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Abstract— This paper proposes to study the activity invari-
ant sets and exponentially stable attractors of Lotka-Volterra
recurrent neural networks. The concept of activity invariant sets
deeply describes the property of an invariant set by that the
activity of some neurons keeps invariant all the time. Conditions
are obtained for locating activity invariant sets. Under some
conditions, it shows that an invariant set can have one equilibrium
point which is exponentially stable. Since the attractors are
located in activity invariant sets, each attractor has binary pattern
and also carries analog information. Such results can provide new
perspective to apply attractor networks for applications such as
group winner-take-all, associative memory, etc..

I. INTRODUCTION

The Lotka-Volterra model of recurrent neural networks was
first proposed in [4]. It was derived from the conventional
membrane dynamics of neurons with a sigmoid response
function and its dynamic properties were analytically studied.
Moreover, it has found successful applications in winner-take-
all, winner-share-all and k-winner-take-all problems, see [1],
[2], [8]. Due to the application potential of this class of
neural networks, it is necessary and useful to study its general
dynamic properties.

In this paper, we propose to study activity invariant sets and
exponentially stable attractors of Lotka-Volterra recurrent neu-
ral networks. Invariant sets play important roles in dynamics
study of recurrent neural networks. An invariant set restricts
trajectories starting from the set stay in the set. The concept
of activity invariant set more deeply describes the dynamic
properties of invariant sets: the activity of some neurons keeps
invariant during the time evolution. Thus, neurons can be
divided into two classes of active neurons and inactive neurons.
We will derive conditions for locating activity invariant sets.

In applying of recurrent neural networks to the application
of associative memory, it is crucial that the networks have
stable attractors. Stable attractors stored as memories to the
networks are often used to implement associative memory [7],
the memories can be recalled by encoding initial conditions
as computational inputs to the network. If a neural network
has more than one stable attractor, then it is multistable. In a
sense, multistability is a necessary property in neural networks
in order to enable certain applications where monostable
networks could be computationally restrictive [5]. Recently,
there has been increasing interest in multistability analysis for

neural networks [9], [10], [11], [12], [13], [14], [15].
We will show that under some conditions, an activity invari-

ant set has one equilibrium point which is exponentially stable.
Such attractors are located in activity invariant sets, thus each
attractor has binary pattern and also carries analog information.
This is quite interesting since these attractors could be used
to store memories with both binary and analog information.
It is believed that these results can have potential applications
such as group winner-take-all, associative memory, etc.. In the
application of group winner-take-all, the network outputs are
required to have binary pattern, i.e., the winners and the losers,
on the other hand, differences may exist in different winners,
such differences can be described by analogy information of
each winner.

The rest of this paper is organized as follows. In Section
II, we present some preliminaries. Main results about activity
invariant sets and exponentially stable attractors are given
in Section III. Simulations are carried out in Section IV to
illustrate the theory. Conclusions are given in Section V.

II. PRELIMINARIES

Consider the following Lotka-Volterra recurrent neural net-
works:

ẋi(t) = xi(t)


hi − xi(t) +

n∑
j=1

wijxj(t)


 (1)

for t ≥ 0 and i = 1, 2, · · · , n, where each xi(i = 1, 2, · · · , n)
denotes the activity of neuron i, and x = (x1, x2, · · · , xn)T ∈
Rn. wij(i, j = 1, 2, · · · , n) are connection weights which are
constants.

Definition 1: A neuron with index i is called active at time
t if xi(t) > 0, while a neuron with index i is called inactive
at time t if xi(t) = 0.

Lemma 1: Given any neuron i, if it is active initially then
it will be active all the time; if it is inactive initially then it
keeps inactive thereafter.

Proof: By Definition 1, we will prove that given any
i(1 ≤ i ≤ n), if xi(0) > 0 then xi(t) > 0 for all t ≥ 0; if
xi(0) = 0 then xi(t) = 0 for all t ≥ 0. Denote

ri(t) = hi −
n∑

j=1

wijxi(t).
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Then,

xi(t) = xi(0) · exp
(∫ t

0

ri(s)ds

){
> 0, if xi(0) > 0
= 0, if xi(0) = 0

for all t ≥ 0. The results now follows and the proof is
completed.

