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Abstract—This paper presents a framework for the compu-
tation of a discrete surface kernel, defined as the set of points
from which the whole surface is visible. The first part of the
paper exposes the theoretical background related to the kernel
computation. In this part we also demonstrate the invariance
of the surface kernel to rigid geometric transformations. The
second part describes two exploitations of the surface kernel
concept in the computer vision area, namely spherical surface
shape representation and surface registration. This framework
has been tested and experimented on real 3D face surfaces1.

I. INTRODUCTION

The last decade has witnessed a proliferation of the 3D dig-
itizers, scanners and a substantial developments in techniques
for modelling, and digitizing 3D object shapes. This has led to
an explosion in the number of available 3D models in the world
wide web and in domain-specific databases. This progress
fuelled the development of 3D shape analysis, description,
modelling and classification methods to bridge the gap be-
tween the 3D shape digitizing technology and the potential
applications. In this context, we propose a methodology for the
computation of particular surface attribute, namely the surface
kernel. Basically the kernel of a given surface is the space
from which the whole surface is visible. This methodology
is built upon the concept of ’starshapeness’ defined in the
continuous space [1]. In this paper, we project the concept of
’starshapeness’ on the class of discrete manifolds (triangular-
meshed surface) to derive a theocratical framework that allows
the determination of the discrete set of points satisfying the
visibility condition. This framework covers both closed and
open surfaces.

The rest of the paper is organized as follows: Section 2
describes the theatrical foundations of the kernel computation
and its implementation. Section 3 handles the invariance of the
kernel with respect to rigid geometric transformations. Section
4 exposes two applications of the kernel concept, namely the
spherical parametrization of the surface, and the registration of
the 3D surfaces. Section 5 terminates with concluding remarks
and future work.

1The face surface data are from the public BU-3DFEFB database of
the Department of Computing Sciences, State University of New York at
Binghamton.

II. THE DISCRETE SURFACE KERNEL

Notation
S a 2-D manifold surface.

Int(S) The interior of S.

Sn: a triangle mesh surface composed of n triangles facets
ti, i = 1..n.

Pi: Plane associated to the triangle facet ti, having a normal
ni, passing by the point xi and defined by Pi = {x ∈ R3 \
(x− xi).ni = 0}).
Hi: negative half space associated to the facet ti, defined

by Hi = {x ∈ R3|, \ (x− xi).ni ≤ 0}). Hi is adopted as the
interior of the facet ti.

Definition 1: Let y a point ∈ Int(S), Let x ∈ S, we say
that y sees x via Int(S) if the segment [x y] ⊂ Int(S).

Definition 2: Let y a point ∈ S, the star of y with respect
to S, noted Star(y,S), is the set of all points of S that can
be seen from y via Int(S).

Definition 3:A Star-center of S is a point y ∈ Int(S) such
that Star(y,S) = S. We Say that S is a star-shaped with
respect to y.

Definition 4: The kernel of S, noted Ker(S), is the set of
all the Star-centers of S.

Definition 5: S is Star-shaped if Ker(S) �= ∅.
Lemma 1 The kernel of a single triangle facet ti is the half

space Hi

Proof
Hi is the kernel of the facet ti if any point in Hi can

see the all the points of the facet ti. This can be translated
to the following statement: ∀x ∈ ti, ∀y ∈ Hi, the segment
[xy] ∈ Hi. To prove this statement we need to demonstrate
that any point of the segment [xy] belongs to Hi. A point p
of the segment [x y] can be expressed by p = y + λ(x − y),
λ ∈ [0 1]. To belong to Hi, p must satisfy

(p− xi).ni ≤ 0

(p− xi).ni = (y + λ(x− y)− xi).ni,
x ∈ ti, then it can be expressed by
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x = xi + u

,
with u.ni = 0.

We get then

(p− xi).ni = (y + λ(xi + u− y)− xi).ni

= ((y − xi)− λ(y − xi)).ni + λu.ni

= (1− λ)(y − xi).ni

(1− λ) ≥ 0 and y ∈ Hi, then

(1− λ)(y − xi).ni ≤ 0.

Thus p ∈ Hi.

