3, SAW-N4, TOPSIS-N1, 
TOPSIS-N2, TOPSIS-N3, and TOPSIS-N4 respectively. These 
8 methods and the WP method can be used to solve the same 
general group MADM problem that requires cardinal ranking 
of all the alternatives. 

IV. VALIDATION OF GROUP DECISION OUTCOMES 
Often there are quite a few methods available for solving a 

specific MADM problem. Due to their structural difference, 
these methods may produce inconsistent ranking outcomes for 
a given weight vector and decision matrix [16]. Despite 
significant developments in MADM method selection research, 
the validation of decision outcomes remains an open issue. This 
is mainly due to the fact that the “true” cardinal ranking of 
alternatives is not known [3]. To address this issue for the 9 
available MADM methods presented, we develop a new 
validation approach for selecting the most valid ranking 
outcome among all feasible outcomes in the context of group 
decision making. 

In group decision making, the stakeholders or decision 
makes often have different views of the attribute weights and 
the alternatives’ performance ratings. To reach a compromised 
solution, the values given by individual decision makers for the 
weight vector and decision matrix are often averaged as the 
group values. As such, the individual ranking outcomes based 
on the values given by individual decision makers may not be 
consistent with the final group ranking outcome derived from 
the averaged group values. As suggested by existing studies 
[3][17] and evidenced in the empirical study of this paper, 
different MADM methods often produce different final group 
ranking outcomes for the same group weight vector W and 
group decision matrix X. Among all feasible group ranking 
outcomes, individual decision makers would prefer the 
outcome which is most consistent with their own ranking 
outcome. This is the notion on which the new validation 
approach is based. 

With m decision alternatives Ai (i = 1, 2, ..., m) and p 
decision makers DMk (k = 1, 2, …, p) using an MADM 
method, one group ranking outcome Vi (i = 1, 2, …, m) and p 
individual ranking outcomes Vk

i (k = 1, 2, …, p) will be 
produced. The consistency degree (or the correlation) between 
Vi and each Vk

i can be measured by Pearson’s correlation 
coefficients or Spearman’s rank correlation coefficients, 
resulting in p correlation coefficients. The consistency degree 
of the method between the group and individual ranking 
outcomes for the given problem can be obtained as the average 
of the p correlation coefficients. The approach will select the 
group ranking outcome of an MADM method which has the 
highest consistency degree, as compared to that of other 
methods. That is, the ranking outcome selected will have the 
greatest consistency with all individual ranking outcomes 
produced by the same method. This implies that the method 
used is the most valid one, as the ranking outcome it produces 
is most acceptable by the decision makers as a whole. 



         

V. EMPIRICAL  STUDY 
To illustrate the inconsistent ranking outcomes by different 

MADM methods and different decision makers, we present a 
scholarship student selection problem. To show how the new 
validation approach can be used to select the most valid 
ranking outcome for a given problem, we apply the 9 MADM 
methods presented in the previous section to solve the 
scholarship student selection problem. 

The objective of the scholarship student selection problem 
is to select applicants for industry sponsored scholarships based 
on their performance on non-academic, qualitative selection 
criteria via an interview process. The reason for excluding the 
academic criteria is that all the applicants have overcome a 
considerable academic hurdle to become eligible for study. 
Therefore they are expected to be capable of meeting all the 
specified academic requirements of the scholarship. During the 
scholarship duration of three years, scholarship students are 
required to work with industry sponsors for a total period of 
one year under an industry-based learning program. Based on 
comprehensive discussions with industry sponsors, a set of 
eight attributes (selection criteria) relevant to the industry-
based learning program is determined, including community 
services, sports and hobbies, work experience, energy, 
communication skills, business attribute, maturity, and 
leadership. 

In this scholarship student selection problem, the eight 
attributes are weighted equally, because the three interviewers 
(decision makers) or the industry sponsors (stakeholders) 
cannot determine other acceptable weights in a fair, convincing 
manner. This is in line with the principle of insufficient reason 
[18], which suggests the use of equal weights if the decision 
makers have no reason to prefer one attribute to another. In 
addition, no single attribute weighting method can guarantee a 
more accurate result, and the same decision makers may elicit 
different weights using different methods [19][20]. This 
suggests that there is no easy way for determining attribute 
weights and there are no criteria for determining what the true 
weight is. 

In a recent scholarship run, 61 applicants attended the 
interview. Their performance on the eight attributes was 
assessed by three interviewers (decision makers) on a 6-point 
Likert-type scale, ranging from 5 (extremely high) to 0 
(extremely low). The result of this interview process 
constituted three individual decision matrices (X1, X2 and X3) 
and one group decision matrix X with m = 61 and n = 8. The 
group decision matrix X was generated from X1, X2 and X3 
using (2). The group weight vector W used was (0.125, 0.125, 
0.125, 0.125, 0.125, 0.125, 0.125, 0.125) which satisfies 

.11 =∑ =
n
j jw  

By applying the nine MADM methods to the group 
decision matrix X and the group weight vector W, nine group 
ranking outcomes are obtained. These nine group ranking 
outcomes are not consistent. As a simple illustration, Table I 
shows the group rankings (out of 61) of the first 10 applicants 
(A1, A2 , …, A10) (based on the SAW-N1 method) using three of 
the nine methods. For easy comparison, applicants Ai (i = 1, 2, 
…, 61) are denoted in order of their overall preference value Vi 

(i = 1, 2, …, 61) by the SAW-N1 method. If there were only 10 
applicants to be selected, A10 would not be selected using 
TOPSIS-N1 or WP. For most decision situations where the 
number of applicants to be selected varies, there will be some 
applicants being included using some methods and being 
excluded with other methods. 

