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Abstract—Ring signature is an anonymous signature which
allows a user to anonymously sign on behalf of a group. In some
cases, we only hope that our signatures were anonymously verified
by the designated users, such as hospital records. In this works,
by combining ring signature and designated verifier signature
scheme, a ring signature scheme with Multi-designated verifiers
are proposed to satisfy the multi-user setting. And by analyzing
the security of scheme, we show that the proposed scheme is
secure in a novel assumption: the Chosen-Target-Inverse-CDH
problem under the random oracle model, and the corresponding
security proof is given.

Index Terms—ring signature, Chosen-Target-Inverse-CDH
problem, designated verifier signature

I. INTRODUCTION

Ring signature is an anonymous signature which allows a
user to anonymously sign on behalf of a group, yet no one
can know which the actual signer is. When verifying, the
verifier only knows that the signature has been produced by
some member of this ring, but he has no information about
who is the actual author of the signature. The idea was first
proposed in by Cramer et al [5] and the notion was formalized
by Rivest et al[6]. After that, many proposals of ring signature
schemes have been publish[7,8,9], for both PKI and ID-based
scenarios. To adapt to different requirement, many variants of
ring signature [10,11,12] were put forward, such as ring blind
signature, linkable ring signature.

Ring signature scheme could be used for whistle blow-
ing[16], anonymous membership authentication for ad hoc
group [14,15] to keep the anonymity of the signer and can
be publicly verifiable. However, in some cases, we wish to
control the verification of signature, and make that only the
member of the designated verifier group can verify signature
valid.

Anonymity is an important property of ring signature, which
makes ring signature play very important roles in electronic
commerce. Generally speaking, a ring signature is able to
provide full anonymity, which produces such a case, even if
a member of the ring produces a signature δ, he also cannot
prove that the signature δ was produced by himself. To address
the problem above, we proposed a ring signature scheme
with self-verification. If necessary, a member of the ring can
verify the message-signature δ which was indeed produced by
himself. The kind of ring signature is able to be applied to

electronic auction. For example, in an anonymous electronic
auction, when the bidder bids, he applies ring signature to
produce an anonymous signature on his bidding to hide his
identity. After the auction ends, the highest bidder wins.
However, it gives us to bring up a problem: how does the
a bidder prove that he is the highest one? The problem can
been solved by our proposed ring signature scheme with self-
verification.

By combining ID-based cryptography and ring signature,
Zhang and Kim [14] proposed the first ID-based ring signature
scheme. Subsequently, J.Herranz et al proposed a provable se-
cure ID-based ring signature scheme [15]. Until now, many ID-
based ring signature schemes and variants appear. The state-of-
the-art can achieved a constant number of pairing computations
[16,17] and also a constant size signature [8]. At present, in
the existing ID-based ring signature scheme, a special hash
function call MapToPoint function [3], which is used to map an
identity information into a point on elliptic curve. This special
function is a probabilistic and time consuming.

In the work, by combining ring signature and designated
verifier signature scheme, a ring signature scheme with Multi-
designated verifiers are proposed to satisfy the multi-user
setting. And the proposed scheme is proven to be secure in
a novel assumption: the Chosen-Target-Inverse-CDH problem.
Finally, the security of the scheme is given in the random
oracle model.

The rest of the paper is organized as follows. in Section 2,
we recall the basic knowledges about bilinear pairing and the
computational assumptions which underlie our scheme, and
security model of ring signature scheme is given in section
3; our ring signature scheme is proposed in section 4 and the
security of the scheme is formally proven in section 5. The
conclusions of the work are given in section 6.

II. PRELIMINARIES

Here, we review some fundamental backgrounds used
throughout this paper, namely bilinear pairing, complexity
assumption and the formal models of ring signature scheme
with multi-designated verifiers .

