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Abstract—The Choquet integral model has been shown useful
in many practical applicaitons due to its distinguished feature that
the interaction among predictive attributes toward the objective
attribute can be properly reflected through a set of non-additive
measures. Non-additive measures are traditionally determined
using heuristic strategies or genetic algorithms; however, their so-
lutions to Choquet integrals are often not unique or deterministic.
Besides, raw attribute data are often not good enough to identify
all coefficients, which leads to an incomplete Choquet model.
In this paper, we present an efficient approach to determine the
complete non-additive measures. The approach adopts a new data
normalization, based on median alignment, for the Choquet model
to overcome the above practical deficiencies raised in traditional
methods. We show how the Choquet model is applied to the
significance analysis for wireless cross-layer network design.

I. INTRODUCTION

The Choquet integral [3] is a generalization of the Lebesgue
integral, defined over a set of non-additive measures (also
called fuzzy measures). Let X = {x1, x2, · · · , xn} be a set
of attributes, f(x) be the observated or partially evaluated
value on each attribute x ∈ X , f is a tuple of observated
or partially evaluated values on X , and z be an objective.
The linear/additive multiregression model is traditionally rep-
resented as a weighted sum z =

∑
x∈X

wxf(x), where the

weight wx is also regarded as a Lebesgue measure w on
a singleton {x}, since the linear model is equivalent to a
Lebesgue integral z = (L)

∫
X

fdw. The Choquet integral
model breaks the restriction that the combined contribution
of {xi, xj} toward the objective z is the weighted sum of
their respective contributions. Instead, it uses a non-additive
measure µ, which is defined over the powerset of X , and
a Choquet integral, z = (C)

∫
X

fdµ. It is clearly more
powerful than the Lebesgue integral model since the non-
additive measure µ considers the interaction among attibutes
toward the objective. In such a setting, µ({xi, xj}) may not
be a linear sum of µ({xi}) and µ({xj}); Lebesgue integral
model thus becomes a special case of the Choquet integral
model where the linear sum equation holds.

The non-additive model based on Choquet integral (the
Choquet model in short) has been shown useful in many
practical applications, such as classification [11], multicriteria
decision making [6], [17], image and pattern recognition [7],
[13], [22], data modeling [12], [21], and so on, due to its
distinguished feature that the interaction among predictive at-
tributes toward the objective attribute can be properly reflected

through a set of non-additive measures. However, even though
the theory and applications of the Choquet model have been
well studied at length in the last half century, the practical uses
of the Choquet model are quite limited within a few research
groups in the community of fuzzy set theory.

The main problem of applying the Choquet model is how to
determine the non-additive measure µ defined over the power-
set of attributes X . The basic idea to solve the Choquet model
is to reduce the non-linear regression model to the traditional
linear multiregression model, so that the Choquet model can be
easily solved by using the least-square method in a quadratic
running time [9]. The idea was orginally proposed in [16],
and was successfully applied on classification [5]. However,
there is a problem that “bad” solutions (“extreme” values near
0) are often generated [9], [12] because raw attribute data are
often not good enough to identify all 2n coefficients. In practial
applications, the obtained optimal solutions are sometimes too
unreasonable to support the decision making. To get around
such a bad-solution problem, a suboptimal algorithm, called
HLMS (Heuristic Least Mean Squares) [7], was proposed. The
heuristic strategy is based on a gradient algorithm and the idea
of equilibrium point [7]. However, the obtained suboptimal
solution may be quite different from the optimal one. Another
popular strategy is to use genetic algorithm (GA) to determine
the non-additive measures [21], [12], where each measure
µ is coded in a gene. Due to randomness of chromosome
generation and the huge 2n dimensional search space, the
obtained solutions at different running times are not unique,
and actually quite different in general. Similar to the previous
alogithms, “bad” solutions are often generated due to the trap
of local optimum.

In this paper, we present a new approach on the Choquet
model toward its efficient yet precise determination of non-
additive measures. The main contributions of the paper can be
summerized as follows.

• The main objective of the Choquet model is to identify
all the 2n non-additive measure coefficients, given a set
of n attributes. However, raw attribute data are often not
good enough to identify all 2n non-additive measure coef-
ficients, due to the reason that some measure coefficients
are not directly applied during the data modeling. For this
reason, we introduce a new data normalization algorithm,
baseda on median alignment, so that all the non-additive
measure coefficients defined over the preprocessed data
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are used in the model, and can hence be identified
properly.