Definition 2: A set D ⊂ Rn is called an invariant set of
(1), if each trajectory starting in D will remain in D forever.

Definition 3: A set D ⊂ Rn is called an activity invariant
set of (1), if D is an invariant set, and given any x(0) ∈ D it
holds that 


xi(t) > 0, if xi(0) > 0

xi(t) = 0, if xi(0) = 0

for all t ≥ 0.
Activity invariant set says that in an invariant set, the

activity of a neuron keeps invariant, i.e., if a neuron is initially
active then it keeps active for all the time, if a neuron is initially
inactive then it keeps inactive thereafter.

A point x∗ ∈ Rn is called an equilibrium point of (1) if

x∗
i


hi − x∗

i +
n∑

j=1

wijx
∗
j


 = 0, (i = 1, · · · , n). (2)

Given any x ∈ Rn, denote ‖x‖ = max1≤i≤n{|xi|}.
Definition 4: An invariant set D of (1) is said to have an

exponentially stable attractor x∗, if x∗ ∈ D is an equilibrium
point of (1), and there exits a constant ε > 0 and for any C > 0,
there exists a constant δ > 0 such that ‖x(0)−x∗‖ < δ implies
that

‖x(t) − x∗‖ ≤ C · e−εt

for all t ≥ 0.
Definition 5: Suppose that M is an n × n matrix, and let

P ⊆ {1, 2, · · · , n} be an index set. The matrix MP is said
to be a submatrix of M if the matrix MP can be constructed
from M simply by removing from M all rows and columns
not indexed by P .

Given a constant c, denote by{
c− = min {c, 0} ,
c+ = max {c, 0} .

Clearly, c− ≤ 0 and c+ ≥ 0.
Lemma 2: It holds that

c+ − c− = |c|, c+ × c− = 0.

Proof: If c ≥ 0, then, c+ = c and c− = 0, thus,

c+ − c− = c = |c|, c+ × c− = 0.

If c < 0, then, c+ = 0 and c− = c, thus,

c+ − c− = −c = |c|, c+ × c− = 0.

This proof is completed.

III. ACTIVITY INVARIANT SETS AND EXPONENTIALLY

STABLE ATTRACTOR

In this section, we will address the questions: under what
conditions the network (1) can have invariant sets, and can
an invariant set have an exponentially stable attractor? The
two questions can be solved by the following theorems,
respectively. Theorem 1 firstly establishes the conditions to
locate activity invariant sets.

Theorem 1: Suppose that P ∪Z = {1, 2, · · · , n} and P ∩Z
is empty. If there exist constants 0 < ξi < ηi(i ∈ P ) such that


hi + (wii − 1) ξi +

∑
j∈P,j �=i

(
w+

ijξj + w−
ijηj

) ≥ 0,

hi + (wii − 1) ηi +
∑

j∈P,j �=i

(
w+

ijηj + w−
ijξj

) ≤ 0,
(3)

then the set

D = {x|ξi ≤ xi ≤ ηi(i ∈ P ); xl = 0(l ∈ Z)}
is an activity invariant set of the network (1), and the neurons
with index in P are active invariant, the neurons with index in
Z are inactive invariant.

Proof: Given any initial x(0) ∈ D, we will prove that it
holds that the trajectory ξi ≤ xi(t) ≤ ηi for all t ≥ 0 if i ∈ P ,
and xl(t) = 0 for all t ≥ 0 if l ∈ Z .

By Lemma 1, given any initial xl(0) = 0(l ∈ Z), it must
hold xl(t) = 0 for all t ≥ 0 and l ∈ Z . Thus, it will be
sufficient to prove that any initial ξi ≤ xi(0) ≤ ηi(i ∈ P )
implies ξi ≤ xi(t) ≤ ηi for all t ≥ 0 and i ∈ P . We will show
this by counterproof. Suppose this is not true, then two cases
can happen.