TABLE I.  GROUP RANKING COMPARISON OF FIRST 10 APPLICANTS 
BETWEEN THREE REPRESENTATIVE METHODS 

 SAW-N1 TOPSIS-N1 WP 

Ai Vi Ranking V1
i Ranking Vi Ranking 

A1 0.972 1 0.924 1 0.968 1 
A2 0.897 2 0.842 4 0.886 2 
A3 0.886 3 0.847 3 0.880 3 
A4 0.881 4 0.853 2 0.861 4 
A5 0.877 5 0.817 8 0.845 7 
A6 0.865 6 0.823 6 0.853 6 
A7 0.857 7 0.787 10 0.846 8 
A8 0.855 8 0.819 7 0.845 9 
A9 0.845 9 0.827 5 0.853 5 
A10 0.829 10 0.746 15 0.804 12 

 
By applying each of nine MADM methods to the three 

individual decision matrices (X1, X2 and X3) and the weight 
vector W separately, three individual ranking outcomes are 
obtained. These individual ranking outcomes by individual 
decision makers using each method are not consistent with the 
group ranking outcome using the same method. As a simple 
illustration, Table II shows the group ranking (out of 61) of the 
first 10 applicants (A1, A2 , …, A10) and three individual 
rankings made by the three decision makers (DM1, DM2, and 
DM3) using the SAW-N1 method. Each of the three decision 
makers will select a different set of top 10 applicants and 
indeed a different set of scholarship students when the number 
of applicants to be selected is more than one. 

TABLE II.  RANKING COMPARISON OF FIRST 10 APPLICANTS BETWEEN 
THREE DECISION MAKERS USING THE SAW-N1 METHOD 

 
 Group DM1 DM2 DM3 

Ai Vi Ranking Vi Ranking Vi Ranking Vi Ranking

A1 0.972 1 0.983 1 0.981 1 0.966 1 

A2 0.897 2 0.935 2 0.894 3 0.880 2 

A3 0.886 3 0.896 3 0.856 4 0.883 3 

A4 0.881 4 0.876 5 0.913 2 0.850 6 

A5 0.877 5 0.882 4 0.842 8 0.845 7 

A6 0.865 6 0.852 7 0.873 5 0.866 5 

A7 0.857 7 0.872 6 0.837 9 0.845 8 

A8 0.855 8 0.849 9 0.859 7 0.842 9 

A9 0.845 9 0.801 12 0.866 6 0.880 4 

A10 0.829 10 0.857 8 0.788 14 0.814 13 

 



         

To select among the inconsistent group ranking outcomes 
produced by nine methods, we apply the validation approach to 
each of nine MADM methods individually. The consistency 
degrees of SAW-N1, SAW-N2, SAW-N3, SAW-N4, TOPSIS-
N1, TOPSIS-N2, TOPSIS-N3, TOPSIS-N4, and WP using 
Pearson’s correlation coefficients (Spearman’s rank correlation 
coefficients) are 0.81 (0.66), 0.77 (0.59), 0.79 (0.61), 0.80 
(0.62), 0.67 (0.51), 0.65 (0.52), 0.59 (0.45), 0.52 (0.46) and 
0.73 (0.41) respectively. This result suggests that the group 
ranking outcome produced by the SAW-N1 method should be 
used, as it is most consistent with the views of individual 
decision makers, thus most acceptable by them. 

It is noteworthy that the selection of the group ranking 
outcome produced by the SAW-N1 method is justifiable only 
for the problem data set used in the empirical study. Different 
problem data sets may result in a different method being 
selected. This suggests that no single best method can be 
assumed for the general group cardinal ranking problem. In 
solving a given group decision problem with many methods 
available, the validation approach developed in this paper can 
be applied to all available methods for identifying the most 
valid ranking outcome from the perspective of all decision 
makers as a whole. 

VI. CONCLUSION  
There are normally a number of methods available for 

solving group MADM problems, defined by a given weight 
vector and decision matrix. Inconsistent ranking outcomes are 
often produced by different decision makers and MADM 
methods. Despite the importance of validating decision 
outcomes produced by different MADM methods, very few 
studies have been conducted to help the decision makers deal 
with the inconsistency problem of ranking outcomes and make 
valid decisions. In this paper, we have developed a new 
empirical validation approach for selecting the most valid 
group ranking outcome for a given problem data set. The most 
valid group ranking outcome is the one that is most consistent 
with individual rankings made by individual decision makers 
using a particular MADM method. We have presented a 
scholarship student selection problem to illustrate how the 
approach can be used to help select the most valid group 
ranking outcome for a given data set. With its simplicity in 
both concept and computation, the approach can be applied in 
general group decision problems solvable by compensatory 
MADM methods. It is particularly suited to large-scale MADM 
problems where the decision outcomes produced by different 
methods differ significantly. 
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