• Non-additive measures are traditionally determined in
heuristic strategies or genetic algorithms; the least-
squared algorithm for solving linear equations have to
be applied repeatedly until no more or under certain very
little improvement could be made, and the solution for
the Choquet model is not unique in general. It often
occurs that different runs on the same dataset give quite
inconsistent coefficient results. With the help of our new
data normalization algorithm, the non-additive measure
can then be identified deterministically by applying the
standard least squared algorithm once.

• We illustrate an application of the Choquet model on
interdependency measure and significance analysis for
the wireless cross-layer network design under uncertain-
ties. The proposed approach captures the interdependency
among the MAC protocol parameters and identify which
subset of system parameters has the most significant
effect on the performance metrics of interest under the
current system and network conditions, so that we can
fine tune those system parameters to improve the network
throughput performance if necessary.

It is worthy to be mentioned that this paper is targetted to
those application problems with the small number of attributes
(n ≤ 10), otherwise, the fuzzy measure containing around 2n

coefficients is too large to determine. Strategies how to solve
Choquet models with large number of attributes can be found
in [20], [15], [18], [8], [10]. The proposed approach in this
paper is also useful to handle similar issues for solving large
Choquet models.

The rest of the paper is organized as follows. Section II
gives a brief introduction of the Choquet integral model, and
how the coeefficients of the model is traditionally determined.
Section III presents a new approach, based on the median-
alignment data normalization, to determine the non-additive
measures of the Choquet model. Section IV shows a case
study and the simulation results. Finally, Section V gives a
conclusion.

II. THE CHOQUET INTEGRAL MODEL

In this section, we give a brief introduction on non-additive
measure, the Choquet integral model, and how to determine
the non-additive measure of the model.

A. Non-additive measure

Let X = {x1, x2, · · · , xn} be a set of attributes. A fuzzy
measure on X is a set function µ : P(X) → R with a
constraint µ(∅) = 0, where n is the number of attributes, P(X)
is the powerset of X , and R is the real domain. We relax the
following two traditional restrictions on fuzzy measures: (i)
the co-domain of the set function µ is R instead of R+; (ii)
the monotonicity, A ⊂ B ⊆ X implies µ(A) ≤ µ(B), is not
necessary.

The main characteristic of fuzzy measures is that they can
express interactions among attributes being aggregated in a

more flexible and precise manner. A fuzzy measure is said
to be additive if µ(A ∪ B) = µ(A) + µ(B) whenever A ∩
B = ∅, otherwise, it is non-additive. In the applications of
multicreteria decision making [10], the case of µ(A ∪ B) >
µ(A) + µ(B) is often called postive interaction or positive
synergy between criteria A and B; whereas the case of µ(A∪
B) < µ(A) + µ(B) is called negative interaction or negative
synergy, where the union of criteria (or attributes) does not
bring anything more to the objective.

B. The model

The main feature of the Choquet integral model is that
the interaction among attributes toward the objective can be
properly measured through a non-additive fuzzy measure.
Assume the data consists of l observations of the attributes
x1, x2, · · · , xn and the objective z, in the following form:

x1 x2 · · · xn z
f11 f12 · · · f1n z1

f21 f22 · · · f2n z2

...
...

...
...

...
fl1 fl2 · · · fln zl

where each row is an observation of attributes x1, x2, · · · , xn

and z. The observation of x1, x2, · · · , xn can be regarded
as a function f : X → R; hence the j-th observation of
x1, x2, · · · , xn is denoted by fj , and we write fji = fj(xi)
where 1 ≤ i ≤ n and 1 ≤ j ≤ l.

The interaction among predictive attributes X toward the
objective z is described by a set function µ defined on the
power set of X satisfying the condition of vanishing at the
empty set, i.e., µ : P(X) → R with µ(∅) = 0. The new
non-additive multi-regression model is expressed as

z = e +
∫

(c)

fdµ + N(0, δ2), (1)

where e is a regression constant,
∫
(c) is the Choquet integral,

f is an observeration of x1, x2, · · · , xn, µ is a fuzzy measure,
and N(0, δ2) is a normally distributed random perturbation
with expection 0 and vairance δ2. The Choquet integral

∫
(c)

of the data observation f , w.r.t. a fuzzy measure µ, is defined
as:∫

(c)

fdµ =
∫ 0

−∞
[µ(Fα)− µ(X)]dα +

∫ +∞

0

µ(Fα)dα (2)

where Fα = {x | f(x) ≥ α} for any α ∈ (−∞, +∞), and
is called the α-cut set of f .