Theorem 1: Let Sn a triangle mesh surface, then Ker(Sn)
is the intersection of the half spaces Hi, i = 1..n

Proof: By induction

The theorem holds for a single facet surface S1 as using
lemma 1 we have H1 is the kernel of the facet t1.

Let assume that the theorem holds for Sn, let prove that it
does also for Sn+1.

We have Ker(Sn) =
⋂n

i=1Hi. In another hand, Let x ∈
Ker(Sn+1), then x can see t1, t2, ..., tn+1, then x can see Sn

and can see tn+1, then x ∈ Ker(Sn) and x ∈ Ker(tn+1),
then x ∈

⋂n
i=1Hi and x ∈ Hn+1, then x ∈

⋂n
i=1Hi

⋂
Hn+1,

then x ∈
⋂n+1

i=1 Hi. Therefore Ker(Sn+1) is the intersection
of the half spaces Hi, i = 1..n + 1

A. Computing the Kernel

The Kernel of the surface Sn is determined with the
following simple algorithm

Generate a 3-D Grid of points G that contain the surface
Sn (via its convex hull).

Ker(Sn)←− G
For each facet ti

Find, in Ker(Sn), the set of points Yi that lie in
the half-space Hi

Ker(Sn)←− Yi

End For

In the worst case, this algorithm has a complexity of
O(N ×M), where N and M are the number of facets and
the number of points in the initial grid respectively. However
since the number is expected to decrease across the surface
facets, the average complexity can be reasonably estimated to
O(L),where L is a fraction of N ×M .

III. INVARIANCE OF THE KERNEL WITH RESPECT TO

GEOMETRIC TRANSFORMATIONS

In this section we will demonstrate that the discrete surface
kernel is invariant with respect to rigid geometric transforma-
tion.

Lemma 2: Let T a geometric transformation defined by
T (X) = R(X) + T , where R and T are a 3D rotation and
translation respectively, let ti a triangle facet, let t

′
i = T (ti)

then Ker(t
′
i) = T (Ker(ti))

Proof

Let yi a point of Hi the kernel of ti, then we have

y
′
i = T (yi)

= R(yi) + T

Let ti
′ = T (ti) , then we have

xi
′ = T (xi) = R(xi) + T

n
′
i = R(ni)

We need to demonstrate that y
′
i ∈ Ker(t

′
i), i.e.

(x
′
i − y

′
i).n

′
i ≤ 0

(x
′
i − y

′
i).n

′
i = (R(xi) + T −R(yi)− T ).R(ni)

= R(xi − yi).R(ni)

The invariance of the dot product with respect to rotation,
yields to

R(xi − yi).R(ni) = (xi − yi).ni

In another hand, yi ∈ Hi implies

(xi − yi).ni ≤ 0

Then R(xi − yi).R(ni) ≤ 0, and thus

(x
′
i − y

′
i).n

′
i ≤ 0

Therefore y
′
i ∈ ker(t

′
i)

Theorem 2: Let Sn a triangle mesh surface, Let T a
geometric transformation defined by T (X) = R(X) + T ,
where R and T are a 3D rotation and translation respectively,
and let S ′

n = T (Sn), then we have Ker(S ′
n) = T (Ker(Sn))

Proof:By Induction

The theorem holds for a single facet surface S1. This can
be proven using Lemma 2.

Assuming that the theorem holds for Sn, let prove that it
also does for Sn+1.

According to Theorem 1, we have

Ker(Sn+1) =
n+1⋂

i=1

Hi



(a) (b) (c)

Fig. 1. (a) The 3D face surface, (b) the 3D grid of points, (c) the discrete
kernel of the face surface.

then we can write

T (Ker(Sn+1)) = T (
n+1⋂

i=1

Hi)

= T (
n⋂

i=1

Hi

⋂
Hn+1)

= T (
n⋂

i=1

Hi)
⋂
T (Hn+1)

= T (Ker(Sn))
⋂
T (Ker(tn+1))

The theorem holds for Sn then we have

T (Ker(Sn)) = Ker(T (Sn))

= Ker(S ′
n)

then using Theorem 1, we can write

T (Ker(Sn)) =
n⋂

i=1

H′
i

Using lemma 2, we have

T (Ker(tn+1)) = Ker(T (tn+1))

= Ker(t
′
n+1)

= H′
n+1

Therefore we can write

T (Ker(Sn+1)) =
n⋂

i=1

H′
i

⋂
H′

n+1

=
n+1⋂

i=1

H′
i

= Ker(S ′
n+1)

= Ker(T (Sn+1))

IV. APPLICATIONS

In this section we shade some light on two particular appli-
cations of the surface kernel, namely spherical parametrization
and surface registration

Fig. 2. Samples of 3D face surface kernels.

