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Abstract—An approach to construct multiple Pareto-optimal 
fuzzy systems based on NSGA-II is proposed in this paper. First, 
in order to obtain a good initial fuzzy system, a modified fuzzy 
clustering algorithm is used to identify the antecedents of fuzzy 
system, while the consequents are designed separately to reduce 
computational burden. Second, a Pareto multi-objective genetic 
algorithm based on NSGA-II and the interpretability- driven 
simplification techniques are used to evolve the initial fuzzy 
system iteratively with three objectives: the precision 
performance, the number of fuzzy rules and the number of fuzzy 
sets. Resultantly, multiple Pareto- optimal fuzzy systems are 
obtained. The proposed approach is applied to two benchmark 
problems, and the results show its validity. 
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I.  INTRODUCTION  
Fuzzy sets Theory, introduced by Professor Zadeh [1] thirty 

years ago, has been received more and more attention from 
researchers in a wide range of areas. Fuzzy modeling is one of 
the most successful disciplines that is often used in 
classification, data mining, simulation, prediction and control 
[2]. Fuzzy system can be designed based on expert knowledge; 
however it is difficult to acquire adequate and efficient expert 
knowledge for complex problems, so several approaches have 
been proposed to build fuzzy system from numerical data, 
including fuzzy clustering-based algorithms [3], neuro-fuzzy 
systems [4,5] and genetic fuzzy rules generation [6,7]. However 
all these methods only focus on fitting data with highest 
possible accuracy, neglecting the interpretability of the 
obtained fuzzy systems, which is a primary merit of fuzzy 
systems and the most prominent feature that distinguishes 
fuzzy systems from many other models. 

In the recent few years, many researches have been devoted 
to the study of the tradeoff between interpretability and 
precision. Roubos [8] proposed an iterative fuzzy identification 
technique starting with a redundant fuzzy model obtained via 
fuzzy clustering in the product space of measured inputs and 
outputs. Successively, rule base simplification and GA-based 
optimization are applied iteratively to improve accuracy and 
reduce complexity. Papadakis [9] proposed a genetic algorithm 
based modeling method for building fuzzy system with 
scatter-type partitions. The method manages all attributes 
characterizing the structure of fuzzy system simultaneously, 
including the number of fuzzy rules, the input partition, the 

participating inputs of each fuzzy rule and the consequent 
parameters. The structure learning task is formulated as a 
multi-objective optimization problem which is resolved using 
a novel genetic-based structure learning scheme; and a 
genetic-based parameter learning scheme is performed for 
fine-tuning of the initial fuzzy system. Delgado [10] presented 
fuzzy modeling as a multi-objective decision-making problem, 
considering accuracy, interpretability and autonomy as goals. 
All these objectives are handled via a single-objective ε – 
constrained decision making problem, which is solved by a 
hierarchical evolutionary algorithm. Chang [11] addressed an 
automatic method to design fuzzy systems for classification 
via evolutionary optimization. At the beginning of the 
algorithm, the fuzzy system is empty with no rules in the rule 
base and no membership functions assigned to fuzzy variables. 
Then, different rules and membership functions are 
automatically created via VISIT algorithm by randomly 
assigning different initial parameters. At last, the evolutionary 
algorithm is used to find the optimal fuzzy system through 
simultaneously optimizing all the parameters of the system. 
Mikut [12] presented a method for automatic and complete 
design of fuzzy systems from data with a user-controllable 
trade-off between accuracy and interpretability. The rule 
hypotheses are generated by inducing a decision tree, and are 
generalized by different modification of their premises, and 
the rule base is build by select a subset of generalized rules. 
Interpretability is maintained by structural choices and 
including interpretability criteria in the design process.  

In all the above-mentioned methods, the multiple objectives 
are transformed into one single objective based on prior 
knowledge using techniques such as the weighted sum method 
and fuzzy expert system. However, if such prior knowledge is 
insufficient, or several situations should be considered, the 
above methods are limited, for it is difficult to determine 
weights of different objectives, or they can only provide one 
solution in a single run. In order to solve this problem, a more 
advanced method is needed, which could obtain multiple 
Pareto-optimal solutions simultaneously. 