C. To determine the non-additive measure

The basic idea to solve the Choquet model is a two-
step procedure. The first step is to reduce the non-linear
multiregression model to the traditional linear multiregression
model by converting each n-dimensional vector attribute datum
to a 2n-dimensional vector datum, which is defined over the
powerset of attributes; and thus, the second step is to solve the
linear model by using the standard least-square method.



x1 x2 x3

5 10 8
7 0 5
−2 3 5
−6 −9 −2

...
...

...

{x1} {x2} {x1, x2} {x3} {x1, x3} {x2, x3} {x1, x2, x3}
0 2 0 0 0 3 5
2 0 0 0 5 0 0
0 0 0 2 0 5 −2
0 0 0 4 3 0 −9
...

...
...

...
...

...
...

(a) Raw Data (b) Data after Transformation

Fig. 1. Data Transformation: X ⇒ P(X)

Since the non-additive measure in the Choquet model is
defined over the powerset P(X), the reduction step basically
aggregates the observed data of individual attributes to the
observation on sets. Consider a small set of sample data with
the attribute set {x1, x2, x3} as shown in Figure 1. The first
vector (5, 10, 8) is aggregated to an equivalent subset-based
representation, so that the contribution to the objective can be
calculated using the non-additive measure in a linear way:

2 ∗ µ({x2}) + 3 ∗ µ({x2, x3}) + 5 ∗ µ({x1, x2, x3}),
which is consistent to

∫ +∞
0 µ(Fα)dα in the equation 2.

On the other hand, if the observed data contains negative
numbers, their contribution to the objective is cacluated via∫ 0

−∞[µ(Fα) − µ(X)]dα. That is, a negative unit of a set S
(S ∈ P(X)) contributes µ(X − S) − µ(X) to the objective
instead of−µ(S). Therefore, the contribution of the data vector
(−6,−9,−2) is equivalent to:

4 ∗ µ({x3}) + 3 ∗ µ({x1, x3})− 9 ∗ µ(X).

Once the observed data on X are converted to the new ones
on P(X), then we have a linear multi-regression problem,
in which the non-additive measure is basically the set of
regression coefficients.

The method to determine the non-additive measure was
orginally proposed in [16]. Direct application of this method
often generates “bad” solutions [9], [12] because raw attribute
datum are often not good enough to identify all 2n coefficients.
For example, consider a model of two attributes x1 and x2,
and the datum f(x1) is consistently greater than f(x2) in each
observation. Then the data under {x2} after conversion are
all 0’s, since all data of x2 would be aggregated to the set
{x1, x2} due to f(x2) < f(x1) in each observation. As a
result, the measure µ({x2}) cannot be determined by using
the least-squared method.

Heuristic strategies, such as using gradient algorithms [7] or
genetic algorithms [21], [12], were applied to get around such
a bad-solution problem. However, there are a few problems:
(1) the heuristic algorithms are not efficient since they are ba-
sically repetitive optimization procedures based on generating
and comparing mutiple non-additive measures based on their
regression residual errors; (2) the solutions are not unique in
general, and possibly quite different from the expected ones
due to the trap of local optimum.

procedure norm(vectors f , f ′, vector M )
/* j-th observed: fj : (fj1, · · · , fjn) */
/* j-th normalized: f ′

j : (f ′
j1, · · · , f ′

jn) */
/* alignment coefficient M : (M1, · · · , Mn) */
{

for(k = 1; k ≤ n; k++) (1)
Mk ← quickMedian(k); (2)

for(k = 1; k ≤ l; k++) (3)
normalize(fk, f ′

k, M); (4)
}

procedure normalize(vector fj , f ′
j , M )

{
for(k = 1; k ≤ n; k++) (5)

f ′
jk ← fjk ∗M1/Mk; (6)

}
Fig. 3. A pseudo-code implementation of data normalization

III. NEW APPROACH USING MEDIAN ALIGNMENT

A. Overview of new approach

Let X = {x1, · · · , xn} be a set of predicative attributes,
and n be the number of attributes; l be the number of
observation records. Figure 2 is a dataflow diagram illustrating
how the observation data f(X) are processed step by step
toward the determinitation of its fuzzy mesaure µ defined
over P(X). In the diagram, each rectangle represents a set
of observed data, processed data, or computed results; each
rounded rectangle represents a data processing procedure; and
the directed edge shows the processing sequence and dataflow
direction. Detailed explanation on procedures are shown in the
following subsections.

