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Abstract—This paper presents a new result of stability 
analysis for neural networks with interval time-varying delays. A 
less conservative stability criterion is established by constructing 
a new Lyapunov-Krasovskii functional and introducing some free 
weighting matrices. Numerical examples show that the proposed 
criterion is effective and is an improvement over some existing 
results in the literature. 
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I.  INTRODUCTION 
In recent years, the study of neural networks has attracted 

considerable attention since it plays an important role in 
applications such as classification of patterns, associative 
memories and optimization. However, in neural processing and 
signal transmission, significant time delays as a source of 
instability and bad performance may occur. Therefore, there 
has been a growing research interest on the stability analysis 
problems for delayed neural networks, and a large amount of 
literature has been available, see [1-8,10-14] for some recent 
results. 

Stability criteria for delay neural networks can be classified 
into two categories: delay-independent [1,2,4] and delay-
dependent criteria [3,5-8,10-13].Delay-independent criteria do 
not employ any information on the size of the delay; while 
delay-dependent criteria make use of such information at 
different levels. Delay-dependent stability conditions are 
generally less conservative than delay-independent ones 
especially when the delay is small. 

Recently, a special type of time delay in practical 
engineering systems, i.e., interval time-varying delay, is 
identified and investigated [11]. Interval time-varying delay is a 
time delay that varies in an interval in which the lower bound is 
not restricted to be 0. It is worth noting that these stability 
criteria in [11] leave much room for improvement. A 
significant source of conservativeness that could be further 
reduced lies in the calculation of the time-derivative of the 
Lyapunov–Krasovskii functional. To the best of our 
knowledge, very few papers investigate the stability problem of 

neural networks with interval time-varying delays, which 
remains open but challenging. Therefore, it is of great 
significance to consider the stability of neural networks with 
interval time-varying delays. 

In this paper, we study the stability problem for neural 
networks with interval time-varying delays by choosing an 
appropriate Lyapunov functional. A delay-dependent stability 
criterion is derived based on the new Lyapunov functional and 
the consideration of range for the time-delay. The resulting 
criterion is applicable to both fast and slow time-varying 
delays. Finally, numerical examples are given to demonstrate 
the effectiveness and the merit of the proposed method. 

Notations: The notations used throughout the paper are 
fairly standard. The superscript “ T ” stands for matrix 
transposition; n\ denotes the n-dimensional Euclidean space; 
the notation 0P >  means that P  is real symmetric and positive 
definite; 0 represents zero matrix. In symmetric block matrices 
or long matrix expressions, we use an asterisk ( ) to represent 
a term that is induced by symmetry. Matrices, if their 
dimensions are not explicitly stated, are assumed to be 
compatible for algebraic operations. 

II. PROBLEM FORMULATION 
Consider the following neural networks with interval time-

varying delays: 

 ( ) ( ) ( ( )) ( ( ( ))) ,x t Cx t Ag x t Bg x t d t u= − + + − +�  (1) 

where 1 2( ) [ ( ), ( ),..., ( )]T
nx t x t x t x t=  is the neural state 

vector, 1 1 2 2( ( )) [ ( ( )), ( ( )),..., ( ( ))]T
n ng x t g x t g x t g x t=  denotes the 

bounded neuron activation function with 
(0) 0,g = 1 2[ , , , ]T

nu u u u= … is a constant input 
vector. 1 2[ , ,..., ] 0nC diag c c c= > , ( ) , ( )ij n n ij n nA a B b× ×= =  are 
the inter connection matrices representing the weight 
coefficients of the neurons,  

The time-varying delay ( )d t  satisfies 



         

 1 20 ( ) , ( ) ,h d t h d t µ≤ ≤ ≤ ≤�  (2) 

where 1 2, ,h h µ are constants. 

Remark 1. When, 0,µ = 1 2h h= then ( )d t denotes a 
constant delay; the case when 1 0,h =  it implies that 

20 ( )d t h≤ ≤  which is investigated in almost all the reported 
literature. 

