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Abstract— This paper presents the first attempt of designing a 

physical quantum-like ‘brain’ for humanoid and experimentally 

proves a 2D invariant object recognition model inspired by the 

image processing along the human visual pathway: retina, lateral 

geniculate nucleus (LGN) and primary visual cortex (V1). It also 

describes storing the output of the model in quantum holographic 

memory (a hologram) and the method to reconstruct the visual 

representation. The work is implemented as system-on-a-chip in 

field-programmable gate array (FPGA).  
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I.  INTRODUCTION  

Object recognition is a popular area of research in machine 
vision. Its application in humanoid robots enables them to 
understand the dynamics of scene and to pursue a higher level 
of cognitive task to interact with real-world environment. By 
definition humanoid robot is a robot with its overall appearance 
based on human body, so by implying, a true humanoid brain 
should be a processing unit that resembles the biological model 
of human brain. This paper describes the humanoid brain 
implementation of a bio-inspired 2D invariant object 
recognition model on system-on-a-chip (SoC). 

Currently, the most studied part of human brain is the 
human visual system. Research in neuroscience has led to a 
more extensive knowledge of the computational properties of 
individual cells and their interactions in the visual pathway. It 
has provided a basis of image processing derived from the 
structure and function of real brain. This has spawned several 
bio-inspired object recognition model [1][2][3] that have 
described and simulated mathematical formulation of 
computation performed in visual pathway, from retina to 
primary visual cortex, to achieve invariant object recognition. 

Bio-inspired model provides relative good accuracy but the 
heavy computation resulted in low performance when executed 
in general processor. Thus there are attempts to design and 
develop customized hardware that are strongly inspired by 
biological neural processing. For example, [4] has designed on 
FPGA the biological processing of retina; [5] has design on 
FPGA the interactions between areas in brain. A field-
programmable gate array (FPGA), which allows custom digital 
circuits to be programmed, is usually the choice for custom 
hardware design. It allows optimized application performance 

through real hardware parallel processing, as opposed to 
general processor which provides time-multiplex parallel 
processing.  

The bio-inspired invariant object recognition models 
proposed by [1][2][3] are only simulation. This paper describes 
the implementation of similar model in a hardware humanoid 
brain, but the model proposed in this paper differs as it 
combines Quantum Associative Networks for object 
recognition. Unlike [4], [5] who implemented their custom 
hardware purely from VHDL, this paper instead describes 
integrating a general processor with custom hardware, i.e. a 
system-on-a-chip. This paper is not intended to propose a better 
or faster hardware implementation of object recognition but 
merely to present the work done to date. 

Section 2 provides the biological and mathematical 
foundation of the 2D invariant object recognition. In section 3, 
the overall architectural approach for the model humanoid 
implementation is presented. Section 4 presents the result.. 

II. BIO-INSPIRED MODEL 

A. Background 

 

Human visual system is part of the brain. Over the course of 
evolution, it has grown out of the brain to provide front view 
visual input to the back of the brain. This paper will use a 
simplified view of human vision, in which light coming from 
the visual field is sampled by the photoreceptors at retina, 
outputs to lateral geniculate nucleus (LGN), which then relays 
the visual signal to primary visual cortex (V1). See Figure 1. In 

 

Figure 1.  Visual pathway, obtained from [7] 



 

         

reality the visual pathway is not uni-directionally feedforward, 
where there are feedback nerves from the V1 to LGN ten times 
as much as feedforward nerves [6], however that is beyond the 
discussion in this paper. 