Case 1. There exist t̃1 > t1 > 0 and some i ∈ P such that
xi(t) is strictly decreasing on the interval [t1, t̃1], and


ξi ≤ xi(t) ≤ ηi, 0 ≤ t < t1,
ξj ≤ xj(t) ≤ ηj , 0 ≤ t ≤ t̃1, j 
= i, j ∈ P,
xl(t) = 0, t ≥ 0, l ∈ Z.

Thus, it must hold that ẋi(t) < 0 for t ∈ [t1, t̃1]. However,
from (1) and by condition (3), it follows that for t ∈ [t1, t̃1]

ẋi(t) = xi(t)


hi − xi(t) +

n∑
j=1

wijxj(t)




= xi(t)


hi − xi(t) +

∑
j∈P

wijxj(t)




≥ ξi ·

hi + (wii − 1)ξi +

∑
j∈P,j �=i

(
w+

ijξj + w−
ijηj

)
≥ 0.

This is a contradiction.
Case 2. There exist t̃2 > t2 > 0 and some i ∈ P such that

xi(t) is strictly increasing on the interval [t2, t̃2], and


ξi ≤ xi(t) ≤ ηi, 0 ≤ t < t2,
ξj ≤ xj(t) ≤ ηj , 0 ≤ t ≤ t̃2, j 
= i, j ∈ P,
xl(t) = 0, t ≥ 0, l ∈ Z.



Thus, it must hold that ẋi(t) > 0 for t ∈ [t2, t̃2]. However,
from (1) and by condition (3), it follows for t ∈ [t2, t̃2] that

ẋi(t) = xi(t)


hi − xi(t) +

n∑
j=1

wijxj(t)




= xi(t)


hi − xi(t) +

∑
j∈P

wijxj(t)




≤ ηi ·

hi + (wii − 1) ηi +

∑
j∈P,j �=i

(
w+

ijηj + w−
ijξj

)
≤ 0.

This is also a contradiction.

The above contradictions clearly imply that D must be a
local invariant set. Moreover, D is an activity invariant set. So
the set of neurons with index P is an active invariant set of the
network while the set of neurons with index Z is an inactive
invariant set. The proof is completed.

Theorem 1 gives the conditions to locate the activity in-
variant sets. Before addressing the second question whether
an invariant set can have an exponentially stable attractor, we
will firstly give the following lemma which is useful to prove
Theorem 2.

Lemma 3: Let x∗ be an equilibrium, then, the linearization
of the network at x∗ is given by:

d [xi(t) − x∗
i ]

dt

= (xi(t) − x∗
i ) ·


hi − x∗

i +
n∑

j=1

wijx
∗
j




+x∗
i


− (xi(t) − x∗

i ) +
n∑

j=1

wij

(
xj(t) − x∗

j

) (4)

for t ≥ 0 and i = 1, · · · , n.

Proof: From (1), it gives that

d [xi(t) − x∗
i ]

dt

= (xi(t) − x∗
i ) ·


hi − x∗

i +
n∑

j=1

wijx
∗
j − (xi(t) − x∗

i )

+
n∑

j=1

wij

(
xj(t) − x∗

j

)

+x∗
i


hi − x∗

i +
n∑

j=1

wijx
∗
j




+x∗
i


− (xi(t) − x∗

i ) +
n∑

j=1

wij

(
xj(t) − x∗

j

)

= (xi(t) − x∗
i ) ·


hi − x∗

i +
n∑

j=1

wijx
∗
j




+x∗
i


− (xi(t) − x∗

i ) +
n∑

j=1

wij

(
xj(t) − x∗

j

)
+o (xi(t) − x∗

i ) ,

where o(s) denotes the higher-degree polynomial of variable
s ∈ R. The result now follows by removing the high order
term. The proof is completed.