A. Spherical parametrization

Spherical representation of surface shapes is of great use-
fulness in many applications related to 3D shape modelling
and analysis retrieval. For instance when meshing free-from
shapes that are topologically equivalent to a sphere, it is best
to parameterize the mesh over a domain which is topologically
equivalent to it [2]. A spherical parametrization would permit
the use of harmonic functions on the sphere, such as spherical
harmonics [3], double Fourier series, [4], spherical diffusion,
[5] and spherical wavelets [6], for the purpose of 3D shape
description, analysis, and retrieval.

The spherical parametrization projects the surface on the
unit sphere around its center. The surface can then be described
using standard spherical coordinates r = r(φ, θ), where r is
the distance form the origin to the point on the surface, r here
is a radial function with two parameters φ and θ representing
the latitude and the longitude respectively.

However, to cover the whole surface, the sphere’s center
must satisfy the visibility requirement, i.e. the whole surface
must be visible from the center, or else the radial function
will exhibit gaps and discontinuities. The point derived from
the center of mass of the surface, and which usually adopted as
the sphere’s center do not necessarily satisfy that requirement,
particularly when the surface shape is not convex.

Determining the surface kernel has three benefits 1) It
indicates whether or not the a surface can be spherically param-
eterized, by checking whether or not the kernel is not empty.
2) It allows choosing a sphere’s center which is guaranteed to
satisfy the visibility requirement. 3) it allows to determine the
sphere’s center that ensure a maximum extend of the radial
function r = r(φ, θ) over the unit sphere.

Figure 3 shows radial functions of three surface face sam-
ples and their corresponding surface reconstructions. Figure 4
depicts radial functions and surface reconstructions, of a same
face, corresponding to three different sphere centers. The three
centers belong to the surface kernel. The first and the third are
respectively the closest and the distant point to the face surface
along the face orientation, the third is the midway point of
the two extremes. It is interesting to note that the closer is
the sphere’s center to the face surface the larger is the radial
function domain, and the better is the surface reconstruction.



Fig. 3. First row: radial function on the sphere of some face surface samples.
Second row: related face surface reconstruction.

Fig. 4. First row: radial function on the sphere of the same face, corresponding
to three different spheres centers. Second row: the corresponding face surface
reconstruction.

B. Surface registration

3 Surface registration used in a variety of applications
that span building terrain maps in the context of autonomous
vehicle [7], [8], recognizing and retrieving objects from 3D
object model databases[9], and reconciling various imaging
modalities in biomedical imaging [10].

The registration of two surfaces consists in estimating the
mapping between coordinate systems associated with each sur-
face. I.e. estimating the geometric transformation (Rotation and
translation) that maps the two surfaces. The registration has
been one of the most intriguing problems in computer vision.
In effect, it raises hard issues, particularly the elaboration of
the surface representation and the matching (corresponding)
between features derived from the surface representation [11].

The invariance of the kernel with respect to rigid trans-
formation, allows to use surfaces’ kernels in the registration
rather than the surfaces themselves. There are two reasons
that would favor this alternative 1) The simplicity of the
kernel shape. In effect the kernel has a convex shape that
exhibits attractive properties, e.g. well defined orientation,
smoothness. 2) the area of kernel is quite small relatively to
the surface’s area, this would reduce considerably the space
of correspondences. These interesting aspects suggest that
employing the surface in the registration would alleviate the
complexity of the aforementioned issues.

