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Abstract—In this paper, a discrete-time internal model control 

(IMC) approach to control the nonlinear systems described by 
pseudo-Hammerstein model with backlash is presented. In this 
method, the design strategy for discrete-time control is 
implemented by introducing the inverse function of pseudo-
Hammerstein model with backlash. Moreover, the design of the 
filters to guarantee the robustness of the control system will be 
discussed. Finally, the simulation results are presented to 
illustrate the efficiency of the method. 
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I.  INTRODUCTION 
Backlash is a kind of non-smooth nonlinearity with multi-

valued mapping. It often exists in a wide range of physical 
systems and devices, such as mechanical actuators, electronic 
relay circuits and gear transmission devices [1]. Usually, 
backlash may lead to undesirable oscillations, even instability 
for closed-loop control systems [1-2]. Thus, the control of the 
systems with backlash is an important and challenging 
problem. 

There have been some approaches to control the systems 
with backlash [1-9]. Reference [2] designed a feedforward 
compensator to eliminate the effect of backlash in valves. 
Reference [3] proposed a hybrid model based predictive control 
method to handle the compensation for the saturation and 
backlash in actuators. Moreover, [4, 5] developed adaptive 
control based on a smooth inverse model used to approximately 
cancel the effect of backlash in control systems. On the other 
hand, some other alternatives for control of the systems with 
backlash have been developed. Reference [6] used a variable 
structure control method to control the systems preceded with 
backlash-like hysteresis. Reference [7] employed a fuzzy 
control method to control the system with output backlash. 
Reference [8] used recurrent neural control strategy to handle 
the backlash existing in mechanical systems. Also, [9] applied 
the combination of PID strategy and feedforward compensator 
to the control of a system with backlash.  

As backlash is a non-smooth nonlinear phenomenon with 
multi-valued mapping, it is quite difficult to obtain an accurate 
model to describe its operating behavior. In this case, it may 

cause some uncertainty in the modeling procedure. Thus, a 
robust control strategy has to be considered to tackle the 
problem of model uncertainty. 

It is known that internal model control (IMC) is one of the 
effective robust control techniques [10-15]. It has been widely 
applied to industrial process control systems due to its simple 
structure and easy tuning property. Recently, IMC has been 
extended to control the smooth nonlinear systems [10, 11, 13-
15]. However, up till now, there have been very few literatures 
concerning the application of the IMC method to the control of 
systems with backlash. 

In this paper, a pseudo-Hammerstein model with backlash 
based on the key term separation principle [16] is proposed. 
Based on the proposed model, the corresponding inverse model 
is obtained. Then, the discrete time internal model control 
strategy based on the proposed model is developed. 
Considering the characteristic of the systems involved with 
backlash, an IMC strategy to guarantee the robust stability of 
the system is developed. After that, the paper will demonstrate 
a simulation example based on the proposed control method. 
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Figure 1.  Architecture of pseudo-Hammerstein systems with backlash  

II. MODELING PSEUDO-HAMMERSTEIN SYSTEMS WITH 
BACKLASH 

The pseudo-Hammerstein system with backlash is that the 
linear dynamic subsystem with preceded backlash. The 
corresponding structure of this system in discrete time is 
shown in Fig 1. It is noted that input u and output y can be 
measured directly. However, the embedded internal 
variable x is unmeasurable.  

It is assumed that the linear dynamic subsystem of the 
system is asymptotically stable. Also, the steady gain of the 
linear dynamic subsystem is not zero. Moreover, coefficient b0 
in the linear part of the system is assumed to be equal to unity, 
which is normalized for unique representation. Therefore, the 



         

corresponding dynamic linear subsystem in discrete time is 
described by 
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 where d is the time-delay; an and bn are the orders of the 
linear dynamic subsystem, 1, ,
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Figure 2.  The description of backlash 

Generally, the backlash shown in Fig.2 can be considered 
as a kind of non-symmetric function. Parameters 1 0m∞> > , 

2 0m∞> > , 1 0c∞> >  and 2 0c∞> > , are the constants 
to specify the characteristic of the backlash, where u and x are 
respectively the input and output of the backlash. 

Based on the characteristic of the backlash and the key 
term separation principle, the corresponding discrete-time 
mathematical model is represented by 

1 2 1( ) ( ) ( ( ))m k m m m g u k= + − ∆                                       (2) 
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where sgn(·) is the sign function, and the switching function 
g(x) is defined as: 
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Substitute (4) and (3) into (1), it leads to 
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 Eqs.(2)-(6)constitutes the novel special form of the pseudo-
Hammerstein model with backlash. 

