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Abstract—Application of Virtual Reality (VR) has attracted many 
researchers in computer simulation fields. In this paper, an improved 
mass-spring model is proposed aiming at realistic simulation of tissue 
deformation. Firstly, virtual springs are proposed to represent the 
surface. Secondly, Verlet integration is applied to calculate the 
position of mass points during deformation without explicit 
computation of their velocities. Finally, a bilinear interpolation 
method is employed to generate a smooth mesh to render the 
deformed surface. The proposed method has been implemented using 
OpenGL which generates realistic deformation images in real-time. 
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I.  INTRODUCTION 
Computer simulators based on virtual reality have emerged 

in many fields. As an important component in a computer 
simulator, deformation has attracted much research attention. 
In order to design a suitable system for practical application, 
the simulated deformation must be implemented in real-time 
and have a realistic visual effect. How to build a simulator 
satisfying both essential requirements is still an active area of 
research. Most of the available systems utilize the isosurface 
based rendering techniques, which model surface as 3D level 
sets. Although these techniques can be rapidly implemented, 
they are often criticized for lacking of necessary visual details 
in some demanding systems, such as surgical simulator [1,2,3]. 
In this paper, a different method was proposed. The surface 
was modeled as a mesh of mass points, each of which is 
associated with a set of springs.  

In 1980s, a mass-spring model was studied to simulate 
cloth deformation [4, 5, 6, 7, 8]. The algorithms based on this 
model were usually featured with fast computation and realistic 
visual effects. However, the deformation in some strict visual 
simulator, such as surgical simulator, bears a few differences 
from the cloth deformation: 1) The cloth can be considered as a 
thin layer. Therefore, a 2D mass-spring model usually suffices 

the modeling. Soft tissue, on the other hand, has a volume, 
which can not be well modeled by a 2D mesh. 2) Soft tissue 
has very different physical properties from the cloth made of a 
certain fabric. 3) The external forces exerted on the soft tissue 
and those exerted on clothes are quite different.  

Therefore, we propose the following model to extend the 
existing model for soft tissue deformation simulation and 
implemented by the experiments. Firstly, we use a spring that is 
perpendicular to the surface at each mass point to model the 
internal force below the surface, which compensates the 
weakness of the 2D mass-spring model. Secondly, we employ 
Verlet integration to calculate the new positions of the mass 
points in the process of deformation [9]. Our method avoids the 
explicit computation of the velocities of the mass points, 
therefore reduces the computational complexity. 

 

II. METHODOLOGY  

A. The conventional mass-spring model 
The conventional mass-spring model is a mesh containing 

m×n points [10]. Each point is assigned a mass and linked to its 
neighbors by massless springs with a nonzero length.  

There are three types of springs: “structural springs” linking 
(i,j) to (i+1,j) and (i,j) to (i,j+1); .shear springs linking (i,j) to 
(i+1,j+1) and (i+1,j) to (i,j+1); and “flexion springs” linking (i, 
j) to (i+2, j+1) and (i, j) to (i, j+2).  

B. Improved 3D mass-spring model 
We employed structural springs, shear springs and virtual 

springs in the improved mass-spring model. The virtual spring 
reacts to the external force as shown in Figure 1. The initial 
length of this spring is zero. Here, the mass point on which the 
external force is exerted is called control point, others are 
called non-control points.  



 

         

 
Figure 1.  The principle of virtual springs 

C. Force Model 
There are two types of forces, external force and internal 

force. In our application, we consider two external forces 
applied to a mass point: the surgical force and the damping 
force, denoted by surgicalF  and dampF , respectively. For the 
internal forces, we consider the force generated by the 
structural, shear and flexion springs, all denoted by elasticF , 
and the force of the virtual spring, denoted by virtualF .  

For a point Pijk, we have:  

ijkvirtualelasticdampsurgicalijk amFFFFF ⋅=+++=   (1) 

where m is the mass of point Pijk , ijka is its acceleration, 

and ijkF is the net force on Pijk.  

The elastic force is described by Hooke’s law:  
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where k is the elastic coefficient of the springs, 
tuvwijk PP is 

the distance from Pijk to Puvw at time t, 
0uvwijk PP is the initial 

distance, Set
8 

denotes the set of 8 adjacent points of Pijk.  

The damping force is given by  
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where dampC is the damping coefficient and 
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approximation of the velocity )(tV ijk of mass point Pijk at 
time t.  

The virtual force can be described by  
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where K′′ is the elastic coefficient of the virtual springs and 

S∆ is the displacement of the control point from its initial 
position.  

