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Abstract—By the idea of manifolds learning, this paper 

presents a new method of dimensionality reduction of high 
dimensional data. The trait of the method is to exploit image 
matrixes to directly construct the local scatter matrix and the 
nonlocal scatter matrix. Its discriminant criterion function is 
characterized by maximizing the difference between the nonlocal 
scatter and the local scatter after the samples are projected. The 
new method is called the two-dimensional marginal discriminant 
projection (2DMDP). The new discriminant criterion is similar to 
the maximum margin criterion in form. The criterion main 
purpose is to find a projection direction (i.e. projection axes) that 
simultaneously maximizes the nonlocal scatter of projected 
sample, and minimizes the local scatter of projected sample. The 
experimental results on YALE face database and ORL face 
database show that the proposed method outperforms LPP and 
UDP in terms of recognition rate, and even outperforms LDA 
when the training sample size per class is small.  

Keywords—manifold learning; local scatter matrix; nonlocal 
scatter matrix; feature extraction; face recognition  

I.  INTRODUCTION  
Feature extraction is the key to face recognition. The aim of 

feature extraction is to reduce the dimensionality of face image, 
so that the extracted features are as representative as possible. 
Among feature extraction methods, PCA [1][2] and FDA [3] is 
the most popular and relatively effective methods in face 
recognition. However, both PCA and FDA can only see the 
Euclidean structure effectively, and they fail to discover the 
underlying structure, if the face images lie on a nonlinear 
manifold ℜ  hidden in the image space. In recent years, some 
nonlinear techniques have been proposed to discover the 
nonlinear structure of the manifold, i.e. ISOMAP[4], LLE [5][6] 
and Laplacian Eigenmap [7]. These nonlinear methods do yield 
impressive results on some artificial data sets. However, they 
yield maps that are defined only on the training samples and it 
is unclear how to evaluate the maps for new test samples. Thus, 
these nonlinear manifold learning techniques might not be 
suitable for pattern recognition. Recently, He et al. [8][9] 
proposed locality preserving projection (LPP), which is a linear 
subspace learning method derived from Laplacian Eigenmap. 
In contrast to most manifold learning algorithms, LPP 
possesses the remarkable advantage that it can generate an 
explicit map. This map is linear and easily computable, like 

that of PCA or FDA. It is also effective encouraging results on 
face recognition tasks.  

The PCA aims to preserve the global structure of the image 
space, the FDA aims to preserve the discriminating information, 
and the LPP aims to preserve the local structure of the image 
space. In many real-world classification problems, the local 
manifold structure is more important than the global Euclidean 
structure, especially when nearest neighbor classifier is used for 
classification. LPP shares some similar properties to LLE, such 
as a locality preserving character. Moreover, LPP is defined 
everywhere. So LPP may be simply applied to any new test 
sample to locate it in the reduced feature space. Like most 
manifold learning algorithms, LPP has the weakness of having 
no direct connection to classification. The objective function of 
LPP is to minimize the local scatter of the projected samples. In 
some cases, this criterion cannot be guaranteed to yield a good 
projection for classification purposes. For weakness of LPP, 
Yang et al. proposed an unsupervised discriminant projection 
(UDP)[10]. The purpose of UDP will draw the close samples 
closer together while simultaneously making the mutually 
distant samples even more distant from each other. The 
criterion function of UDP is to maximize the ratio of the 
nonlocal scatter to the local scatter, i.e. to simultaneously 
maximize the nonlocal scatter and minimize the local scatter.  

In this paper, by the idea of manifolds learning, we consider 
two quantities, local scatter and nonlocal scatter at the same 
time in the modeling process for classification purposes. The 
method trait is to exploit image matrixes to directly construct 
local scatter matrix and nonlocal scatter matrix. Its discriminant 
criterion function is characterized by maximizing the difference 
between the nonlocal scatter and the local scatter after the 
samples are projected. The new method is called the two-
dimensional   marginal discriminant projection (2DMDP). The 
criterion is similar to the maximum margin criterion (MMC) 
[11] in form. The purpose of the criterion is to maximize the 
nonlocal scatter while simultaneously minimizing the local 
scatter after the projection. Thus, it is not hard to find its 
optimal solutions by solving a generalized eigen-equation. The 
experimental results on YALE face database and ORL face 
database show that the proposed method outperforms LPP and 



         

UDP in terms of recognition rate, and even outperforms LDA 
when the training sample size per class is small.  