This paper presents an approach to construct multiple 
Pareto-optimal fuzzy systems using a multi-objective genetic 
algorithm considering both accuracy and interpretability. The 
paper is organized as follows. In section II, we show how to 
construct initial fuzzy system based on the modified Gath-Geva 
fuzzy clustering algorithm. Interpretability-driven 
simplification techniques are introduced in section III. Section 



         

IV details the Pareto multi-objective genetic algorithm based 
on NSGA-II. In section V, the proposed approach is 
demonstrated on the Mackey-Glass tine series and the Iris 
classification problem to show its validity. Section VI 
concludes the paper. 

II. CONSTRUCTION OF INITIAL FUZZY SYSTEM 
Fuzzy clustering algorithm is a well-recognized technique to 

identify fuzzy systems. A modified Gath-Geva fuzzy 
clustering algorithm [13] is applied in this paper to identify 
initial fuzzy system. 

The objective function based on the minimization of the 
sum of weighted squared distances between the data points 
and cluster centers is described in the following: 
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where Z is the set of data, [ ]ikU µ=  is the fuzzy partition 
matrix, 1 2[ , , , ]T

cV V V V=  is the set of centers of the clusters, 
c  is the number of clusters, N  is the number of data, m  is the 
fuzzy coefficient, ikµ  is the membership degree between the i-
th cluster and k-th data, which satisfies conditions: 
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The Lagrange multiplier is used to optimize the objective 

function (1). The minimum of (U, V) is calculated as follows: 
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The variance of the Gaussian function is: 
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The norm of distance between i-th cluster and k-th data is 
2
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Calculation of consequents of TS fuzzy system is described 
as follows: given the input variable X, output y and fuzzy 
partition matrix U: 
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Appending a unitary column to X gives  extended matrix Xe: 
[ ]1eX X= ,                             (8) 

then 
1[ ]T T

i e i e e iX U X X U yθ −=             (9) 
is the consequent parameter of the TS fuzzy system. 

In order to determination of consequents of fuzzy 
classification system, we define the function: 
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where ikµ  is the membership degree between the i-th cluster 
and the k-th data, and )(kf j  is defined as: 
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For the i-th rule, the consequent can be determined: 
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The procedure of constructing a fuzzy model based on the 

modified Gath-Geva fuzzy clustering algorithm is summarized 
as follows: 

1) Choose the number of fuzzy rules, the weighting 
exponent, and the stop criterion 0ε > . 

2) Generate the matrix U randomly. U must satisfy the 
condition (2). 

3) Compute the parameters of the model using (4), (5), (9) 
or (12). 

4) Calculate the norm of distance utilizing (6). 
5) Update the partition matrix U using (3). 
6) Stop if ( ) ( 1)l lU U ε−− ≤ ; else go to 3). 

III. PREPARE YOUR PAPER BEFORE STYLING 

A. Simplification of fuzzy sets 

The initial fuzzy system obtained above by fuzzy clustering 
algorithm may contain redundant information in the form of 
similarity between fuzzy sets. The similarity of fuzzy sets 
makes the fuzzy system uninterpretable, for it is difficult to 
assign qualitatively meaningful labels to similar fuzzy sets. In 
order to acquire an effective and interpretable fuzzy system, 
elimination of redundancy and simplification of the fuzzy 
system are necessary.  

If a fuzzy set is similar to the universal set or the singleton 
set, it should be removed from the corresponding fuzzy rule 
antecedent. As for two similar fuzzy sets, a similarity measure 
is utilized to determine if the fuzzy sets should be combined. 

For fuzzy sets A and B, a set-theoretic operation based 
similarity measure [14] is defined as 
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where ∧  and ∨  are minimum and maximum operators 
respectively. S is a similarity measure in [0, 1]. S=1 means the 
compared fuzzy sets are equal, while S=0 indicates that there 
is no overlap between the fuzzy sets. 