B. Data Normalization

As mentioned earlier, direct reduction on raw data from
the Choquet model to linear multiregression model may cause
“bad” solutions, where non-additive measures on some subsets
are often not able to be determined. In order to determine the
non-additive measure on all subsets, it is important to ensure
a necessary condition that the aggregated observation have
enough non-zero data for each S ∈ P(X), so that the least-
squared method is able to find its associated coeffecient.

We present a data normalization approach based on me-
dian alignment. Let X ′ = {x′

1, · · · , x′
n} be the set of new



data
normalization

least−square
method

observed data

f : X −> R
fuzzy measure
u : P(X) −> R

fuzzy measure
u’ : P(X’) −> R

de−normalization

normalized data aggregated data

f’ : X’ −> R f" : P(X’) −> Raggregation
data

over subsets

Fig. 2. A dataflow diagram

predicative attributes (different from the original attributes in
scales) after normalization, and the function f ′ : X ′ ← R
be the normalized data observation. The main idea is to align
the observed data of each predictive attribute with others’ data
along their medians, so that if the data samples are reasonably
large, it is expected to have non-zero aggregated observation
for each subset S ∈ P(X ′); and its non-additive measure can
therefore be determined properly.

Figure 3 shows a simple pseudo-code implementation of
the data normalization based on median alignment. The pro-
cedure quickMedian(k) is a standard divide-and-conquer,
partition-based selection algorithm [1] using median-of-three
partitioning to return the median among the observed data
of xk, which is a linear algorithm in time complexity O(l).
The procedure normalize(fj, f ′

j M) is used to adjust each
observed data of fjk by multiplying a factor M1/Mk, which is
obviously an O(n) algorithm (lines 5-6). Therefore, the total
time complexity of the procedural norm is O(nl), which is
basically linear to the total number of individual data items.

C. Data Aggregation over Subsets

This subsection shows an efficient algorithm in Fig 4
on how the attribute data (n-dimensional vectors) after nor-
malization are aggregated to a 2n-dimensional vector data
defined over the powerset of attributes. The Choquet model
can then be reduced to a linear multiregression model after
data aggregation.

As shown in Figure 4, given a vector of normal-
ized data f ′

j = (f ′
j1, · · · , f ′

jn), we use a vector f ′′
j =

(f ′′
j1, ..., f

′′
(j,2n−1)) to represent aggregated data vector over

the powerset of X , where f ′′
ji = f ′′

(j,i) through the rest
of paper. For each f ′′

ji, 1 ≤ i ≤ 2n − 1, the binary
representation of i indicates whether an attribute variable is
a member of the subset, that is, i is a subset indicator of
{x′

k | the k-th lowest bit of binary representation of i is a 1}.
The algorithm first applies an indirect insertion sorting

procedure on the vector of normalized data. The purpose of
indirect sorting is to sort the data items without really moving
the data around, because each datum is associated to a data
column under an attribute variable. The indirect sorting is
implemented by using an auxiliary vector I of pointers to
data and only rearranging the pointers. We simply use the
insertion sorting due to the fact that it is assumed that the

procedure aggregate(vectors f ′, f”)
/* j-th normalized: f ′

j : (f ′
j1, · · · , f ′

jn) */
/* j-th aggregated: f ′′

j : (f ′′
(j1), · · · , f ′′

(j,2n−1)) */
{

for(j ← 0; j < l; j++) { (1)
indirectSort(f ′

j, I); (2)
for(k ← 1; k < 2n; k++) (3)

f ′′
(jk) ← 0; (4)

d ← 0.0; (5)
s ← 2n − 1; (6)
for(k ← 1; k ≤ n; k++) { (7)

f ′′
js ← f ′

jIk
− d; (8)

d← f ′
jIk

; (9)
s← s− 2Ik ; (10)

} (11)
} (12)

}

procedure indirectSort(vector f ′
j , vector I)

{
for(k← 1; k ≤ n; k++) { (13)

q ← k; (14)
for(t← k; t > 1 and f ′

(j,q) < f ′
(j,I(t−1))

; t--) (15)

It ← I(t−1); (16)
It ← q; (17)

} (18)
}

Fig. 4. A pseudo-code implementation of data aggregation

vector dimension n is less than or equal to 10. The data items
in an increasing order are shown as f ′

jI1
, · · · , f ′

jIn
.