In the following, we always shift the equilibrium point *x to 
the origin by transformation *( ) ( )z x x⋅ = ⋅ −  puts system (1) into 
the following form: 

 ( ) ( ) ( ( )) ( ( ( ))),z t Cz t Af z t Bf z t d t= − + + −�  (3) 

where 1 2( ) [ ( ), ( ),..., ( )]T
tz t z t z t z t=  is the state vector of the 

transformed system. With 

1 1 2 2( ( )) ( ( )), ( ( )),..., ( ( ) ,)]T
n nf z t f z t f z t f z t=  

and 
* *( (( )) ( ( ) ) ( ), 1,2, ,j j j j j j jf z t g z t x g x j n= + − = … . 

Assumption.1 There exist constants jF +  and jF −  such that 

 
( ( ))

, 1, 2,...,
( )

j j

j
j j

z tf
j nF F

z t
− +≤ ≤ =  (4) 

Remark 2.  The constants in , ,j jF F− + Assumption 1 are 
allowed to be positive, negative or zero. This type of activation 
function is clearly more general than the usual sigmoid 
activation functions and the recently commonly used Lipschitz 
conditions. Note that with such a milder assumption, the 
analysis methods developed in [11] cannot be applied directly. 

The following lemma is useful in deriving our LMI-based 
stability criterion. 

Lemma 1. [Schur complement]Given constant symmetric 
matrices 1 2 3, ,∑ ∑ ∑  where 1 1

T∑ = ∑  and 2 2,0 T< ∑ = ∑  then 
1

1 3 2 3 0T −∑ +∑ ∑ ∑ <  if and only if 

 2 31 3

3 13 2

0, 0.
T

Tor
−∑ ∑ ∑ ∑  

< <   ∑ ∑∑ −∑   
 (5) 

III. MAIN RESULTS  
For the convenience of presentation, we denote 

{ }1 1 1 2 2, , , ,n nF diag F F F F F F− + − + − += …  

1 1 2 2
2 , , , .

2 2 2
n nF FF F F FF diag
− +− + − + ++ += − − − 

 
…  

Then we are in the position to give the main result. 
Theorem 1.  For given scalars 1 20 h h≤ <  and µ , the neural 
network (3) is asymptotically stable, if there exist  

matrices 0, 0, 1, 2,3, 4T
r rP Q Q r> = ≥ = , 0,T

j jZ Z= > 1, 2,j =  

1 2 3 4 5 6 ,
TT T T T T TN N N N N N N =   1 2 3 4 5 6 ,

TT T T T T TS S S S S S S =  

1 2 3 4 5 6

TT T T T T TM M M M M M M =   1 2, ( , , ) 0,iK diag k k k= >"
1, 2, , ,i n= " such that the following LMI holds: 

 

1 2 2 2

2 1

1 2

2

0 0 0
0,( ) 0 0

0

T Th N S M W U
h Z

Z Z
Z

U

δ δ

δ
δ

 ϒ + ϒ + ϒ
 − 
  <− +
 

− 
 − 

(6) 

where 

11 15

22 2

1
1

2

55

66

0 0 0
0 0 0

0 0 0
0 0

PB
F H

Q
Q

KB

ϒ ϒ 
 ϒ − 
 −

ϒ =  − 
 ϒ
 

ϒ  

, 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3
2

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6

0 0
0 0
0 0

,
0 0
0 0
0 0

N N S M M S
N N S M M S
N N S M M S
N N S M M S
N N S M M S
N N S M M S

− + − − 
 − + − − 
 − + − −

ϒ =  − + − − 
 − + − −
 

− + − −  

 

and 

11 1 2 3 1

15 2

22 3 1

55 4

,

,
(1 ) ,

,

T

T

T

PC C P Q Q Q F D

PA C K F D
Q F H

Q KA A K D

µ

ϒ = − − + + + −

ϒ = − −
ϒ = − − −

ϒ = + + −

 