III. BRIEF DESCRIPTION OF INTERNAL MODEL CONTROL  
Based on the pseudo-Hammerstein model with backlash, 

an internal model control strategy is developed in this section. 
Fig. 3 illustrates the architecture of the IMC. In Fig. 3, P  is 
the controlled plant involved with backlash, while G  
represents the above-mentioned pseudo-Hammerstein model 
with backlash; the controller in the structure consists of two 
filters, i.e. 1F  and 2F respectively as well as 1G− , i.e. the 
inverse of G . Q is an available operation. r  is the reference 
trajectory, u  is the output of the controller, and û is the 
pseudo-output of the controller.   
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Figure 3.  The architecture of the IMC 

Define the model mismatch as 1( )zη − where 1
M| ( ) |zη η− ≤ , 

M 0η > . 1z− is the unit back-shift operator, i.e. 
1x(k) x(k 1)z− = − .Then, the controlled plant can be described 

by: 
 1 1 1( ) (1 ( )) ( )P z z G zη− − −= + .                                            (7) 
From Fig.3, it can be obtained that 

1
2 ˆ( ) ( )( ( ) ( ))e k F z y k y k−= −                                            (8) 

ˆ ( ) ( )u Q u u D c= = +                                                        (9)  
where 
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； 

3 ( )g k and 4 ( )g k will be explained in section 4; 1d which is 
variable is transient delay from the linear zones to memory 
zones. 
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Based on (8)-(11), it has: 
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If 1( )G z−  is non-minimum phase, then (9) will be unstable 
due to 1( )G z−  is un-invertible. Thus, the obtained controller 
will not be implemented. Thus, 1( )G z−  can be divided into 

1( )G z−
+  and 1( )G z−

− , i.e. 
-1 -1 -1G(z G z G z) ( ) ( )+ −=                                                 (14) 

where 1( )G z−
+ represents the un-invertible part of the model 

where all the zeros located outside the unit circle, and 
1( )G z−

−  is the remained stable zeros and poles of the model. 
Therefore, the control strategy can be approximately designed 
as 

1 1
1ˆ( ) ( ) ( ) (1)( ( ) ( ))u k F z G z G r k e k− −

− += −                        (15)  
where 1 1 -1

z 1
(1) limG (z )G− −

+ +→
= .                                                     

In this case the corresponding model mismatch can be 
approximately represented by 
           

1 1 1 1 1
m [ ( ) ( )] ( ) (1)P z G z G z Gη − − − − −

− += − .                        (16) 
In order to guarantee the robust stability of the control 

system, the filters, i.e. 1F and 2F should be selected to satisfy 
the following conditions [18]:  

2 1 m|| ( ) ( ) ( ) || 1, (- , )j T j T j TF e F e eω ω ωη ω π π− − − < ∈ .              (17) 
 As the controller contains the inverse model of the 

controlled plant, the inverse model of the pseudo-Hammerstein 
model with backlash will be discussed in the following section. 
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Figure 4.  The architecture of the inverse pseudo-Hammerstein model with 

backlash 

  

  

  

  

Figure 5.  The inverse backlash 

IV. THE INVERSE MODEL OF THE PSEUDO-HAMMERSTEIN 
SYSTEMS WITH BACKLASH  

Suppose the inverse model of the linear subsystem in the 
pseudo-Hammerstein model to be denoted by 1L− , i.e. the 
linear subsystem in the inverse model, while the inverse model 
of the backlash subsystem in the pseudo-Hammerstein model 
to be denoted by 1N− , i.e. the nonlinear subsystem in the 
inverse model. Assume both 1L−  and 1N−  exit. Then, 

1 1 1( )NL L N− − −= . The architecture of the inverse model is 
shown in Fig.4. The inverse model of the backlash is shown in 
Fig. 5 [3]. 

Based on (1), 1L−  can be written as 

j i
j 1 i 1

( ) ( j ) y( ) y( i)
nb an

x k d b x k d k a k
= =

− = − − − + + −∑ ∑ .      (18) 

Considering the case where 1d = and (14) and (15), (18) 
can be rewritten as:  
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Based on (2)-(4) and the key term separation principle, the 
discrete-time model of the inverse backlash is rewritten as 
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   Substituting (19) into (20) based on the key term separation 
principle, it leads to:  
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Re-substituting (22) into (21), it results in 
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Eqs.(19)-(23) constitute the inverse model of the pseudo-
Hammerstein system with backlash.  