We then use an efficient procedure, linear to n, to identify
those subsets with non-zero aggregated values. We assume
that the aggregated value f ′′

jk of each subset indictor k is
initially set to zero (lines 3-4). As shown in Fig 4, we then
introduce a subset indicator s, initially 2n−1 representing the
full set {x′

1, · · · , x′
n}. Since the data vectors are sorted, the first

datum, f ′
jI1

, must be the value of f ′′
(j,2n−1), which represent

the aggregated datum of the full set. The for-loop (k from
1 to n in lines 7-11) removes the variable x′

Ik
, which holds

the least data f ′
jIk

among those variables in s, out of the set



indicator s in each iteration. We use d denote the least datum
among those variables in the previous (iteration) s. Therefore,
f ′′

js, the aggregated observation datum on the subset s, should
be assigned to f ′

jIk
− d (line 8).

The running time complexity of our data aggregation algo-
rithm is O(2n), where n is supposed to be within a constant
10 or so. Actually, except that the initialization (lines 3-4)
takes expenential running time due to the 2n-dimension of f ′′

j ,
the indirect sorting takes O(n2) and the rest of the algorithm
takes O(n) running time. We use the insertion sort in the
indirectSort procedure because insertion sort is supposed
to be more efficient than quicksort in practice if n is small.
This aggregation algorithm is better than the ones proposed
in [21], [22], which are O(n× 2n) time complexity.

D. De-normalization

Once the data in Choquet model have been transformed to
2n-dimensional matrix linear model, the standard least-squared
method is applied to determine the fuzzy measure u′ over
the powerset of X ′. We omit the detail of this step since
the least-squared method cannot be found from any textbook
covering the multi-regression. The next question is how to
derive the expected fuzzy measure u over the powerset of
original attribute set X based on the fuzzy measure u′.

procedure deNorm(vector u′, u)
/* measure over P(X ′): u′ : (u′

1, · · · , u′
(2n−1)) */

/* measure over P(X): u : (u1, · · · , u(2n−1)) */
{

for(s← 1; s < 2n; s++) { (1)
for(k ← 1; k ≤ n; k++) { (2)

xk ← s mod 2; (3)
s← s/2; % integer division (4)

} (5)
normalize(x, x′, M); (6)
transform(x′, y); (7)

us ←
2n−1∑
k=1

yk × u′
k; (8)

}
}

Fig. 5. A pseudo-code implementation of back reduction

A pseudo-code implementation of the de-normalization
algirithm is shown in Fig 5. The variable s is a set indicator,
from 1 to 2n − 1, which indicates an attribute set S =
{xk | the k-th lowest bit of the binary representation of s is 1}.
For each set indicator s, code lines (2 − 5) construct a new
vector of observed data by assigning all the xk ∈ S to 1
and the rest attribute varialbes to 0. After normalization to
aligned vector x′ and then transformation to a 2n-dimensional
y, we apply the Choquet integral with the fuzzy measure u′

on the transformed y to find its objective contribution, which
is equivalent to us. The time complexity of the procedure
deNorm is O(22n), where n is a small constant within 10 or
so. That is because each application of the Choquet integral

model to an observation data takes O(2n); and the fuzzy
measure u over the powerset P(X) contains 2n − 1 values,
where each value, corresponding to a non-empty subset
S ∈ P(X), requires an application of the Choquet integral
model with the fuzzy measure u′ to determine.

IV. INTERDEPENDENCY MEASURE AND SIGNIFICANCE

ANALYSIS ON CROSS-LAYER DESIGN

In this section, we show an application how to apply
the Choquet model with the proposed approach for interde-
pendency measure and significance analysis on cross-layer
wireless network design [4]. We choose the IEEE 802.11
WLAN as our platform due to its popularity and complicated
interdependency among different system parameters such as
the number of users, the minimum contention window size,
frame size, and data rate. So far, even though the IEEE 802.11
WLANs have gained a huge commercial success, the working
dynamics of the MAC protocol of the IEEE 802.11 WLAN is
still largely remaining unknown due to 1) the heuristic design
of the protocol at its early development stage such as the
exponential backoff scheme and 2) the backward compatibility
requirement among different versions of the standard.