The surgical force is given by 

10150)()( −×−×= ijkPdist
exertingijksurgical eFPF      (5) 

D. Verlet Integration 
To calculate the new position of a mass point Pijk, we apply 

Taylor’s expansion:  
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Let us denote the acceleration ijka  at time t by 

))(),(),(( tatata kji , then we can calculate the position of 
point Pijk (xi,yj,zk) at the next time point:  
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where ∆t is a chosen time interval. 

E. Image Rending 
We employed the bilinear interpolation to process the grid 

of mass points. Bilinear interpolation is an extension of linear 
interpolation for interpolating functions of two variables on a 
regular grid. The key idea is to perform linear interpolation first 
in one direction, and then in the other direction. 

The main idea of the interpolation of mesh of mass points is 
that smaller mesh matrices of mass points in the 3D mesh 
deformation procedure are interpolated into larger mesh 
matrices. For example, we can interpolate 31×31×3 mesh 
matrices into larger mesh matrices in 3D space (see Figure 2, 
Figure 3 and Figure 4).  

 
Figure 2.                         Figure 3.                              Figure 4. 

Figure 2 is 31 ×31 meshes before interpolation. Figure 3 is 
61×61 meshes after bilinear interpolation when one mass point 
is added between two adjacent mass points in Figure 2. Figure 
4 is 121×121 meshes after bilinear interpolation when three 
mass points are added between two adjacent mass points in 
Figure 2.  

From above example, we find that the interpolation of 
deformation mesh matrices of mass points may be divided into 
2 steps. 



 

         

• n mass points are added between two adjacent mass 
points in the deformation mesh matrices of m×m×3 
size. After adding n new mass points, the size of new 
mesh matrices is M×M×3 (M=(m-1)*n+m).  

• According to m×m×3 mesh matrices, we can employ 
bilinear interpolation to interpolate respectively the X, 
Y and Z matrices of coordinates of new added mass 
points in 3D space.   

Assume that 10 mass points are added between two 
adjacent mass points in the deformation mesh matrices of 
31×31 size. We first obtain 331×331 mesh matrix by bilinear 
interpolation to interpolate 31×31 deformation mesh matrix.  
And then the colors of 331×331 pixels in the endoscopic image 
are mapped and filled in 331×331 mesh matrix to finish the 
image rendering. As shown in Figure 5, we use one endoscopic 
image to do the image rendering according to the above method. 

 
Figure 5. Endoscopic image rendering 

III. EXPERIMENTS 
We first simulated the exerting forces. Normally, 

)( ijksurgical PF  decreases quickly as the distance between Pijk 

and the control point increases.  

We adopted an exponential expression:  
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We experimentally chose c´=-10 and c=150. The 
parameters in Equations (2)~(8) were also chosen 
experimentally. Given a fixed surgical force, we simulated the 
deformation process of the control point. The displacement of 
the control point from its initial position is plotted by varying 
the value of k. It can be observed that noticeable oscillation 
may occur at large k, which is undesirable. In our experiment, 
we found that k=10 was appropriate. The damping force has a 
buffering effect which prevents abrupt deformation. Following 
the same process, we chose k=10, Cdamp=0.5, K′′=5.  

 We implemented the model with Visual C++ and OpenGL 
and simulated tissue deformation on a personal computer. By 

exerting a force ),,( dzdydxexerting FFFF =  on a flat tissue 
surface, we computed the response using our 3-D spring-mass 
model. The deformation was rendered in real-time. The results 
were highly satisfactory in direct visualization. Some typical 
results displayed in wire meshes are shown in Figure 6, Figure 
7 and Figure 8.  

 

 
Figure6.  Mesh dynamic deformation of vertical force (60% vertical force) 

 

 
Figure7.  Mesh dynamic deformation of vertical force (60% oblique force) 



 

         

 
Figure8.  Mesh dynamic deformation of vertical force (100% oblique force) 

 

IV. CONCLUSIONS 
We have presented an improved mass-spring model to 

simulate soft tissue deformation for simulation. In addition to 
the conventional springs, we have proposed to use a virtual 
spring to model the resistant force along the direction of the 
exerting force. We applied the Verlet integration to calculate 
the position of a mass point without explicitly computing 
related velocity values. Adding mass points between two 
adjacent mass points and interpolating the new added mass 
points by bilinear interpolation were used for image rendering. 
Model parameters are determined via simulation experiments 
and may be further improved. 

As a result, the deformed mesh can be updated in real-time. 
Our study provides an important component to construct the 
real-time and dynamic simulators.  
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