B. Retino-Cortical Mapping 

Based on experiment maps of the retina to visual cortex 
projection of the cat and various primates [8], [9] proposed that 
the projection of human retina to visual cortex can be 
approximated by log-polar mapping function w = log(z+a), 
where z and w are complex numbers defining points in retina 
and visual cortex space respectively. The real number “a” takes 
care of the deviation of the exact logarithm mapping from the 
center of retina image plane. This is to say that in the human 
vision system the receptors in the retina are spatially 
distributed, with a growing density toward the centre of the 
visual field, denominated fovea, and with a falling density from 
the fovea to the periphery of the visual field. This kind of 
vision is called "spatially variant perception", and it carries out 
a selective sampling, on the visual field [4]. See Figure 2. If an 
image is at center of the image plane, a = 0, the exact log-polar 
mapping converts rotation and scaling in the image plane into 
translation in the log-polar plane. This means, the same object 
of different size or rotation has patterns mapping in the log-
polar plane that are of the same shape but at different position. 
Schwartz proposed that this principle of logarithm mapping as 
a possible model for scale- and rotation invariant pattern 
representation in the human visual system [9]. 

In cat’s primary visual cortex, [11] found simple and 
complex cells that are selective to intensity changes in specific 
orientation. The orientation selectivity of cells is accomplished 
through spatial summation of the inputs from LGN. Reference 
[12] proposed the use of Gabor filters to model the orientation 
selective receptive fields of simple cells in the visual cortex of 
some mammals. In early 1980's a number of researchers 
suggested Gabor filters (Gaussian modulated sinusoids) as 
models of the receptive fields of simple cells in visual cortex 
[13][14][15]. 

C. Retina-LGN-Visual Cortex Visual Pathway 

Thus far, LGN is viewed as a relay station and it merely 
relays information from ganglion cells in the retina to visual 
cortex [6]. But [1] argue that apart from merely a relay station, 
LGN applies Difference of Gaussian (DOG) filter to reduce the 
details of visual information. In this paper, it assumes LGN 
performs DOG of the input image before relaying it to visual 
cortex. This DOG filter is special in such that its variance 
increases linearly when it move away from the center of visual 

field. It is challenging to use this varying DOG filter with 
convolution since conventionally the filter mask is constant. 
This issue is solved by applying Laplacian of Gaussian filter on 
the log-polar plane, because application of a small variance 
constant spatial filter in the log-polar domain is approximately 
equivalent to the application of a space-variant filter of similar 
shape in the object domain. Thus combination of log-polar 
transform and Laplacian of Gaussian filter yields DOG [10]. 

Hubel [11] also discovered that the orientation selectivity of 
simple cells in a column perpendicular to V1 surface remained 
almost constant, and the orientation selectivity varies 
systematically along the surface of V1. This kind of cell 
arrangement is referred to as hypercolumn. See Figure 3. This 
lays the idea for convolving input from LGN with Gabor filters 
of different angle in the model discussed later. 

D. Quantum Neural Substrates of Vision 

Apart from studying the physical property of neurons in 
visual cortex (V1), not much attention are focused on 
understanding the consciousness of the brain as consciousness 
itself cannot be probe nor measured, at least not for any 
instrument available in present day. To fill this gap, [14] 
proposed the brain as a hologram in which memory and 
perception are related to holographic principles. Assuming the 
brain is a hologram and thus using quantum holography, [17] 
has proposed a neuro-quantum computing model - the 
Quantum Associative Networks, for image storage and 
retrieval. Much like neural net theory, where image retrieval is 
reconstruction of an image from a database of many concrete 
images simultaneously stored in an associative memory, 
Quantum Associative Networks store many images of objects 
into quantum memory (a hologram). Image encoded into Gabor 
wavelets are similar to quantum wave packets [17], so it is 
natural that the output of the Gabor filtering in V1 
hypercolumn can feed into Quantum Associative Networks. In 
addition, holonomic brain theory considers synapto-dendritic 
networks at the microscopic level. It believes image processing 
in V1 using Gabor wavelets are implemented by interacting 
dendritic polarization-fields [14]. 

III. MATHEMATICAL MODEL 

The model in this paper is limited to the recognition of 2D 
object. It is assumed that there is only one object in the image 
while the surrounding is plain black background. The center of 
the object in the image is already adjusted to coincide with the 

 

Figure 2.     Distribution of retinal receiver, a foveated view, obtained 
from [4]. 