A. Bilinear Pairing

Let G1 and G2 be two cyclic groups of a large prime order
p. P is a generator of G1. The map e : G1 ×G1 → G2 is said
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to be an admissible bilinear pairing if the following conditions
hold:

• Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and
for all a, b ∈ Zp;

• Non-degeneracy: There exists P ∈ G1 such that
e(P,P ) �= 1.

• Computability: There is an efficient algorithm to compute
e(P,Q) for any P,Q ∈ G1.

We say that (G1, G2) are bilinear groups if there exists the
bilinear pairing as above. See [3] for more details on the
construction of such pairings.
Definition 1: (Prime-order-BDH-parameter-generator) A
prime-order-BDH -parameter-generator is a probabilistic algo-
rithm that takes on input a security parameter k, and outputs a
5−tuple (q, P, G1, G2, e) satisfying the following conditions:
q is a prime with 2k−1 < q < 2k, G1 and G2 are two
groups with the same order q, P be a generator of G1 and
e : G1 × G1 → G2 is an admissible bilinear map.
The Chosen-Target-Inverse-CDH problem is defined as
follows: the solver S ′ receives as input a pair (P ′, aP ′), where
P ′ is a generator of G with prime order q, and a′ ∈ Zq is
a random value. The solver S ′ can adaptively access to the
following two oracles:

• Target Oracle: this oracle outputs a random element Zi ∈
G

• Helper Oracle: this oracle takes as input an element Wi ∈
G and outputs the element 1

a′ Wi.

We say that the solver S can (qt, qh, d)− solve the Chosen-
Target-Inverse-CDH problem, for qt ≥ d ≥ qh, if it makes
qt and qh queries, respectively, to the target oracle and helper
oracles, and after that it outputs d pairs ((V1, j1), · · · , (Vd, jd))
such that:

1) all the elements Vi are different;
2) for all i ∈ {1, 2, · · · , d}, the relation Vi = 1

a′ Zji
is

satisfied, where Zji
is the element output by the target

oracle in the ji − th query.

In [15], Herranz et al show that the Chosen-Target-CDH prob-
lem is equivalent to the Chosen-Target-Inverse-CDH problem.

III. SECURITY MODEL

A ring signature scheme with multi-designated verifiers
consists of the following five algorithms: RSMDVS.Setup,
RSMDVS.SKeyGen , RSMDVS.VKenGen, RSMDVS.Sign
and RSMDVS.Verify . Let n be the number of members in
the signer group, m be the number of the designated-verifiers.
The scheme is described as follows:

• Setup: It is a probabilistic algorithm which takes as input
a security parameter k, and outputs the public parameters.

• SKeyGen: It is a probabilistic algorithm which takes as
input the public parameters and a signer group list Ainf ,
and outputs a pair of keys (ai, PAi

) for 1 ≤ i ≤ n, Ainf

is the information of the members in the signer group.
• VKeyGen: It is a probabilistic algorithm which takes as

input the public parameters and a signer group list Binf ,
and outputs a pair of keys (bi, PBi

) for 1 ≤ i ≤ m,

Binf is the information of the members in the designated
verifier group.

• Sign: It is an algorithm which takes as input of a message
M , the public keys of n members in the singer group, the
public keys of m designated verifiers and an the secret
key of a member, aπ , where 1 ≤ π ≤ n; and outputs a
signature δ on the message m.

• Verify: It is a deterministic algorithm which takes as
inputs a signature δ, a message M , a secret key bi of a
designated verifier and the public keys of n members in
the singer group, it outputs ”true” or ”false”, depending on
whether δ is a valid signature signed by a certain member
of the signer group.

Correctness. A ring signature scheme with multi-designated
verifiers should satisfy Verification Correctness − signatures
signed by the signer are verified to be valid in the negligible
probability, and only the designated verifier can verify a
signature validity.