Theorem 2: Suppose the conditions of Theorem 1 are sat-
isfied. Moreover, if it holds that

hl +
∑
j∈P

(
w+

ljηj + w−
ljξj

)
< 0, (l ∈ Z), (5)

then D has an exponentially stable attractor.
Proof: The proof will be divided into two parts. In the

first part, we will prove that there exists a unique equilibrium
point x∗ ∈ D, i.e.,{

0 < ξi ≤ x∗
i ≤ ηi, i ∈ P,

x∗
i = 0, i ∈ Z.

If x∗ is an equilibrium point, then from (2), it must hold that{
hP − x∗

P + WP x∗
P = 0P ,

x∗
Z = 0Z ,

(6)

where hP , x∗
P are the vectors constructed by removing the

elements not indexed by P from h and x∗, respectively. x∗
Z

is the vector constructed by removing from x∗ the elements
not indexed by Z . WP is the submatrix of W constructed by
removing from W all rows and columns not indexed by P .
0P and 0Z are vectors with each elements as 0. We will prove
that (6) has a unique solution. By condition (3), for i ∈ P , we
have

(1 − wii) (ηi − ξi) −
∑

j∈P,j �=i

(
w+

ij − w−
ij

)
(ηj − ξj) > 0,

i.e.,

(1 − wii) (ηi − ξi) −
∑

j∈P,j �=i

|wij | (ηj − ξj) > 0 (7)



for i ∈ P . Then it must hold that

(1 − wii) (ηi − ξi) −
∑

j∈P,j �=i

wij (ηj − ξj) > 0, (i ∈ P ).

This implies that (I − W )P is a nonsingular M-matrix [3].
Then from (6), it follows that

x∗
P = (I − W )−1

P hP .

Thus, {
x∗

P = (I − W )−1
P hP

x∗
Z = 0Z

is the unique solution of (6), i.e, x∗ is a unique equilibrium
point in D.

Next, in the second part, we will prove x∗ is exponentially
stable. By the definition of stability in Lyapunov sense, it
is sufficient to prove the stability of the linearization of the
network (1) at x∗.

By Lemma 3, we have


d [xi(t) − x∗
i ]

dt
= x∗

i

[
− (xi(t) − x∗

i )

+
∑
j∈P

wij

(
xj(t) − x∗

j

)
+

∑
j∈Z

wijxj(t)
]
, (i ∈ P )

dxi(t)
dt

= xi(t)
[
hi +

∑
j∈P

wijx
∗
j

]
, (i ∈ Z)

(8)
for t ≥ 0. Firstly, we will prove that xi(t)(i ∈ Z) converge to
x∗

i (i ∈ Z) exponentially. By condition (5), it holds for i ∈ Z
that

λi � −

hi +

∑
j∈P

wijx
∗
j




≥ −

hi +

∑
j∈P

(
w+

ijηj + w−
ijξj

)
> 0.

Then the trajectories starting from xi(0) > 0(i ∈ Z) satisfy
that

‖xZ(t)‖ ≤ ‖xZ(0)‖ · e−λt (9)

for all t ≥ 0, where λ = mini∈Z {λi}. Clearly, xi(t)(i ∈ Z)
will converge to zero exponentially.

Next, we consider another subsystem of (8)

d [xi(t) − x∗
i ]

dt

= x∗
i


− (xi(t) − x∗

i ) +
∑
j∈P

wij

(
xj(t) − x∗

j

)

+
∑
j∈Z

wijxj(t)


 (10)

for t ≥ 0 and i ∈ P .

Denote by αi = ηi − ξi > 0(i ∈ P ), it follows from (7)
that

β � min
i∈P


x∗

i


1 − wii − 1

αi

∑
j∈P,j �=i

αj |wij |



 > 0.