If similarity measure S τ> , i.e. fuzzy sets are very similar, 
then the two fuzzy sets A and B should be merged to create a 
new fuzzy set C, where τ  is a predefined threshold. It should 
be pointed out that threshold τ  influences the model 
performance significantly. A small threshold leads to a fuzzy 



         

model with low accuracy and highly interpretability. In a 
general way, [0.4 0.7]τ = −  is a good choice. 

B. Simplification of the Fuzzy Rules 
During the process of simplification of similar fuzzy sets 

and the process of evolutionary operation, it may generate 
similar or same fuzzy rules, which need be reduced to improve 
interpretability of the fuzzy system. 

Considering the following two fuzzy rules:        
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then a similarity measure of fuzzy rules  is defined as[15] 
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where )(⋅S  is calculated with the formula (11).  
    If λ>⋅)(S , i.e. the two fuzzy rules are very similar, then 

only one fuzzy rule is preserved, while the other is deleted, 
where λ  is a predefined threshold. In a general way, 

]19.0[ −=λ  is used. As the simplification of fuzzy sets, 
simplification of fuzzy rules is also carried out iteratively. 

IV. PARETO MULTI-OBJECTIVE GENETIC ALGORITHM 
After simplification, the initial fuzzy system is encoded to a 

real-coded population, which is evolved using a Pareto multi-
objective genetic algorithm base on NSGA-II [16]. The process 
of simplification and the process of evolution are executed 
iteratively until multiple Pareto-optimal fuzzy systems are 
generated. Three elements of the algorithm, chromosome 
representation, and multi-objective fitness function and genetic 
operators are detailed following. 

A. Chromosome Representation 
For complex system, the bit strings of binary-coded genetic 

algorithm becomes very long and the search space blows up, 
while in real-coded genetic algorithm, the variables appear 
directly in chromosome simply, and computation burden is 
relieved, so real-coded scheme is adopted in this paper. 

The first chromosome is formed as a sequence of genes 
describing parameters in the rule antecedents of the obtained 
fuzzy system: 

),,,,( 11111 cncnvvH σσ= . 

The other chromosomes of the initial population are created 
by random variation (uniform distribution) around 1H  within 
the search space. 

B. Multi-objective Fitness Function 
Fuzzy modeling requires the consideration of multiple 

objectives in the design process, including precision and 
interpretability. In this paper, precision is defined as the root-
mean-square error (TS fuzzy system) or mistakenly classified 
patterns (fuzzy classification system), while it is difficult to 
quantify interpretability. According to the analysis about 
interpretability, we have guaranteed the features of fuzzy sets 
by interpretability-driven techniques, so only the number of 

rules and the number of fuzzy sets are included in the 
objective functions. 

These three objectives about fuzzy modeling can be 
formulated as follows: 

)(Min   ),(Min   ,)(Min 321 SfSfSf ,                 
where f1(S) is precision performance, f2(S) is the number of 
fuzzy rules, f3(S) is the number of fuzzy sets. 

In general, the fuzzy system with high accuracy owns more 
fuzzy rules and fuzzy sets, while the fuzzy system with fewer 
fuzzy rules and fuzzy sets leads to low precision, so there is no 
single fuzzy system satisfying all the above three objective, 
and our task is to get a set of Pareto-optimal fuzzy systems 
which are not dominated by each other. 

 Several multi-objective algorithms have been proposed, 
including, NSGA-II [16], PAES [17] and SPEA [18]. In this paper, 
we use the NSGA-II algorithm due to its high searching ability 
and easy implementation. For more details about the NSGA-II 
algorithm, please see [16]. 

C. Genetic Operators 
There are three genetic operators in multi-objective genetic 

algorithm: selection, crossover and mutation. In order to hold 
variety of chromosomes, several randomly selected methods 
for each operator are adopted in this paper. 

1) Selection: 
The roulette wheel selection method is used to select 

individuals to operate. For chromosome pH  with fitness 
value pf , the selected probability is: 
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In order to prevent optimal chromosomes are ignored, elitist 
selection are used at the same time, i.e., the best chromosome 
is always preserved in population. 