A. Security Requirement of the ID-based Ring Signature
Scheme with multi-designated verifiers

For an ordinary signature scheme, the strongest security
notion was defined by Goldwasser, Micali and Rivest in [9]
as existential forgery against adaptive chosen-message attack
(EF-CMA). In the RSMDVS setting, an EF-CMA-Adversary
A has access to the n public key of the designated verifiers
beside access to the random oracle and to a signing oracle.
As A cannot verify a signature validity by himself. Here,
we allow the attacker to corrupt up to m − 1 designated
verifier (and to do so adaptively) during the attack, i.e he has
access to a corrupting oracle to obtain the secret information of
the corresponding corrupted verifier. Therefore, he can verify
validity of a signature by himself, and we omit the verifying
oracle here.
Definition 2: (Security against existential forgery). Let LB

be a list of m designated verifiers, LA be a list n signers, k
and t be integers and ε be a real in [0, 1], let RSMDV S be
ring signature scheme with security parameter k. Let A be an
EF-CMA-adversary against multi-designated verifier signature
scheme. We consider the following random experiment:

Anonymity. It is impossible for an adversary to guess the
identity of the real signer with a probability larger than 1/n,
where n is the size of the ring, even if the adversary has
unlimited computing power.
Definition 3:(Anonymity). An ID-based ring signature scheme
is unconditional anonymous if for any group of n members
with identity {ID1, · · · , IDn}, any message m and signature
δ, any adversary cannot identify the actual signer with prob-
ability better than random guess. That is, A can only output
the identity of the actual signer with probability 1/n.

IV. OUR PROPOSED RING SIGNATURE SCHEME

In this section, we give a novel ring signature scheme with
multi-designated verifier, which can make a designated group
to verify a ring signature valid. The scheme is composed of



five algorithms, SkyGen, VKeyGen, RSign and RVerify. Let
k be a security parameter, for i ∈ [1, · · · , n], let Ai denote
the signer i of the ring, Bi be the verifier i of the designated
group. The detail scheme is described as follows:

[Setup:]
Let Gen be a prime-order-BDH-parameter-generator and
(q, P, G,H, e) be the output of Gen(k). H is a hash function
which satisfies H : {0, 1}∗ × G

n+2 → G.

[SkeyGen:]
For i = 1 to n, the member i of the ring randomly picks
ai ∈ Z∗

q as the secret key of the signer A, and computes the
corresponding public key PAi

= aiP .

[VKeyGen:]
it randomly picks bi ∈ Z∗

q as the secret key of the designated
verifier Bi, and computes his public key PBi

= biP .

[RSign:]
Given a message m, the verifier group B and the signer list L,
let the signer be index π ∈ [1, n], then the signer Aπ computes
as follows:

1) compute PB = PB1 + · · · + PBn
.

2) randomly choose r ∈ Zq and set YBi
= rPBi

for all
i ∈ [1, · · · , n].

3) for j = 1, 2, · · · , π − 1, π + 1, · · · , n, the signer Ai

randomly selects lj ∈ Zp to compute QAj
= ljP

4) Then, the signer Aπ randomly selects r′ ∈ Zq to QB =
r′P .

5) Finally, it computes

M = H(m,LA, LB , Y,QB) (1)

and

QAπ
= a−1

π (M − r′PB −
n∑

j=1,j �=i

ljPAj
) (2)

where LA = A1|| · · · ||An and LB = YB1 || · · · ||YBn

The resultant signature is

σ = (QA1 , · · · , QAn
, QB , YB1 , · · · , YBn

)

[RVerify:]
Given a signature σ on the message m, each designated verifier
Bi retrieves Y = rP as b−1

i YBi
by his secret key. Firstly,

for j ∈ [1, · · · , n] \ {i} , it verifies whether e(PBj
, Y ) =

e(YBj
, P ) holds. If they are valid, then it computes M =

H(m,PA, PB1 , · · · , PBn
, Y ) and checks whether

e(M,P ) =
n∏

i=1

e(QAi
, PAi

) · e(QB , PB) (3)

