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Abstract—This paper proposed a new neural network 
algorithm with fuzzy iterative learning controller and applied to 
a certain turbofan engine rotor speed control system. A dynamic 
neural network was used to identify the plant on-line. The 
control signal was then calculated iteratively according to the 
responses of a reference model and the output of identified plant. 
A fuzzy logic block with four very simple rules was added to the 
loop to improve the overall loop properties. Experimental results 
demonstrate the proposed control strategy provides better 
disturbance rejection and transient properties than those 
achieved by conventional mechanical-hydraulic controller(MHC) 
and analogue engine electronic controller(AEEC). At the same 
time, it can improve transitional quality in control system, and 
meet the demands of high performance and high control 
accuracy in turbofan engine. 
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I. INTRODUCTION 
In recent years, with the rapid development of modern 

control theory and the application of super large-scale 
integration and microprocessor in aerial engine electronic 
controller, full authority digital electronic controller (FADEC) 
has been an important developing direction in high 
performance aeroengine control system. Comparing with 
conventional mechanical-hydraulic controller and analogue 
engine electronic controller(AEEC), FADEC not only has the 
simple configuration, but also apply complicated and 
anvanced control algorithm to aeroengine control system. It 
can realize multi-variables and multi-loops decoupling control 
in system. So it meets the demands of high performance 
guideline and high control accuracy in turbofan engine[1],[2]. 

Neural networks are probably the most discussed 
intelligent control paradigm used today in model identification 
problems and in controller design[3],[4]. Integrated with 
neural network application in control field, this paper 
proposed a new neural network algorithm with fuzzy logic 
compensation and applied to an aeroengine rotate speed 
control system. Experimental results demonstrate the 
proposed control strategy is effective. 

II. CONTROL MODEL DESIGN 
Figure.1 depicts the block diagram of the proposed 

closed-loop control scheme. The reference input signal is r. 
The control goal is that the plant output signal y follows as 
closely as possible the output signal ym of the reference model. 
The reference model of the plant is an ideal model that has the 
desired characteristics related to the rise time, overshoot, 
steady-state error, etc. 

Reference
Model1−Z

FLC

Aeroengine

ILC

TDL NNI

+

+

++

+

)(kyn

)1( +kyn

)(ken

)(ky

)(kem

)(kym

)1( +kym)(kum

)(kr

)(kun

)(ku f

)(ku

)1( +ke

netX /  
Figure.1 Neural network Control block with fuzzy logic compensation 

Ignoring aeroengine combustion delay, the dynamic model 
of rotor speed control in a sample form as[5],[6]: 
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Where 
LnX  and 

fmX  are low compressor rotor speed 
and fuel respectively. After discretization, the model can be 
rewritten as:  
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where mu  and my  are scalars. 

Trans-dimensional learning(TDL) is a Windows 3.1 
artificial neural network. TDL allows users to perform pattern 
recognition by utilizing software that allows for fast, 
automatic construction of Neural Networks, mostly alleviating 
the need for parameter tuning. By supporting multi-shot 
learning over standard one-shot learning, multiple data sets 
(characterized by varying input and output dimensions) can be 
learned incrementally, resulting in a single coherent network. 
This can also lead to significant improvements in predictive 
accuracy. 

A neural network identifier(NNI) for the on-line 
identification determines on-line an approximate current 
non-linear model of the plant. This model is necessary for 
good loop control. An iterative learning controller (ILC) 
produces a control signal nu , which is combined with the 

output signal of the fuzzy logic block(FLB) to produce the 
actual plant input signal fn uuu += . 

III. NEURAL NETWORK IDENTIFIER 
The dynamic NN for plant model identification has n input 

nodes, m hidden-layer nodes and l output node. The weight 
matrix for the input-to-hidden layer is W(n+1)×m, the input 
pattern vector X(n+1)×l, the hidden-to-output weight matrix is 
V(m+1)×l, the output signal vector of the hidden-layer is 
net(m+1)×m, Here n=m+1 and m=2p. 

The input layer and the hidden layer have each a 1 node 
constant to cater for biases of the neurons in the subsequent 
layer. These two nodes do not have feedback signals. The 
output yn of NNI is the predicted system output. The values of 
variables are considered at moments tk=k*τ ( τ  is the 
sampling interval). k=1,2,…. To simplify notation we will use 
u(k) to denote the value u(tk). Thus, at t=tk we have the system 
I/O values u(k) and y(k). We define vectors 





























−

−
−

−
−

=





























+
=

)(
......

)1(
)(

......
)2(
)1(

)2,(
......

)1,(
),(

......
)2,(
)1,(

)(

pky

ky
pku

ku
ku

pks

pks
pks

ks
ks

kS           (3) 



















=

),(
......

)1,(
1

)(

nkx

kx
kX , 



















=

),(
......