 

Figure 3.  Hypercolumn in visual cortex, obtained from [16]. 



 

         

origin of the image, and additional translation preprocessing is 
not required. 

A digitized image will undergo exact log-polar transformed 
so that the scale and rotation are transformed to translation in 
log-polar plane. The log-polar image is then filtered with 
Laplacian of Gaussian kernel. Then the filtered log-polar image 
undergoes 2D Fourier transform. The absolute value of the 
Fourier transform generates a translation-invariant spectrum of 
the log-polar plane, thus overall size and rotation invariance are 
achieved.  

The spectrum will then be multiplied by frequency 
responses of Gabor filter with angular rotation from 0°, 1°, to 
179° (multiplication in frequency domain is equivalent to 
convolution in spatial domain). The 180 spectrum results will 
be converted back to 180 spatial domain samples using inverse 
Fourier transform. Then the maximum value is chosen from 
every pixel of the 180 samples to generate a final spatial 
domain template. The template will be stored in quantum 
associative networks for future retrieval. 

A. Log-polar mapping 

Unlike the complex log-polar transform proposed by [9], 
implementation of log-polar transform in this paper deals only 
with real values. Given point in the log-polar space (ρ,θ), the 
equations to compute its cartesian coordinates (x,y) are: 

x = λρ.r0.cos(θ) 

y = λρ.r0.sin(θ) 
where: λ is the base of the logarithm. 

r0 is a scaling factor which define the size of the circle ρ = 0. 

The inverse will be: 

ρ = log λ 

0

22

r

yx +  

θ = arctan 
x

y  

The equation need to be modified to deal with digital 
images. Both Cartesian and log-polar domains have to be 
treated as discrete, so (ρ,θ) where 0 ≤ ρ < P and 0 ≤ θ < Θ 
represents the pixels in log-polar domain. In the same way, 
(x,y) where 0 ≤ x < X and 0 ≤ y < Y represents the pixels in 
Cartesian domain. P is the total number of rings, Θ is the total 
number of pixels per ring, and X and Y are the horizontal and 
vertical sizes of the Cartesian image. 

Since θ ranges in 0 → Θ and not in 0 → 2π, the range has 
to be scaled to cover a round angle: 

ω = 
Θ

πθ2  

Leading to: 

x = λρ.r0.cos(
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Θ

πθ2 ) 

and  
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The logarithm base, λ is computed from the number of pixels 
per ring Θ: 

λ = 

Θ
−

Θ
+

π

π
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sin1  

In this paper, P, Θ, X and Y are set to 256 pixels. 

After log-polar transformation, 
Input

xyI  is mapped on to 
Log

I ρθ  in 

(ρ,θ) Cartesian plane. 
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B. Laplacian of Gaussian 

The log-polar mapping is then filtered with be the 
Laplacian of Gaussian kernel. The combination of log-polar 
transform and Laplacian of Gaussian filter yields DOG, or the 
“Mexican hat” function. In the present model, the circular 
symmetrical function [10] is used: 
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G∇  is approximated on a 5×5 field and the σ  is taken to be 

0.5. The log-polar image is convolved with this filter. This 
resembles the functional properties of DOG filter (in lateral 
geniculate nucleus) whose diameter increases linearly from 
center of visual field. The combined operations can be 
expressed mathematically as follows: 

σθρθρ GII
LOGLGN 2),(),( ∇∗=                  (2) 