2) Crossover 
1( , , )t

r lH r r= and 1( , , )t
s lH s s=  are selected 

chromosome for crossover in t-generation. The following two 
crossover operators are adopted randomly. 

Simple arithmetic crossover: k is randomly selected position 
of chromosome. The result offspring are: 
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Whole arithmetic crossover: [0,1]λ ∈  is a uniform 
distributed random number. The result offspring are: 

1 ( ) (1 )t t t
r r sH H Hλ λ+ = + −  

1 ( ) (1 )t t t
s s rH H Hλ λ+ = + −  

3) Mutation 
1( , , )t

r lH r r=  and 1( , , )t
s lH s s=  are selected 

chromosome for crossover in t generation. T  is total number 
of generations. The following mutation operators are adopted 
randomly. 

Uniform mutation: kr  is randomly selected element of 
chromosome. min maxˆ [ , ]k k kr r r∈  is random number where 

min max[ , ]k kr r  is  search space of kr . The result offspring is: 
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Gaussian mutation: kx  is a Gaussian distributed random 

number with zero mean and adaptive variance kσ  
max min(( ) / )(( ) / 3)k k kT t T r rσ = − − ) 

The corresponding offspring is: 
1

1̂ ˆ ˆ( , , , , )t
r k lH r r r+ =  

where 
k̂ k kr r x= +  

V. PARETO MULTI-OBJECTIVE GENETIC ALGORITHM 
In order to examine the performance of the proposed 
approach, two benchmark problems, the Mackey-Glass time 
series and the Iris classification problem, are demonstrated in 
this section. Table I gives the parameter setups of the 
algorithm. All simulation programs are realized under Matlab 
7.0 environment. 

TABLE I 
PARAMETER SETUPS OF THE PROPOSED APPROACH 

Parameters Values 
Maximum generations 100 
Initial population size 40 
Parent  population size 
Child  population size  
Crossover probability 

40 
40 
0.5 

Mutation probability 0.1 
Threshold of merging fuzzy sets 0.4 
Threshold of merging fuzzy rules 1 

A. Example: Mackey-Glass time series 
The Mackey-Glass time series is described as follows: 
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The goal is to predict x(t+6) from x(t), x(t -12)and x(t -
18).1000 data points are generated using the fourth order 
Runge-Kutta method with a step length of 0.1 and the initial 
condition x(0)=1.2, where 500 pair of data are used for 
training and the others for test.  

The initial fuzzy system is obtained by the fuzzy clustering 
and the least square method. The RMSE (Root Mean Square 
Error) of training data is 0.0657, and the RMSE of test data is 
0.0646. The number of fuzzy rules is 5, and the number of 
fuzzy sets is 20. 

The interpretability- driven simplification techniques and 
the multi-objective genetic algorithm are used to optimize the 
initial fuzzy system. The performance of the obtained four 
Pareto-optimal fuzzy systems is described in Table II. The 
decision-marker can choose an appropriate fuzzy system 
according to a specific situation, either the one with higher 
interpretability (less number of fuzzy rules or/and fuzzy sets) 
or the one with less error.  

Table II also shows a comparison between the proposed 
method and other published systems, which indicates that the 
proposed approach is able to find multiple fuzzy systems than 
any other algorithm with higher precision performance and 
less number of fuzzy rules and fuzzy sets. In conclusion, the 

proposed method can obtain multiple interpretable and 
accurate fuzzy systems. 

TABLE II 
 COMPARISON OF RESULTS OF THE MACKEY-GLASS TIME SERIES 

 # Fuzzy 
 rules 

# Fuzzy 
 sets 

Training 
RMSE 

Testing 
RMSE 

Paiva [19] 9 23 0.0228 0.0239 
Nauck[20] 129 35 0.0315 0.0332 
 26 19 0.0656 0.0671 
This paper 

Initial 
 
5 

 
20 

 
0.0657 

 
0.0646 

Fuzzy system 1 
Fuzzy system 2 
Fuzzy system 3 
Fuzzy system 4

5 
4 
3 
2 

8 
7 
6 
5 

7.0551e-3 
7.7289e-3 
1.0933e-2 
2.0138e-2 

6.8453e-3 
7.6689e-3 
1.0860e-2 
1.9991e-2 

Figure 1 and Figure 2 show the membership functions of the 
first Pareto-optimal fuzzy system and the comparison of 
system outputs and actual outputs of testing data, respectively.  