In the following, we show that our proposed scheme satis-

fies correctness.

e(QB , PB)
n∏

j=1

e(QAj
, PAj

) = e(QB , PB)
n∏

j=1

e(QAj
, PAj

)

= e(r′P,PB)e(QAi
, PAi

)
n∏

j=1,j �=i

e(QAj
, PAj

)

= e(M,P )e(−
n∑

j=1,j �=i

ljPAj
, P )

n∏

j=1,j �=i

e(QAj
, PAj

)

= e(M,P )
n∏

j=1,j �=i

e(PAj
, QAj

)−1
n∏

j=1,j �=i

e(QAj
, PAj

)

= e(M,P )

V. SECURITY ANALYSIS

In the section, we will prove that our proposed ring sig-
nature scheme is unconditional anonymous and existentially
unforgeable under a chosen message in the random oracle.

Theorem 1: Our proposed scheme is unconditional anony-
mous.

Proof: Given a ring signature (σ =
(QA1 , · · · , QAn

, QB , YB1 , · · · , YBn
)), QAi

, i ∈ [1, n]\π
and QB are randomly generated which provide no
information on the actual signer. While n random
numbers, r′, l1, · · · , lπ−1, lπ+1, · · · , ln are included in
the QAπ

= a−1
π (M − r′PB − ∑n

j=1,j �=i ljPAj
), thus, QAπ

is
also randomly distributed. YB1 , · · · , YBn

are some information
on the verifiers, and they have not provide any information on
the actual signer and a random number r is contain among
them. All of them provide no information on the actual signer.
It is no better for an adversary to do a wild guess. Thereby,
our proposed scheme is unconditional anonymous. �

Theorem 2: If there is an adversary A which is able to
(ε, qt, qs)− break our proposed scheme with a non-negligible
probability, then the CDH problem can be solved with non-
negligible probability in polynomial time.

Proof: Supposed that there is a (ε, qh, qs)−adversary A exists.
We are going to construct a PPT solver S ′ of the Chosen-
Target-Inverse-CDH problem that makes use of A to solve the
Chosen-Target-Inverse-CDH problem in non-negligible prob-
ability. Firstly, S ′ chooses a security parameter k, a list LA

of users and a list LB of designated verifiers to initialize A.
And the solver S ′ selects a group G1 with prime order q > 2k

which admits a bilinear pairing e : G1 × G1 → G2.
The solver S ′ is given an instance (P, Y ) of the Chosen-

Target-Inverse-CDH problem in the group G1, where Y = aP
and a ∈R Zq is an unknown random number. It is also provided
with access to the target oracle and the helper oracle.

For every user of the list LA, the solver S ′ chooses a random
value αi ∈ Zq and sets his public key to be PAi

= aiY . To
reduce the proof, we randomly choose a designated verifier Bi0

and replace his public key by ωY −∑n−1
i�=i0

PBi
, where l0 ∈ Zq.



If Bi0 is among the corrupted verifiers, then the reduction is
aborted.

Finally, the solver S ′ sends to A the public parameters
(q, P, G1 =< P >, G2, e), the public keys PAi

of the users in
the list LA and the public keys of PBi

of designated verifiers
in the list LB . And provide it with access to a random oracle
for a hash function H : {0, 1}∗ → G

∗
1.

Hash Oracles: When the adversary A queries
(mi, LA, LB , Yi, QBi

) for hash oracle, the solver S ′

maintains a H-list where it stores the following relations
H(mi, LA, LB , Yi, QBi

) = Zi which it is computed as
follows:

• if a query (mi, LA, LB , Yi, QBi
) exists in the H-list, then

S ′ returns Zi to A.
• Otherwise, S ′ makes a query to its target oracle and

receives a random answer Zi ∈ G1. Then, it stores the
new relation H(mi, LA, LB , Yi, QBi

) = Zi in the H-list
and sends Zi to the forger A.