II. GLOBAL SCATTER, LOCAL SCATTER AND 
NONLOCAL SCATTER 

A. The Global Scatter based on image matrix  
Let 1 2, , , mA A A  in r nR ×  be m  training sample images, 

and vectors 1 2, , my y y  are a group of projected sample points 
in rR  by transformation i iy Aα= ( nRα ∈ ). vector α  is 
called projection axis (or optimal discriminant vector). The 
global scatter of projected sample can be characterized by the 
mean square of the Euclidean distance between any pair of the 
projected sample points, i.e. 
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So, matrix M
TS  is called the global scatter matrix based on 

image matrix. 

Thus, (1) can be rewritten by 

( ) T M
T TJ Sα α α=                                       (4) 

The projection axis α  that maximizes (4) can be selected as 
the eigen-vector of M

TS  corresponding to the largest eigen-
value. Similarly, we can obtain a set of projection axes of PCA 
by selecting the d eigenvectors of M

TS  corresponding to the 
first d largest eigen-values. 

B. Local Scatter based on image matrix  
In order to preserve the global geometric structure of 

sample in a transformed low dimensional space, PCA seeks to 
find a group of projection axes so that the global scatter is 
maximized after the projection of samples. Correspondingly, if 
we aim to discover the local structure of data, we should take 
account of the local scatter of samples.  

Given m  sample images 1 2, , , mA A A  sampled from the 
underlying manifold ℜ . Let 1 2( ) { , , , }k

k i i i iN A A A A=  denote 
k-nearest neighbors of iA . Thus, each sample iA , we can find 
its k-nearest neighbors. The local scatter can be characterized 
by the mean square of the Euclidean distance between any pair 
of the projected sample points that are within any local k-
nearest neighbors. 

Let a set {( , ) | ( ) ( )}k
i k j j k iU i j A N A and A N A= ∈ ∈ . Let 

iy  and jy denote the projection feature vectors of image 
samples iA , jA  by projection transformation y Aα= . The 
local scatter is defined by 
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Where Lm is the number of sample pair satisfying ( , ) ki j U∈ . 
Let us define an adjacency matrix ( )ij m mW w ×= , whose 
elements are given below 
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It is obvious that the adjacency matrix W is a symmetric 
matrix. By virtue of the adjacency matrix W , (5) can be 
rewritten by 
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, r rI R ×∈  is the identity 

matrix, matrix L D W= − is a Laplacian matrix. It is obvious 
that M

LS  are both real symmetric matrices. From (8), we know 
that 0T M

LSα α ≥  for any nonzero vector α . So, the local 
scatter matrix M

LS  must be nonnegative definite. 

C. Nonlocal Scatter matrix based on image matrix 

The nonlocal scatter of projected sample can be 
characterized by the mean square of the Euclidean distance 
between any pair of the projected sample points that are outside 
any local k-nearest neighbors. The nonlocal scatter is defined 
by 
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Where Nm is the number of sample pair satisfying ( , ) ki j U∉ . 
By virtue of the adjacency matrix ( )ij m mW w ×= ，then (9) can 
be rewritten by 
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is called the nonlocal scatter matrix based on image matrix. 
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III. TWO-DIMENSIONAL  MARGINAL DISCRIMINANT 
PROJECTION (2DMDP) 

The objective function of LPP is actually to minimize the 
local scatter, i.e. 

min ( )
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Given ix and jx are sample vectors, obviously, the projection 
transformation determined by LPP can ensure that, if samples 

ix  and jx are close, their projections iy and jy are close as 
well. But, LPP cannot guarantee that, if samples ix and jx are 
not close, their projections iy and jy are not either. This means 
that it may happen that two mutually distant samples belonging 
to different classes may result in close feature vectors after the 
projection of LPP. 