B. Example: Iris classification System  
The Iris classification system is a benchmark problem in 

classification and pattern recognition studies. It contains 50 
measurements of four features (sepal length, sepal width, 

pental length, pental width) from each of three species (setosa, 
versicolor, virinica). The first class is separate from others 

clearly, while the second and third class are overlap slightly.  

 

 
 
 

 
 
 
 

Figure 1. Membership functions of the first fuzzy system of time series 

Figure 2. Comparison of system outputs and real outputs 



         

 
 

TABLE IV 
 COMPARISON OF RESULTS OF THE MACKEY-GLASS TIME SERIES 

 # Fuzzy 
 rules 

# Fuzzy 
 sets 

Classification rate  
(% ) 

Wang [21] 3 11 97.5 
Wu[22] 3 9 96.2 
Shi[23] 4 12 98 
Ishibuchi[24] 5 7 98 
Tong[25] 3 12 98 
Russo[26] 5 18 100 
This paper 

Initial 
 
9 

 
36 

 
95.3 

Solution 1 
Solution 2 
Solution 3 
Solution 4 

7 
4 
3 
3 

10 
5 
5 
4 

98.7 
98 
96 
94.7 

 
TABLE V 

 THE SECOND PARETO-OPTIMAL FUZZY SYSTEM OF IRIS 
The second pareto-optimal fuzzy system of the Iris problem 

R1: If sepal length is big , sepal width is big then output is virinica 
R2: If sepal length is small , sepal width is small then output is setosa 
R3: If sepal length is medium, sepal width is big then output is virinica 
R4: If sepal length is medium , sepal width is small then output is 

versicolor 

Parameters of antecedents of the fuzzy system: 
sepal length: small=[0.048457,0.040494] medium=[0.53457,0.020748] 

big=[0.88115,0.030973] 
sepal width: small=[0.39215,0.084652] big=[0.82529,0.030372] 

 
The initial fuzzy system is obtained by the fuzzy clustering 

algorithm. The precision performance is 95.3%, and the 
number of fuzzy rules is 9, and the number of fuzzy sets is 36. 

The interpretability- driven simplification techniques and 
the multi-objective genetic algorithm are used to optimize the 
initial fuzzy system. The performance of the obtained four 
Pareto-optimal fuzzy systems is described in Table IV. The 
decision-marker can choose an appropriate fuzzy system 
according to a specific situation, either the one with higher 
interpretability (less number of fuzzy rules or fuzzy sets) or 
the one with less error. Table IV also shows the comparisons 
with other results, which indicates that the proposed method 
can obtain multiple accurate and interpretable fuzzy systems. 
Russo [26] classified all patterns correctly; however it is 
difficult to interpret the system for containing too many fuzzy 
rules and fuzzy sets 

Figure 3 shows the membership functions of the second 
Pareto-optimal fuzzy system. Table V details the structure and 
parameters of the second Pareto-optimal fuzzy system 

VI. CONCLUSIONS  
In this paper, we presented an approach based on the multi-

objective genetic algorithm, NSGA-II, to construct accurate 
and interpretable fuzzy system. First, a modified fuzzy 
clustering algorithm is used to construct antecedents of fuzzy 
system, and consequents are identified separately to reduce 
computational burden. Second, the multi-objective genetic 
algorithm based on NSGA-II and simplification techniques are 
proposed to evolve the initial fuzzy system to optimize its 
structures and parameters iteratively, so both interpretability 
and precision of the system are improved. The proposed 
approach is applied to the Mackey-Glass tine series and the 
Iris classification problem, and the results show its validity.. 
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