C. Gabor filters 

Gabor filter is the product of an elliptical Gaussian and a 
complex plane wave, resulting in 5 parameters. The first two 
parameters are the 2D-location of the receptive field’s center, 
the third is the size of the receptive field, the fourth is the 
orientation of the boundaries separating excitatory and 
inhibitory regions, and the fifth is the symmetry. The fifth 
parameter is given in the standard Gabor transformation by the 
real and imaginary parts, i.e. by the phase, of the complex 
function representing it. There are three neurophysiological 
constraints that fix the relation between width, height, 
orientation and spatial frequency. The first constraint posits that 
the aspect ratio of the elliptical Gaussian envelope is 2:1. The 
second constraint postulates that the plane wave tends to have 

log-polar to cartesian transformation 

Cartesian to log-polar transformation 

log-polar to cartesian transformation 

cartesian to log-polar transformation 



 

         

its propagating direction along the short axis of the elliptical 
Gaussian. The third constraint assumes that the half-amplitude 
bandwidth of the frequency response is about 1 to 1.5 octaves 
along the optimal orientation. Reference [15] derived a family 
of 2D Gabor filter that satisfies all these neurophysiological 
constraints for simple cells and is given by  
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In the above equation, Lll /πθθ ==  with L  the 

number of angular rotation and l  the index of rotation; 

L =180; 0ω =1; πκ ≈  for a frequency bandwidth of one 

octave. In this form, the receptive fields at all levels cover the 
spatial domain in the same way. The neurons in the pools in 

1V  have receptive fields performing a Gabor wavelet 

transform. Let us denote ),(1 yxII LGNV =  be the sensory 

input activity to a pool of hypercolumns in 1V . The sensory 
input activity to a pool of hypercolumns is therefore defined by 
the modulus of the complex valued convolution between the 
corresponding receptive fields and the image, i.e, 

),(),(),(1 yxIyxyxG LGNV ∗Ψ=                                (4) 

In the above equation, the modulus is taken to get the 
energy model of complex cell. The Gabor energy is closely 
related to the local power spectrum [18] and local energy maps 
[19]. Edge and line features are signaled by local maximas in 
the local energy maps [Morrone and Burr, 88]. Gabor energy 

maps are generated for lθ , l =1, 2, …, 179 and the maximum is 

chosen at each point ( ),x y  of the 180 Gabor energy maps, we 

obtain 
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Figure X. summarizes the process above. The outputs of the 

complex cells, )(1 θVG  are used for subsequent quantum 

image processing. 

D. Quantum Associative Networks 

The quantum hologram G  is given by the Hebb-equivalent 
expression: 

∑
=

=
P

k

k

j

k

hhjG
1

*)(ψψ                  (6) 

Where h and j denote the pixel point at time t (h,j=1,...,N). 
kψ denotes the quantum wave. The asterisk denotes complex 

conjugate. After images are encoded into eigenstates 

(attractors) 
kψ  in the quantum system by Eq. (6), an output 

eigenstates (say, the 
th

k0 ) can be constructed by presenting a 

new input similar to the 
th

k0  stored one by: 
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The Gabor wavelet patterns in V1, 
V1

G  are equivalent to a 
family of quantum coherent states generated by Weyl-
Heisenberg group [15]. Let us define the Dirac quantum 

notation: ⋅  is a quantum eigenvector; ⋅  is its transpose and 

complex-or phase-conjugate. The first vector describes the state 
of a quantum system incorporating pixel-values, the second 
vector corresponds to the same state but with the opposite 
direction of wave-propagation. Recognition of an object, 
represented in V2, is realized by a Gabor-filtered quantum-

encoded retinal input ( =V1G Ψ ). First we consider the 

Gabor-filtered quantum-encoded retinal input 
V1

G  as a 
stationary geometrical pattern in three-dimensional space. A 

V1
G  image n m×  can be described as a set of N n m= ⋅  
real numbers corresponding to the energy response value of 

each point, . .i e  some vector
N

x R∈ .  The hyperspheres 

{ }1: , 1k kS x R x+∈ =  and projective spaces (spaces of 

rays) 

[ ] [ ]{ }0 1: ,[ ] , , ; 0, 0k
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 are also can be used. For example, in cases of grey image, we 
can multiply all intensities on the same nonzero positive value 