   Yang et al.[10] proposed an unsupervised discriminant 
projection (UDP), which can be seen as a linear approximation 
of a manifold learning framework that takes into account both 
the local and nonlocal quantities. Purpose of UDP will draw the 
close samples closer together while simultaneously making the 
mutually distant samples even more distant from each other. 
The criterion function of UDP is to maximize the ratio of the 
nonlocal scatter to the local scatter, i.e. 
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But, one is confronted with the difficulty that the local 
scatter matrix LS  is sometimes singular in the face recognition 
problem. Because sometimes the number of the training 
samples is much smaller than the dimension of training sample 
vectors. To avoid the complication of a singular local scatter 
matrix, we are to exploit image matrixes to directly construct 
local scatter matrix and nonlocal scatter matrix and propose a 
discriminant criterion, which is to maximize the difference 
between the nonlocal scatter and the local scatter based on 
image matrix, this criterion function is similar to the maximum 
margin criterion in form [11]. So, the method is called the two-
dimensional marginal discriminant projection (2DMDP). 
The purpose of the criterion is to maximize the nonlocal scatter 
while simultaneously minimizing the local scatter after the 
projection. We can obtain just such a projection axis α by 
maximizing the following criterion: 
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Theorem1 Optimal projection axes 1 2, , , dα α α  based on  
2DMDP are d unit eigenvectors of matrix M M

N LS S− , 
corresponding to the first d largest positive eigenvalues. 

From theorem1, we can denote that 2DMDP overcomes 
the “small sample size” problem by using a new discriminant 
criterion to replace Yang Jian et.al. proposed UDP. 



         

IV. 2DMDP WITH KERNEL WEIGHING  
In this section, we will build a kernel-weighted version of 

2DMDP. We know that Laplacian Eigenmap and LPP use 
kernel coefficients to weight the edges of the adjacency graph, 
where a heat kernel (Gaussian kernel) is defined by  

2( , ) exp( || || )i j i j Fk A A A Aγ= − −                           (16) 
Obviously, for any iA , jA and parameter γ ， 0 ( , ) 1i jk A A< ≤  
always holds. Further, the kernel function is a strictly 
monotone decreasing function with respect to the distance 
between two variables iA  and jA . The purpose of the kernel 
weighting is to indicate the degree of iA  and jA  belonging to a 
local k-neighborhood. If the smaller the distance were, the 
larger the degree would be. Otherwise, the degree is zero. The 
kernel weighting, like other similar weightings, may be helpful 
in alleviating the effect of the outliers on the projection 
directions of the linear models and thus, makes these models 
more robust to outliers. If we redefine the adjacency matrix 
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Let ( , )ij i jk k A A= , the kernel-weighted global scatter can be 
characterized by 
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Matrix M
LS  is called the kernel weighted local scatter matrix 

based on image matrix. 
The kernel-weighted nonlocal scatter is characterizerized by 
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 Then criterion function of 2DMDP with kernel weighing is 
defined by 
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V. EXPERIMENT AND ANALYSIS 
In this section, the performance of 2DMDP is evaluated on 

the Yale face image databases and ORL face image databases 
and compared with the performances of LDA, LPP, UDP and 
2DMDP. 

A. Experiment 1 
The Yale face database contains 165 images of 15 

individuals (each person providing 11 different images) under 
various facial expressions and lighting conditions. The size of 
each image is 92×112 pixels, with 256 gray-levels. Figure.1 
shows some images of one person in the YALE face database. 

 
Figure 1.  Some images of one person in YALE face database 

The experiment was performed using the first four (or first 
five) images per class for training samples, and the remaining 
seven (or six) images for testing samples. In experiments, we 
used, respectively, LDA, LPP, UDP and 2DMDP for feature 
extraction. The k-nearest neighborhood parameter k in LPP, 
UDP and 2DMDP can be chosen as 1k l= − , where l  
denotes the number of training samples per class. The 
justification for this choice is that each sample should connect 
with the remaining 1l −  samples of the same class provided 
that within-class samples are well clustered in the observation. 
In experiments, LDA, LPP and UDP all involve a PCA phase. 
In this phase, we keep nearly 98 percent image energy and select 
the number of principal components, and then we used, 
respectively, LDA, LPP and UDP for feature extraction. We 
use the nearest neighbor strategy for classification based on 



         

Euclidean measure. Figure 2 shows recognition rate of LDA, 
LPP, UDP and 2DMDP respectively versus the number of 
projection axes. Figure 2(a) chooses four training samples in 
each class; figure 2(b) chooses five training samples in each 
class.  From figure 2, we can see: no matter we chose four or 
five training samples in each class, we can see that 2DMDP 
almost always achieves the highest recognition rate and more 
stable as the number of projection axes is varying from 4 to 34 
(i.e. the number of projection axes is varying among 4, 6, 8, … 
32, 34). Recognition rate of LDA is higher than recognition 
rate of LPP and UDP.  From figure 2, it is demonstrated that 
2DMDP is the most efficient among four methods.  