)1,(
1

)(

mkh

kh
knet         (4) 

Let x(k, 1)=u(k), and by using three positive real 
parameters α,β,γ, we define a recursive relation for the 

calculation of x as 

x(k, i+1)=α*s(k, i)+β*x(k-1, i+1)+γ*h(k-1, i)   (5) 
where x(0, i+1)=0, i=1,…,m, k=1,2,… , also 
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Here, f is a nonlinear sigmoid function vector. The NN 
output )(kyn  at k-th time interval is linear in net as 

follows. 
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In (5), αis the forward gain, βis the selfish feedback 
gain on the input layer and γis the feedback gain from the 
hidden layer to the input layer. We define the error 
function 2/)(2/ 22

nn yyeJ −== ，so that the necessary 
gradients and updates of the network parameters are given by 
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=η*en*Vj(k)*Zj(k)*[1-Zj(k)]*Xj(k)     (14) 
Here, η is the learning rate; μ is a small positive 

coefficient; subscripts; i, j indicate the i-th node in the input 
layer and the j-th node in the hidden layer, respectively; k 
means the k-th sample control period. 

IV. ITERATIVE LEARNING CONTROLLER 
Our objective is to control the plant so as that its output y 

follows the response of the reference model ym. At time tk we 
can determine ym(k+1), which is the next value of the model 
output. Since the current neutral network model of the plant is 
identified by NNI, we can directly calculate u(k+1) by the 
iterative algorithm in order to obtain the NNI output yn close 
to ym(k+1). To do this we will look for u(k+1) that will make 
the expected output of NNI equal to ym(k+1). The value of 
u(k+1) will be obtained iteratively according to [5], [6]. 
During the calculation of the iterative values we assume that 
the system does not change its characteristics. Here, the NN 
model serves as a known invariant nonlinear model of the 
plant. We will use the PD control structure to calculate the 
next value of u using the current iterative value of u, as well 
as the current and previous iterative values of e=ym-yn. 

Some explanations of the notation are necessary. Let the 



 

control time interval be Tk=[tk, tk+τ]. Here, tk+1=tk+τand it 
represents the next sampling moment. During Tk the iteration 
calculation is run. Let kk correspond to the current iteration 
step. The current moment at the kk-th iterative step is t=tk+Δ
kk-1, whereΔkk-1 is the time necessary to perform the total of kk 
iterations. Also, notation u(kk, t) represents the kk-th iteration 
value of u. The error during the kk-th control iterative input is 
denoted by e(kk, t). The iterative calculation of the control 
signal u is given by 

u(kk+1,t)=u(kk,t)+kp*e(kk,t)+ 
       kd*[e(kk,t)-e(kk-1,t)],  t=tk         (15) 

    e(kk,t)=ym(t)-yn(kk,t),  t=tk                     (16) 
Here kp and kd are the PD parameters. The whole iteration 

session has to be finished during Tk.  

The whole iteration control step is calculated as follows:  

a) kk=1；e(0,k+1)=0； 
b) ),()1,(ˆ kkkukkku =+ , where û  is the 

estimated value of u; 
c) calculate yn(kk,k+1) by（5）~（8） 
d) e(kk,k+1)=ym(k+1)-yn(kk,k+1) 
e) if |e(kk,k+1)|≤εc, then GO TO g), ELSE： 

++++=+ )1,(*)1,(ˆ)1,(ˆ kkkekkkkukkku p        

)]1,1()1,([* +−−+ kkkekkkekd  
f) kk=kk+1；if ∆kk-1<τ RETURN to step b). 
g) )1,(ˆ)1( +=+ kkkuku ，END iterations. 

V. FUZZY LOGIC BLOCK 
In the proposed control structure the PD type fuzzy logic 

block(FLB) is used. The FLB acts as a damper in the loop. 
The output of the FLB is governed by 

     ),( mmfuzzyfuf eeFku ∗=                         (17) 

Here uf is the FLB output and kfu is the gain; em, me  are 
the error signal and its derivative; Ffuzzy is a non-linear 
function whose output signal represents crisp values resulting 
from internal fuzzy logic processing of the FLB. The crisp 
input signals em and me  are normalized to the range [-1,1]. 
Simple Gaussian membership functions for the normalized 
values of em and me  are used. Let N and P denote 'negative' 
and 'positive' respectively; then the membership functions are 

          µN(x)=exp(-10(x+0.3)2) 
        µP(x)=exp(-10(x-0.3)2)               (18)  

TABLE.I  FUZZY LOGIC CONTROL RULES 
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    The four fuzzy rules used in the design of the FLB 

are represented by the following Tab 1. where NB and PB 
denote 'negative big' and 'positive big', respectively. As a 
result of the fuzzy inference mechanism, the output fuzzy 
value is produced. The membership functions for the 
normalized output values are:  

          μNB(x)=[1+exp(6(x+0.3))]-1 
          μPB(x)=[1+exp(-6(x-0.3))]-1 
          μN(x)=exp(-12.5(x+0.3)2) 

         μP(x)=exp(-12.5(x-0.3)2)             (19) 
After the output fuzzy value is obtained, it is defuzzyfied, 

denormalized, and multiplied by the gain kfu to produce uf. 