Ring Signing Oracles: For a given query of a signature on
the list LA, the designated verifiers list LB and a message mi

(A makes at most qs signing queries; mi is only queried for
Ring Signing Oracle once ), the solver S ′ responds as follows:

• choose at random an index π ∈ {1, 2, · · · , n}
• for i ∈ {1, · · · , n}, i �= π, the solver randomly chooses

lπi
∈ Zq to compute QAi

= lπi
P

• compute PB =
∑n−1

i=0 PBi
= PB0 +

∑n−1
i=1 PBi

= ωY
• the solver S ′ first checks whether the hash query of Mi

exists in the H-list. If it exists, then (Zi, LB) is returned.
Otherwise, It randomly chooses ri, r

′
i ∈ Zq to compute

Yi = riP,QBi
= r′iP and LB = YB1 || · · · ||YBn

where
for j = 1 to n, YBj

= riPBj
. It makes a query to its

target oracle, and receives a random element Zi ∈ G1 as
answer, then stores H(mi, LA, LB , Yi, QBi

) = Zi in the
H-list.

• it sends Zi to the helper oracle and obtains the corre-
sponding return βi = a−1Zi.

• Finally, it computes QAπ
= βi −

ωQBi
− ∑n

j=1,j �=π lπj
ajP and returns

(QA1 , · · · , QAn
, QBi

, LA, LB) as the resultant signature
on mi. Obviously, this is a valid ring signature, the
simulation is indistinguishable from a real execution of
the protocol. Since

QAπ
= βi − ωQBi

−
n∑

j=1,j �=π

lπj
ajP

= a−1(aβi − ωaQBi
−

n∑

j=1,j �=π

lπj
ajaP )

= a−1(Zi − ωar′iP −
n∑

j=1,j �=π

lπj
ajY )

= a−1(Zi − r′iPB −
n∑

j=1,j �=π

lπj
PAj

)

where Zi = H(mi, LA, LB , Yi, QBi
)

Output: Finally, A returns a message m∗ with a forged ring
signature σ = (Q∗

A1
, · · · , Q∗

An
, Q∗

B , Y ∗
B1

, · · · , YBn
) in non-

negligible probability ε. If m∗ is not queried for Ring Signing
Oracles and m∗ has queried Hash Oracles. We look up m∗

in the H-list and Z∗ = H(m∗, L∗
A, LB , Y ∗, Q∗

B) is returned.
(Note that Z∗ is a returned answer by helper oracle, when the
solver S ′ queried target oracle with (m∗, L∗

A, LB , Y ∗, Q∗
B) ).

Then we can solve

β∗ = a−1Z∗ = Q∗
Aπ

− ωQ∗
B −

n∑

j=1,j �=π

ajQ
∗
Aj

the qs + 1th pair is (Z∗, β∗). Thus, for i = 1, · · · , qs + 1,
the solver S ′ outputs the pair (βi, i), where βi = a−1Zi.
The probability that A obtains a valid ring signature for the
message mi without querying the hash function H is 1/q.
Therefore, we have that with probability 1− qs+1

q the forger A
has queried the random oracle with (mi, LA, LB , Yi, QBi

) for
the qs + 1 forged pairs. According to the statement above, the
solver S ′ makes qh queries to its target oracle, makes qs < qh

queries to its helper oracle, while it outputs qs + 1 valid pair
(βi, i) with probability ε′ > ε − qs+1

q . �

VI. CONCLUSION

As a special signature, ring signature is an anonymous
signature which allows a user to anonymously sign on behalf
of a group. In real life, we often work in the multi-user
setting and hope only the designated users can check our
signatures, such as hospital records. In the work, by combining
ring signature and designated verifier signature scheme, a ring
signature scheme with Multi-designated verifiers are proposed
to satisfy the multi-user setting. And the proposed scheme is
proven to be secure in a novel assumption: the Chosen-Target-
Inverse-CDH problem under the random oracle model.
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