66 4

2 1 2

(1 ) ,
,

Q H
U h Z Z

µ
δ

ϒ = − − −
= +

 

2 1.h hδ = −  
Proof. The Lyapunov functional of system (3) is defined by: 

1 2

4

1

1 0
1

2 1 2

( ( )) ( ( ))

( ( )) ( ) ( ) 2 ( )

( ( )) ( ) ( ) ( ) ( )

i

i
i

n zT
i i

i

t tT T

t h t h

V z t V x t

V z t z t Pz t f s ds

V z t z s Q z s ds z s Q z s d

k

s

=

=

− −

=

= +

= +

∑

∑ ∫

∫ ∫

1

2 2

3 3 4( )

0

4 1 2

( ( )) ( ) ( ) ( ( )) ( ( ))

( ( )) ( ) ( ) ( ) ( ) .

t T T

t d t

t h tT T

h t h t

V z t z s Q z s f z s Q f z s ds

V z t z s Z z s dsd z s Z z s dsd
θ θ

θ θ

−

−

− + − +

 = + 

= +

∫

∫ ∫ ∫ ∫� � � �
 

where 0, 0, 1, 2,3, 4T
r rP Q Q r> = ≥ = and 0,T

j jZ Z= > 1, 2,j =
are to be determined. From the Leibniz–Newton formula, the 



         

following equations are true for any matrices ,N S  and 
M with appropriate dimensions, 

 1 ( )
2 ( ) ( ) ( ( )) ( ) 0,

tT

t d t
t N z t z t d t z s dsξ

−
 Λ = − − − =  ∫ �  (7) 

 [
2

( )

2 22 ( ) ( ( )) ( ) ( ) 0,
t d tT

t h
t S z t d t z t h z s dsξ

−

−
Λ = − − − − =∫ �  (8) 

 1

3 1 ( )
2 ( ) ( ) ( ( )) ( ) 0,

t hT

t d t
t M z t h z t d t z s dsξ

−

−
 Λ = − − − − =  ∫ �  (9) 

It can be derived from Assumption 1 that 

 ( ( ( )) ( ))( ( ( )) ( ))) 0,j j j j j j j jf z t F z t f z t F z t− +− − ≤  (10) 

 

( ( ( ( ))) ( ( )))

( ( ( ( ))) ( ( )))) 0,
j j j j

j j j j

f z t d t F z t d t

f z t d t F z t d t

−

+

− − −

× − − − ≤  (11) 

which are, respectively, equivalent to 

 
( ) ( )2 0,

( ( )) ( ( ))

2

j jT T
T j j j j j j

j j T T
j j j j

F F
F F e e e ez t z t

f z t f z tF F
e e e e

+ −
− +

+ −

 +
−      ≤    +   

− 
 

 

  (12) 

 

( ( )) 2
( ( ( )))

2
( ( ))

0,
( ( ( )))

j jT T
T j j j j j j

j j T T
j j j j

F F
F F e e e ez t d t

f z t d t F F
e e e e

z t d t
f z t d t

+ −
− +

+ −

 +
− −      − + 

− 
 

− × ≤ − 
 (13) 

where re  the unit column vector having one element on its 
r th row and zeros elsewhere. Here we 
denote { } { }1 2 1 2, , , , , , , .n nD diag d d d H diag h h h= =… …   

Calculating the derivative of ( ( ))V z t  along the solutions of 
system (3) and Combining (7)–(9) and adding the terms on the 
left side of (12)-(13) into it 

( ( )) 2 ( ) ( ) 2 ( ) ( ( ))
2 ( ) ( ( ( )))

T T

T

V x t z t PCz t z t PAf z t
z t PBf z t d t

≤ − +

+ −

�
 

1 2

2 ( ( )) ( ) 2 ( ( )) ( ( ))
2 ( ( )) ( ( ( ))) )( )( ( )