VI. EXPERIMENTAL RESULTS 
Our experiments are based on a model of the aeroengine 

rotor speed control system used in laboratory. Obviously, 
Ignoring aeroengine combustion delay, the model can be 
simplified to a control system of the second order as 
expression (2). The proposed rotor control system 
configuration shows as figure.2. the control time interval is 
τ =0.02s. The reference discrete model with good 
performance and realization for rotor speed control system in 
certain turbofan engine can be taken as 

+−−=+ )1(8978.0)(8953.1)1( kykyky  
)1(0102.0)(0107.0 −− kuku           (20) 

 
figure.2 The proposed speed control system block for an aeroengine 

System dynamic parameters, such as 2
1T 、T2、KL、τL, 

will change in limited scope with the different flight altitude 
H and mach number M for aeroengine reference model (1). So 
these dynamic parameters are uncertain for aeroengine rotor 
control system. By experiment, in whole aeroengine flight 
envelope, their possible ranges are 2

1T ∈[0.1, 0.2], T2∈[0.5, 
1.5], KL ∈ [0.1, 0.4], τ L ∈ [0.2, 0.5]. In conventional 
aeroengine mechanical-hydraulic controller, because 
hydraulic amplifier valve with speed feedback is plus overlap 
configuration, it leads to dead zone effect inevitably in 
aeroengine rotor speed control system. the input saturation 
limit is [-6, +6]; the dead-zone gap is ±0.2. All numerical 
values of the simulation model are obtained either by 
measurements or identification from laboratory experiments. 
The software environment used for these simulation 
experiments is Matlab 6.0, with the Simulink package; 
numerical integration is done by the Runge-Kutta 4 algorithm.  

The size of neural network is 8×7×1; the learning rate of 
neural network is η=0.2; the control iterative parameters are 



 

kp=0.2 and kd=0.01, the normalization factors for inputs em and 

me  to the FLB are kem=1 and kdem=0.1 respectively, while the 
gain kfu=1. 

The maximal number of iteration steps during the 
sampling interval is 20. The initial values of vectors S, X and 
net are all set to zero for the variable components; the initial 
weights of matrices W and V are taken at random; the three 
gains for recursive calculations of X are α=0.2, β=0.5, γ
=0.5. 

Figure.3 shows the rotor speed loop response in certain 
turbofan engine flight/train maximum condition when the step 
type reference input is main fuel signal mf in flight altitude 
H=0km. From the moment t=2.5sec and until t=7.5sec, a step 
type disturbance signal is injected into the loop. Figure.4 and 
Figure.5 show enlarged sections for a better comparison of the 
transient properties and disturbance rejection properties of the 
proposed control algorithm and that of the conventional 
mechanical-hydraulic controller(HMC). Remarkably, the 
proposed NNI with FLC can eliminate steady-state error, and 
the conventional HMC exists steady-state error about 0.24%. 

 
Figure.3 Loop response with step type reference input signal 

 
Figure.4 System transient properties with the proposed  

algorithm and speed feedback algorithm 

Figure.5 shows the rotor speed loop response in certain 

turbofan engine flight/train maximum condition when the step 
type reference input is main fuel signal mf in static test. As 
seen from Figure.6, for mechanical- hydraulic controller, the 
surge occurred at steady-state point under the influent of 
components nonlinear characteristic and aeroengine 
combustion delay. It led to a long surging time and a bad 
transient properties. For analogue engine electronic 
controller(AEEC), although it can eliminate steady-state error, 
it also led to a long surging time and a less overshot. The 
proposed algorithm brought about good control results, such a 
short surging time and overshot restraint. So it can improve 
transitional quality in control system, and meet the demands 
of high performance and high control accuracy in turbofan 
engine. 

    
Figure.5 System disturbance rejection properties with the proposed 

algorithm and speed feedback algorithm 

 
Figure.6 System response curve in ground testing 

VII. CONCLUSION 
This paper proposed a new neural network algorithm with 

fuzzy logic compensation and applied to an aeroengine rotate 
speed control system. A dynamic neural network was used to 
identify the plant on-line. The control signal was then 
calculated iteratively according to the responses of a reference 
model and the output of identified plant. A fuzzy logic block 
with four very simple rules was added to the loop to improve 



 

the overall loop properties. Experimental results demonstrate 
the proposed control strategy provides better disturbance 
rejection and transient properties than those achieved by 
conventional MHC and AEEC.  
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