5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

Projection axes

R
ec

og
ni

tio
n 

ra
te

 

 

2DMDP
LPP
UDP
LDA

 
(a) The first four samples per class are used for training 
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(b) The first five samples per class are used for training 

Figure 2.  On the YALE database, recognition rate of LDA, LPP, UDP and 
2DMDP versus the number of projection axis when Euclidean measure is used  

B. Experiment 2 
The proposed method is tested on the ORL face database. In 

the ORL face database, there are 10 different images of 40 
distinct subjects; there are variations in facial expression 
(open/closed eyes, smiling/non-smiling) and facial details 
(glasses/no glasses). All the images are taken against a dark 
homogeneous background with the subjects in an up-right, 
frontal position, with tolerance for some tilting and rotation of 
up to about 020 . There is some variation in scale of up to 
about 10%. The size of each image is 92×112, with 256 gray-
levels. Some images of one person are shown in Figure3. In 
this experiment, the experiment was performed using the first 
four (or first five) images per class for training samples, and 
the remaining seven (or six) images for testing samples.  For 

feature extraction, we used, respectively, LDA, LPP, UDP and 

 
Figure 3.   shows sample images of one person in ORL face database 

the proposed 2DMDP. The k-nearest neighborhood parameter 
k in LPP, UDP and 2DMDP can be chosen as 1k l= − , where 
l  denotes the number of training samples per class. In 
experiments, LDA, LPP and UDP all involve a PCA phase. In 
this phase, we keep nearly 98 percent image energy and select 
the number of principal components, and then we used, 
respectively, LDA, LPP and UDP for feature extraction. We 
use the nearest neighbor strategy for classification based on 
Euclidean measure and Cosine measure respectively. Figure 4 
and figure5 shows the recognition rate of LDA, LPP, UDP and  
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(a) Euclidean measure 
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(b) Cosine measure 

Figure 4. On the ORL  database, recognition rate of  LDA, LPP, UDP and 
2DUDP versus the number of projection axis when the  four samples per class 
are used  

2DMDP versus the number of projection axes. Figure 4 
chooses four training samples in each class; Figure5 chooses 
five training samples in each class. Euclidean measure is used 



         

on figure 4(a) and figure 5(a), and Cosine measure is used on 
figure 4(b) and figure 5(b). From figure 4 and figure 5, we can 
see: no matter we choose four and five training samples in each 
class, we can see that 2DMDP always achieves the highest 
recognition rate and more stable as the number of projection 
axes is varying from 5 to 45 (i.e. the number of projection axes 
is varying among 5, 7, 9, … 43, 45). And then recognition rate 
of LDA almost always is higher than recognition rate of LPP 
and UDP.  From figure 4 and figure 5, it is demonstrated that 
2DMDP is the most efficient among four discriminant 
methods. 
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(b) Cosine measure 

Figure 5. On the ORL database, recognition rate of LDA, LPP, UDP and 
2DUDP versus the number of projection axis when the five samples per class 
are used 

VI. CONCLUSIONS 
Based on manifolds learning, this paper presents a new 

method of dimensionality reduction of high dimensional data. 
In this paper, we consider two quantities; local scatter and 
nonlocal scatter after the samples are projected in the 
modeling process for classification purposes. The method aim 
is to preserve the local structure of the image space. Its trait is 
to exploit image matrixes to directly construct local scatter 
matrix and nonlocal scatter matrix. Its discriminant criterion 

function is characterized by maximizing the difference 
between the nonlocal scatter and the local scatter after the 
samples are projected. The method is called the two-
dimensional marginal discriminant projection (2DMDP). The 
main purpose of 2DMDP is to simultaneously maximize the 
nonlocal scatter of projected sample, and minimize the local 
scatter of projected sample. The experimental results on 
YALE face database and ORL face database show that the 
proposed method outperforms LPP and UDP in terms of 
recognition rate, and even outperforms LDA.  
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