There has been a lot of research done on how to use
cross-layer design to improve the throughput performance. In
literature [19], [2], [14], throughput performance was improved
by adapting frame size, contention window size, data rate, and
so on. However, research also shows that none of the schemes
for throughput enhancement work well in all cases due to the
fact that the significance of each system parameter is also time-
varying under different system and network situations. For
example, increasing frame size is a good yet simple approach
when the channel quality is good but not so when the channel
quality is bad, where lowering the transmission data rate might
be a good option. Things will be even more complicated
when multidimensional optimization schemes are adopted in
cross-layer design, where several parameters might be adjusted
simultaneously for better throughput. Cautions have to be given
in this case since different system parameters might react
to the same system condition differently, resulting in losing
gain of cross-layer design, some times, even degrading the
system performance. Therefore, dynamically switching from
one cross-layer scheme to another based on system dynamics
is necessary to get all-time high system performance.

lightly-loaded heavily-loaded
good channel bad channel good channel bad channel

µ({f}) 18.655 25.444 23.07 −3.950
µ({c}) −19.129 −0.123 −3.301 −0.038
µ({f,c}) 12.885 4.007 1.478 5.721
µ({d}) 112.482 205.120 168.685 73.449
µ({f,d}) 110.065 158.776 183.862 135.825
µ({c,d}) −31.615 −4.017 −16.223 6.615
µ({f,c,d}) 16.312 43.448 5.595 33.335

TABLE I
NON-ADDITIVE MEASURES OVER DIFFERENT NETWORKS

We will use the proposed approach to quantitatively cap-



ture the interdependency among IEEE 802.11 MAC protocol
parameters (frame size, minimum contention window size, and
data rate, corresponding to f, c and d as shown in Table I)
in cross-layer design under uncertainties and identify which
set of system parameters has the most significant effect on the
throughput performance under the network conditions. Table I
shows our experimental results under four different network
conditions considering both network status (lightly-loaded or
heavily-loaded) and channel quality (good or bad). Each µ(s)
in the table gives the quantified significance (positive or nega-
tive) from a set of system parameters s toward the throughput
performance.

From experimental results, we may have the following
observations, which are actually consistent to the literatures.

• When the network is lightly loaded, increasing data rate
would improve the network throughput performance.

• When the network is heavily loaded, choosing larger
frame size and higher data rate would lead to the most
significant improvement on the throughput performance.

• For the case of lightly loaded network with good channel,
there exists significant negative interaction between frame
size and data rate, that is, µ({f, d}) < µ({f})+ µ({d});
and for the rest of the cases, there exists positive interac-
tion between frame size and data rate.

• For the case of heavily loaded network with bad channel,
µ({f, c}) > 0 even though both µ({f}) and µ({c})
have negative effects. It is true that increasing minimal
contention window size may reduce the throughtput per-
formance directly, but on the other hand, it reduces the
packet loss rate caused by collision as well. Thus, if the
frame size is increased as the same time, it is possible to
increase the throughput performance instead.

With those observations, we can identify a small and major
subset of system parameters to fine tune and improve the
system performance effectively. To summarize, through this
simple case study we demonstrated the basic idea of our pro-
posed approach and validated the effectiveness of our model.
The proposed approach is very helpful for us to understand
the behaviors of the cross-layer design of a dynamic wireless
network system.

V. CONCLUSION

We presented a new approach to identify the non-additive
fuzzy measures in the Choquet model. The approach is based
on a data normalization strategy to align the data among dif-
ferent predictive attibutes over their medians. Data alignment
better ensures that once the observed data are aggregated
over subsets, there will be enough non-zero values for each
subset, so that each fuzzy measure can be identified. We
gave a detailed description, including a dataflow diagram,
pseudo-code algorithms for each major step and their time
complexities, on how this normalization strategy is applied to
solve the complete Choquet model. Our appraoch resolves a
practical issue of applying the Choquet model that “bad” and
non-deterministic solutions are often generated when heuristic
strategies or genetic algorithms are adopted. Additionally, we

presented an application how the Choquet model is applied to
the significance analysis and interdependency measure for the
cross-layer wireless network design.