(a) 
 

(b) 
    

(c) 
    

    

 

(d) (e) 

Figure 4.  (a) sample input image (b)(C) real (even) and 
imaginary (odd) Gabor filters at 4 different angle (d) the modulus 
of the complex value convolution of the input image and Gabor 
filters (e) obtain the maximum at each point 



 

         

and the image does not change. Due to such invariance we can 
use only vectors with unit length and space of images is 

subspace of the sphere
1N −

S . In addition, to ensure the 
homogeneous distribution of images in the space, we can 
subtract half of average intensity from any points of the gray 
image before normalization 
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In case of homogenous distribution on the 
N

S  the scalar 
product of two random vectors is: 
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IV. SYSTEM-ON-A-CHIP (SOC) 

System-on-a-chip (SoC) refers to integrating all 
components into a single chip. Typically, a SoC consists of at 
least one processor integrated with several functionally specific 
hardware blocks. Using FPGA, SoC is made easy by designing 
custom circuits around a soft-core processor and then 
programmed into FPGA. 

The model described in section III is implemented on 
Xilinx ML402 development board (Figure 10). The board 
consists of a Virtex4 FPGA and 64MByte DDRAM. The 
software development tools used are Xilinx ISE 8.2i and Xilinx 
EDK 8.2i. A Xilinx Microblaze softcore processor is 
programmed into the FPGA. Its execution codes are written in 
C/C++ and compiled with GNU and then loaded into the 
DDRAM. The Microblaze softcore processor allows additional 
hardware IP cores integration. The processor can pass/receive 
data to/from IP cores. Critical functional units are first 
identified and then chosen to be implemented in hardware IP 
core to leverage speed on parallel hardware execution.  

V. EXPERIMENTAL RESULTS 

Our experiment of storage and retrieval from quantum 
hologram are invariant face recognition for test image rotated 
or scaled with arbitrary angles or factors in 2D image plane. 

The ten front-face images shown in Figure 12 are stored in the 
quantum hologram. 

Figure 7(a) shows the reduced scale image as test image. 
The test image is then undergone retino-cortical mapping and 
projected onto the visual cortex layer (V1) as cortical image 
shown in Figure 7(b). Figure 7(c) depicts the result of 
Laplacian of Gaussian on cortical image that resembles the 
transformation of image along retina-LGN visual pathway. 
Figure (d) shows the selective reconstruction from quantum 
hologram trigged by the scaled image of Figure 7(a). The other 
experimental results are summarized in Figure 8 and Figure 9. 
It is evidenced that object recognition of the proposed quantum 
bio-inspired model is invariant to wide range of 2D rotation 
and scale even for the 180° inverted image.   

VI. CONCLUSION 

Mathematically and experimentally we showed some 
preliminary evidence of the 2D invariant object recognition 
performance of a quantum bio-inspired humanoid vision model 
by System-on-a-chip (SoC). Our model optimally fits 
experimental data and neuropsychological model – roughly at 
least. This paper shows how it is possible to manipulate natural 
quantum systems [17] to associatively process visual 
information in a neural-net-like way. Neuronal and dendritic 
nets [14] may be responsible for such hypothetical 
manipulation. This paper also serves as an important milestone 
towards the realization of physical quantum-like ‘brain’ for 
humanoid. 

 

Figure 5.     Xilinx ML402 development board 

Figure 6.     The ten images stored in quantum hologram 

 
  

 

(a) (b) (c) 

(d) 

Figure 7.     (a) Scaled test image.  (b) Cortical 
image (c) Laplacian of Gaussian image (d) 
Reconstructed image 
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(a) 

(b) 
Figure 8.     The rotation transformed query images. (b)  The reconstructed images from quantum associative memory. 

 

 

 

 

 

 

 

  

 

 

 

 
Figure 9.      (a) The scale transformed query images. (b)  The recalled images from quantum associative memory. 