T T

T T

f z t KCz t f z t KAf z t
f z t KBf z t t z t Q z tQ

−

+ − + +

+
 

1 11 2 22( ) ( ) ( ) ( )T Tz t h Q z t h z t h Q z t h− − − − − −  

3 4

4

3

( ) ( ) ( ( )) ( ))

(1 ) ( ( ( ))) ( ( ( )))
(1 ) ( ( )) ( ( ))

(T T

T

T

z t z t f z t z t

f z t d t Q f z t d t
z t d t Q t d

Q

t

Q f

z
µ
µ

+ +

− − − −

− − − −

 

2 1 2 1( )
( )( ) ( ) ( ) ( )

tT T

t d t
z t h Z Z z t z s Z z s dsδ

−
+ + − ∫� � � �  

1

2

3( )

1 2 2( )
1

( )( ) ( ) ( ) ( )
t d t t hT T

it h t d t
i

z s Z Z z s ds z s Z z s ds
− −

− −
=

+ −− + Λ∑∫ ∫� � � �

1 2

2

( ) ( )
( ( )) ( ( ))

T F D F Dz t z t
F D Df z t f z t
    

−     
    

1 2

2

( ( )) ( ( ))
( ( ( ))) ( ( ( )))

T F H F Hz t d t z t d t
F H Hf z t d t f z t d t

− −    
−     − −    

 

1
1 2 2 2 1 2 2 1

1 1
2 1 2

( ) ( )

( ) ( )

T T T T

T T

t W h Z Z W h NZ N

MZ M S Z Z S t

ξ δ

δ δ ξ

−

− −

≤ ϒ + ϒ + ϒ + + +
+ + + 

1

2

1
1 1 1( )

1
2 2 2( )

( ) 1
1 2 1 2

1 2

[ ( ) ( ) ] [ ( ) ( )]

[ ( ) ( ) ] [ ( ) ( )]

[ ( ) ( )( )]( )

[ ( ) ( ) ( )]

t T T T

t d t

t h T T T

t d t

t d t T T

t h

T

t N z s Z Z N t Z z s ds

t M z s Z Z M t Z z s ds

t S z s Z Z Z Z

S t Z Z z s ds

ξ ξ

ξ ξ

ξ

ξ

−

−

− −

−

− −

−

− + +

− + +

− + + +

× + +

∫

∫

∫

� �

� �

�

� (14) 
where  

1 1 1

2 2 2

3 3 31

4 4 42

5 5 5

6 6 6

( )
( ( ))
( )

( ) , , ,
( )
( ( ))

( ( ( )))

N S Jz t
N S Jz t d t
N S Jz t h

t N S J
N S Jz t h
N S Jf z t
N S Jf z t d t

ξ

      
      −       
      −

= = = =      −       
      
      

−              

,  

[ ] 2 10 0 0 , ,W C A B h hδ= − = − and 1 2,ϒ ϒ are defined 
in Theorem 1. 

Since 0, 1, 2,jZ j> = then the last three parts in (14) are all 
less than 0. So, if 

1 1
1 2 2 2 1 2 2 1 2( )T T T TW h Z Z W h NZ N MZ Mδ δ− −ϒ + ϒ + ϒ + + + +

1
1 2( ) 0TS Z Z Sδ −+ + <  

which is equivalent to (6) by Schur complements, then 
2( ( )) ( )V z t z tε< −�  for a sufficiently small 0ε > and 

( ) 0,z t ≠ which ensures the asymptotic stability of system (3), 
see e.g. [9]. The proof is completed. 