REFERENCES

[1] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan. Time bounds for
selection. Journal of Computer and System Sciences, 7(1973):448-461.

[2] F. Cali, M. Conti, and E. Gregori: Dynamic Tuning of the IEEE
802.11 Protocol to Achiveve a Theoretical Throughput Limit. IEEE/ACM
Transactions of Networking, 8(6): 785-799, 2000.

[3] G. Choquet. Thoery of capacities. Annales de l’Institut Fourier, 5:131-
295, 1953.

[4] S. Ci, H.-F. Guo. Characterizing Cross-Layer Behaviors Using Nonlin-
ear and Incommensurable Observations. The IEEE Global Communi-
cations Conference (GLOBECOM), 2007.

[5] M. Grabisch and J.M. Nicolas. Classification by fuzzy integral –
performance and tests. Fuzzy SEts & Systems, Special issues on Pattern
Recognition, 65:255-271,1994.

[6] M. Grabisch. Fuzzy integral in multicriteria decision making. Fuzzy Sets
& Systems, 69 (1995), 279-298.

[7] M. Grabisch. A new algorithm for identifying fuzzy measures and its
application to pattern recognition. Int. Joint Conf. of the 4th IEEE Int.
Conf. on Fuzzy Systems and the 2nd Int. Fuzzy Engineering Symposium,
march 1995, Yokohama, Japan, 145-150.

[8] M. Grabisch. K-order additive discrete fuzzy measures and their
representation. Fuzzy Sets and Systems, 92:167–189, 1997.

[9] P. Miranda and M. Grabisch. Optimization issues for fuzzy measures.
International Journal of Uncertainty, Fuzziness, and Knowledge-Based
Systems, 7(6):545-560, 1999.

[10] M. Grabisch and M. Roubens. Application of the Choquet integral in
multicriteria decision making. Fuzzy Measures and Integrals - Theory
and Applications, pp. 348-274, Physica Verlag, 2000.

[11] M. Grabisch. Fuzzy integral for classification and feature extraction.
In Fuzzy Measures and Integrals — Theory and Applications, Physica
Verlag, 2000, pp. 348–374.

[12] M. Grabisch. Modelling data by the Choquet integral. In Information
fusion in data mining, V. Torra (ed.), Physica Verlag, 2003, 135-148.

[13] J.M. Keller, P.D. Gader, and A.K. Hocaoglu. Fuzzy integrals in image
processing and recognition. Fuzzy Measures and Integrals – Theory and
Applications, pp. 435–466, Physica Verlag, 2000.

[14] Q. Liu, S. Zhou, and G. B. Giannakis: Cross-layer Combining of
Adaptive Modulation and Coding with Truncated ARQ over Wireless
Links. IEEE Trans. Wireless Communications, 3(5): 17461755, 2004.

[15] R. Mesiar and D. Vivona. Two-step integral with respect to fuzzy
measure. Tatra Mt. Math. Publ., 16(1999): 359-368.

[16] T. Mori and T. Murofushi. An analysis of evaluation model using fuzzy
measure and the Choquet integral. In 5th Fuzzy System Symposium,
pp. 207-212, Japan, 1989. In Japaneses.

[17] Y. Narukawa and T. Murofushi. Decision Modelling Using the Choquet
Integral. First International Conference on Modeling Decisions for
Artificial Intelligence, pp. 183–193, 2004.

[18] Y. Narukawa and V. Torra. Choquet integral based models for gen-
eral approximation. Artificial Intelligence Research and Development,
100(2003): 39–50, 2003

[19] D. Qiao, S. Choi, and K. Shin: Goodput Analysis and Link Adaptation
for IEEE 802.11a Wireless LANs. IEEE Trans. on Mobile Computing,
1(4): 278-292, 2002.

[20] M. Sugeno and K. Fujimoto. Hierarchical Decomposition Theorems
for Choquet Integral Models. IEEE International Conference on Fuzzy
Systems, pp. 2245-2252, 1995.

[21] Z. Wang, K. S. Leung, and J. Wang. A genetic algorithm for determining
nonadditive set functions in information fusion. Fuzzy Sets and Systems,
102 (1999), 463-469.

[22] K. Xu, Z. Wang, M. L. Wong, and K.-S. Leung. Discover dependency
pattern among attributes by using a new type of nonlinear multiregres-
sion. International Journal of Intelligent Systems, 16(8): 949-962, 2001.