We applied kernel based registration on a set of 3D face

(a)

(b)

(c)

(d)

(e)

Fig. 5. Three examples of face surfaces’ registration using the surface kernel.
(a) samples of face surfaces. (b) Transformed Surfaces. (c) Kernel’s locations
before registration. (d) registered kernels. (e) registered face surfaces.

surfaces (samples are depicted in Figure 5). In this experiment
we took group of face surface pairs, each pair contains two
face surface samples at different positions and orientations
(Figure 5.(a,b)). The kernels of the face surfaces in the pair are
determined (Figure 5.c), then used to estimate the geometric
transformation that maps them (Figure 5.d). The geometric
transformation maps also their corresponding face surfaces as
shown in (Figure 5.e). We mention here, that we have used a
simple and naive registration technique, as our objective here
is to demonstrate the feasibility of the approach rather than
obtaining an accurate registration.

V. CONCLUSION

In this paper, we elaborated a theoretical framework for
determining a surface kernel for the class of triangular meshed



2D manifolds. We established a simple algorithm for estimat-
ing the kernel, and we proved the invariance of the kernel with
respect to rigid geometric transformations. We illustrated the
usefulness of the surface kernel on two applications: spherical
parametrization and registration of 3D surfaces. The surface
examples treated in this paper are open surfaces, yet the frame-
work holds also close surfaces. The surface kernel can also
be exploited in classification tasks, for example categorizing
surfaces into starshaped and non-starshaped ones, depending
whether or not the corresponding kernels are empty or not.

This framework can also be used to establish a metric for
measuring the starshapeness of a surface, for example by using
the size of the kernel’s volume. We plan to extensively explore
this aspect in the future. We plan also to investigate how
we can automatically determine the optimal point from the
discrete kernel to be used as the sphere’center, guided by the
observations of Figure 4.

ACKNOWLEDGMENT

The author would like to thank the Department of Comput-
ing Sciences in State University of New York at Binghamton
for providing the 3D faces database.

REFERENCES

[1] F. A. Toranzos, ”The points of local nonconvexity of starshaped objects
sets”, Pacific Journal of Mathematics, Vol.101, No.1, 1982.

[2] C. Gotsman, X. Gu, A. Sheffer, ”Fundamentals of spherical parameteriza-
tion for 3D meshes”, ACM Trans. Graphics Vol. 22, No.3, 2003, pp.358-
363.

[3] M.M. Kazhdan, T.A. Funkhouser, S. Rusinkiewicz, ”Rotation Invariant
Spherical Harmonic Representation of 3D Shape Descriptors”, Sympo-
sium on Geometry Processing, 2003, pp.156-165,

[4] D. V. Vranic and D. Saupe, ”Description of 3D-Shape using a Complex
Function on the Sphere”, I Proc. IEEE International Conference on
Multimedia and Expo (ICME 2002), Lausanne, Switzerland, pp. 177-180,
August, 2002.

[5] T. Bulow, ”Spherical Diffusion for 3D Surface Smoothing”, IEEE Trans.
on Pattern Analysis and Machine Intelligence, Vol. 26 , No. 12, December
2004, pp.1650-1654.

[6] N. Werghi, ”A Discriminative 3D Wavelet-based Descriptors: Application
to the Recognition of Human Body Postures”, Pattern recognition letters
, Vol.26, No.5, pp.663-677, 2005

[7] M. Hebert et al, ”Terrain Mapping for a Roving Planetary Explorer”,
IEEE. Proc. Int. Conf. Robotics and Automation, pp. 997-1002, 1989.

[8] A. Gruen, D. Akca, . Least squares 3D surface and curve matching. ISPRS
Journal of Photogrammetry and Remote Sensing, Vol. 59, No.3 pp.151-
174, 2005

[9] T. Funkhouser, M. Kazhadan, P. Min, P. Shilane, ”Shape-Based Retrieval
and Analysis of 3D Models”,Communications of the ACM, Vol.48,No.6,
pp-58-64, 2005.

[10] M.A. Audette, F.P. ferrie, T.M. Peters, ”An algorithmic Overview of
Surface Registration Techniques for Medical Imaging”, Medical Image
Analysis, Vol.4 No.3, pp.201-217, 2000.

[11] D.A. Forsythe, J. Ponce, Computer Vision: A Modern Appraoch, Prentice
Hall 2003.