Construct a Lyapunov function as follows

V (t) =
∑
i∈P

αi
|xi(t) − x∗

i |
x∗

i

(11)

for t ≥ 0. It follows from (10) and (11) that

D+V (t) ≤
∑
i∈P

αi

[
− (1 − wii) |xi(t) − x∗

i |

+
∑

j∈P,j �=i

|wij |
∣∣xj(t) − x∗

j

∣∣ ]

+
∑
i∈P

αi

∑
j∈Z

|wij |xj(t)

≤ −
∑
j∈P

αj


1 − wjj − 1

αj

∑
i∈P,i�=j

αi|wji|



× ∣∣xj(t) − x∗
j

∣∣ +
∑
i∈P

αi

∑
j∈Z

|wij |xj(t)

≤ −βV (t) +
∑
i∈P

αi

∑
j∈Z

|wij |xj(t)

≤ −βV (t) + M‖xZ(t)‖
for t ≥ 0, where

M = max
j∈Z

{∑
i∈P

αi |wij |
}

.

Then it gives that

V (t) ≤ V (0)e−βt + M

∫ t

0

‖xZ(s)‖ · e−β(t−s)ds

≤ V (0)e−βt + M‖xZ(0)‖ · e−βt ·
∫ t

0

e(β−λ)sds

≤ Q‖xP (0) − x∗
P ‖ · e−βt

+M‖xZ(0)‖ · e−βt ·
∫ t

0

e(β−λ)sds

for t ≥ 0, where

Q = max
i∈P

{
αi

x∗
i

}
.

Since∫ t

0

e(β−λ)sds =




1
β − λ

·
[
e(β−λ)t − 1

]
, if β 
= λ

t, if β = λ

for t ≥ 0, if β 
= λ, it gives that

V (t) ≤ Q‖xP (0) − x∗
P ‖ · e−βt

+M‖xZ(0)‖ · 1
β − λ

· (e−λt − e−βt
)

= Πe−βt + M‖xZ(0)‖ · 1
β − λ

· e−λt



for t ≥ 0, where

Π = Q‖xP (0) − x∗
P ‖ − M‖xZ(0)‖ · 1

β − λ
.

And if β = λ, it gives that

V (t) ≤ Q‖xP (0) − x∗
P ‖e−βt + M‖xZ(0)‖ · te−βt

for t ≥ 0. Since

V (t) ≥ Q ‖xP (t) − x∗
P ‖ ,

where

Q = min
i∈P

{
αi

x∗
i

}
,

there must exist constants Φ > 0 and ε > 0 such that

‖xP (t) − x∗
P ‖ ≤ Φ · e−εt (12)

for all t ≥ 0. It implies that xP will converge exponentially
to x∗

P . Then from (9) and (12), x∗ is a exponentially stable
attractor located in D. The proof is completed.

The theorem above shows that for some division of neurons
of the network (1), i.e., P ∪Z = {1, 2, · · · , n}, and P ∩Z = ∅,
if there exists a pair of constant vector (ξ, η) such that (3)
which locates an activity invariant set D, then the activity of
each neuron in D keeps invariant, i.e., the set of neurons with
index P will keep active while the set of neurons with index
Z will keep inactive all the time.

Moreover, it also shows that under the conditions of Theo-
rem 2, the activity invariant set D has one exponentially stable
attractor which is regarded as memory stored in the synaptic
connections of the networks. Since the activity invariant set
D is composed of two parts, active and inactive invariant
set, each attractor has binary pattern. Furthermore, in the
active invariant part, the neurons carry analogy information.
Thus, the networks implement a form of hybrid analog-digital
computation. In other words, the attractors of the network
(1) could be used to store memories with both binary and
analog information. Thus it can provide new perspective for
some potential applications. For example, in the application
of group winner-take-all, the network outputs are required to
have binary pattern, i.e., the winner group and the other losers.
In addition, there may exist differences among neurons in the
winner group, such differences can be depicted by analogy
information of each neuron in the winner group.

From Theorems 1 and 2, we can have the following
corollary.