Note that switch functions 1( )g k , 2 ( )g k , 
3 ( )g k and 4 ( )g k in the model and the inverse model of the 

pseudo-Hammerstein system with backlash cannot be 
calculated directly, the internal variables, i.e. ( )m k , 1( )x k , 

( )x k  and q1( )k are actually un-measurable. However, they 
can be predicted based on the previously estimated results. In 
this paper, the recursive general identification algorithm 
(RGIA) [17] can be applied to the identification of both the 
model and the corresponding inverse model of the pseudo-
Hammerstein system with backlash. As the inverse model of 
the pseudo-Hammerstein model with backlash can be described 
as (19)-(23), the inverse model can also be obtained based on 
the pseudo-Hammerstein model. Fig.6 illustrates that the 
obtained inverse model derives the satisfactory compensation 
result. 
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Figure 6.  The validation of the inverse model of the pseudo-Hammerstein 

system with backlash 

V. INTERNAL MODEL CONTROL BASED ON  PSEUDO-   
HAMMERSTEIN MODEL WITH BACKLASH 

From Fig. 3 and the model as well as the inverse model of 
the pseudo-Hammerstein system with backlash, the 
corresponding internal model control strategy can be obtained 
as follows: 

ˆy(k) P(u(k))=                                                               (24) 
ˆ ˆy(k) LN(u(k))=                                                            (25)  

2 ˆe(k) F [y(k) LN(u(k))]= −                                            (26)  
and  

1 -1
1u(k) N L F [r(k) e(k)]−= − .                                         (27)   

The above-mentioned switch functions, i.e. 1( )g k , 2 ( )g k , 

3 ( )g k and 4 ( )g k are implemented to switch the model between 
the linear zones and memory zones. 

 Both filters, 1F  and 2F can be chosen as 

1
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1 f z−

−
= < <

−
                                       (28) 
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        2
1 21

2

1 f
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1 f z−

−
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−
.                                      (29) 

Base on (17), the proper selected filtering parameters 1f  
and 2f can ensure the robust stability and the performance of 
the control system when the model mismatch exists. If the 
filtering parameters approach 1, the control system will 
demonstrate the robustness to tolerate the existence of larger 
model mismatch. However, it may also result in sluggish 
response suppose the filtering parameters to be closed to one. 
On the hand, if the filtering parameters are chosen to be far 
away from one, the control system may illustrate the fast 
response with serious oscillation. Therefore, a proper 
combination of the filtering parameters, i.e. 1f  and 2f  can 
ensure the control system to obtain both robust stability and 
the good response performance. 

VI. SIMULATION 
In this section, the proposed method is used for controlling 

a system described by the pseudo-Hammerstein model with 
backlash. Suppose that the parameters of the backlash in the 

controlled system are: 1 1m = , 2 1.5m = , 1 0.5c =  and 

2 1c = ; the linear dynamic subsystem is represented as: 
( ) 0.5 ( 1) 0.35 ( 2)

( 1) 0.4 ( 2)
y k y k y k

x k x k
= − − − −

+ − + −
. 

Suppose the obtained the parameters of the backlash model 
are 1 0.9799m = , 2 1.4786m = , 1 0.47934c = and 2 0.9696c = . 
The corresponding the linear dynamic sub-model is: 

ˆ ˆ ˆ( ) 0.4792 ( 1) 0.3688 ( 2)
ˆ ˆ( 1) 0.4188 ( 2)

y k y k y k
x k x k

= − − − −
+ − + −

. 

Then, the corresponding filters are respectively chosen as: 

1 1

(1 0.457)( )
1 0.457

F z
z−

−=
−

 

and 

2 1

(1 0.996)( )
1 0.996

F z
z−

−=
−

. 

Then, the corresponding IMC strategy is obtained. In order 
to make comparison, the PID control strategy is also applied to 
this system. The parameters of the PID controller are: 

0.455pK = ; 0.1778IK = ; and 0.1838dK = . 
When the reference trajectory is a sin-wave, both system 

responses respectively controlled by the proposed IMC and the 
PI strategies are shown in Fig.7 (a). The corresponding control 
signals are shown in Fig.7 (b). Moreover, the controlled 
system errors are illustrated in Fig.7(c).  From Fig. 7, it is 
noted that both control strategies can handle the system with 
backlash. However, the proposed IMC method has obtained 
better control performance. From Fig. 7(c), we know that the 
PID control approach leads to larger dynamic error comparing 
with the proposed IMC method. 

Also, the above-mentioned two control strategies are 
applied to the system when the reference trajectory is a square-
wave. The corresponding control responses are shown in Fig.8 
(a). The corresponding control signals are shown in Fig.8 (b). 
The simulation results show that the proposed IMC method 
has derived faster and better control performance than that of 
the PID control method.  
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Figure 7.  Simulation results；(a) closed-loop responses; (b) control signal ; 

(c) control errors 
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Figure 8.  Simulation results；(a) closed-loop responses; (b) control signal 

VII. CONCLUSION 
An IMC scheme based on the pseudo-Hammerstein model 

with backlash is proposed in this paper. The novel inverse 
model of the pseudo-Hammerstein model is obtained. 
Moreover, choosing proper filters of the controller can ensure 
the robustness of the control system and make the system 
accurately track the expected reference signals. Finally the 
simulation results have illustrated the efficiency of the 
proposed method. 
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