Remark  3.  Ref.[11] has proposed some delay-dependent 
stability criteria for neural networks with fast time-varying 
interval delay. However, when estimating the upper bound of 
the time-derivative of the Lyapunov-Krasovskii functional, the 

terms 0

0 0

( )

2 2( ) ( ) ( ) ( )
t t tT T

t t
x s R x s ds x s R x s ds

τ τ δ

τ δ τ

− − +

− − −
− −∫ ∫� �  and 

0 0

0
2 2( )

( ) ( ) ( ) ( )
t tT T

t t t
x s R x s ds x s R x s ds

τ τ δ

τ δ τ

− − +

− − −
− −∫ ∫� � in the derivative 

of 3 ( )V t are ignored. This may bring conservativeness. In our 
Theorem 1, none of useful terms is ignored. In addition, the 
results in [11] are only applicable to neural networks with fast 
time-varying delay. In fact, in many cases, the derivative of 
time-varying delays is known and may be small. Thus, the 
results in [11] may have limited use. In our Theorem 1, µ can 



         

be any value or unknown. Therefore, Theorem 1 is applicable 
to both cases of fast and slow time-varying delays. 

IV. NUMERICAL EXAMPLES 
In this section, two examples are given to show the 

effectiveness and less conservativeness of our results. 

Example 1. Consider the following neural networks with  
interval time-varying delays, borrowed from [11]: 

0.7 0 0.3 0.3 0.1 0.1
, , ,

0 0.7 0.1 0.1 0.3 0.3
C A B

−     = = =     −     
  

µ is unknown, and the activation functions are as follows: 

1 2 1( ) 1 1 2, ( ) ( ),f x x x f x f x = + − − =   

which means that 

1 1 2 20, 1, 0, 1.F F F F− + − += = = =  
The calculation results obtained by Theorem 1 in this paper, 

Theorem 1 in [10] and Theorem I in [11] for different cases of 
1h and unknown µ  are listed in Table 1, in which “––”means 

that the results are not applicable to the corresponding cases. 
When 1 0h = , it is clear that our results are improvement over 
those in [10] and [11]. On the other hand, for neural networks 
with interval time-varying delays in a range, Table 1 also lists 
the comparison between our results and those in [11] and 
shows the merit of Theorem 1. 

Example 2. Consider the following neural networks with  
interval time-varying delays: 

2 0 0.7 0.8 0.2 0.2
, , ,

0 2 0.5 0.3 0.6 0.1
C A B     = = =     − −     

 1.5µ =  

and the activation functions are as follows: 

1 2( ) tanh(0.6 ) 0.2sin , ( ) tanh( 0.4 ),f x x x f x x= − = −  
which means that 

1 1 2 20.2, 0.8, 0.4, 0,F F F F− + − += − = = − =  
By Theorem 1, the maximum allowable upper delay bounds 

for different levels of lower delay bounds 1h  are listed in Table 
II, in which “––”means that the results are not applicable to the 
corresponding cases. Therefore, our method is less 
conservative in some degree than that in [11]. 

TABLE I.  CALCULATED DELAY BOUNDS 2h FOR GIVEN 1h   

Calculated delay bounds 2h for given 1h and unknown µ  
 

[10] [11] Theorem 1 

1 0h =  0.2916a 2.3297 2.7104 

1 0.1h =  ––– 2.4297 2.5297 

1 0.2h =  ––– 2.7315 2.7537 

1 0.3h =  ––– 2.6297 2.7772 

1 0.4h =  ––– 2.7297 2.8071 

1 0.5h =  ––– 2.8297 2.8603 

TABLE II.  THE MAXIMUM ALLOWABLE UPPER BOUND OF 2h  

V. CONCLUSIONS 
 The stability problem for neural networks with interval 
time-varying delays is considered. Based on the Lyapunov-
Krasovskii functional approach, a delay-dependent stability 
criterion is derived by introducing free weighting matrices, 
which are used to reduce the conservatism of the obtained 
criterion. Numerical examples are given to show the 
effectiveness of the method. 
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The maximum allowable upper bound of 2h  
 

1 0h =  1 0.1h =  
1 0.3h =  1 0.5h =  

[11] ––– ––– ––– ––– 

Theorem 1 4.6214 4.6473 4.8024 5.0011 