Corollary 1: If there exist constants 0 < ξi < ηi(i =
1, 2, · · · , n) such that


hi + (wii − 1) ξi +

∑
j∈P,j �=i

(
w+

ijξj + w−
ijηj

) ≥ 0

hi + (wii − 1) ηi +
∑

j∈P,j �=i

(
w+

ijηj + w−
ijξj

) ≤ 0

for i = 1, 2, · · · , n, then the set

D = {x|xi ∈ [ξi, ηi] , (i = 1, 2, · · · , n)}

is an activity invariant set of the network (1). Moreover, D has
an exponentially stable attractor.

Proof: Let P = {1, 2, · · · , n} and Z be empty, the result
follows from Theorems 1 and 2.

IV. SIMULATION RESULTS

In this section, simulations will be carried out to illustrate
how to locate the activity invariant sets. A simple two dimen-
sional network will be employed for illustrations.

Let us consider the following two dimensional network:{
ẋ1(t) = x1(t) [1 − x1(t) + 0.5x1(t) − 5x2(t)]
ẋ2(t) = x2(t) [1 − x2(t) − 5x1(t) + 0.5x2(t)]

(13)

for t ≥ 0. Clearly, w11 = w22 = 0.5, w12 = w21 = −5, h1 =
h2 = 1.

Taking P = {1}, Z = {2}, by conditions (3) and (5) of
Theorems 1 and 2, we have inequalities for possible invariant
set as 


1 − 0.5ξ1 ≥ 0
1 − 0.5η1 ≤ 0
1 − 5ξ1 ≤ 0
0 < ξ1 < η1.

Solving the inequalities, one can have that ξ1 = 0.2 and η1 ≥
2. Thus,

D1 =
{

x = (x1, x2)
T
∣∣∣ 0.2 ≤ x1 < +∞; x2 = 0

}
is an activity invariant set, and the neuron with index i = 1
is active invariant in D1 while the neuron with index i = 2 is
inactive invariant in D1, respectively. Moreover, by Theorem
2, D1 has an exponentially stable attractor.

Next, taking P = {2}, Z = {1} and solving the inequalities


1 − 0.5ξ1 ≥ 0
1 − 0.5η1 ≤ 0
1 − 5ξ1 ≤ 0
0 < ξ1 < η1.

It can be found that ξ2 = 0.2, η2 ≥ 2 is a solution. Thus,

D2 =
{

x = (x1, x2)
T
∣∣∣ x1 = 0; 0.2 ≤ x2 < +∞

}
is an activity invariant set, and the neuron with index i = 2
is active invariant in D2 while the neuron with index i = 1 is
inactive invariant in D2, respectively. Moreover, by Theorem
2, D2 has an exponentially stable attractor.

We further consider the case: P = {1, 2, · · · , n} and Z to
be empty. In this case, the inequalities (3) and (5) cannot have
solutions.

Figure 1 shows the activity invariant sets and the exponen-
tially stable attractors of the network (13). The dashed lines
denote D1 and D2 which are two rays located in x-axis and
y-axis, respectively. Furthermore, there are two local stable
equilibrium points (2, 0)T and (0, 2)T located in D1 and D2,
respectively, and attract all trajectories in the corresponding
regions.



−0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

x1

x2

D1

D2

Fig. 1. Activity invariant sets and exponentially stable attractors of the net-
work (13). There are two local stable equilibrium points (2, 0)T and (0, 2)T

located in two activity invariant sets D1 = {x |0.2 ≤ x1 < +∞; x2 = 0}
and D2 = {x |x1 = 0; 0.2 ≤ x2 < +∞}, respectively.
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Fig. 2. Convergence of the network (13). The trajectory starts from a
randomly initial point x(0) = (2.3477, 0.4665)T . It converges to the stable
point x∗ = (2, 0)T ∈ D1.

V. CONCLUSION

In this paper, the activity invariant sets and exponentially
stable attractors of Lotka-Volterra recurrent neural networks
have been studied. Conditions have been derived to locate the
activity invariant sets. It shows that under some conditions an
invariant set can process an exponentially stable attractor. Such
an attractor carries both binary and analog information. We
believe these interesting properties can give new perspective
for applications of attractor networks to group winner-take-all,
associative memory, etc.. More researches in this direction will
be carried out in future.
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