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Abstract—In this paper, a new stable robust adaptive control 
approach is presented for SISO uncertain nonlinear system. The 
key assumption is that LS-SVM approximation errors and 
external disturbances satisfy certain bounding conditions. The 
LS-SVM can find a global minimum and avoid local minimum. 
Its weights in the observer can be tuned after training phase and 
find optimistic value automatically.  By combining LS-SVM, the 
system state vector is estimated by an observer efficiently. A 
simulation example demonstrates the feasibility of the proposed 
approach. 
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I.  INTRODUCTION 
The design of nonlinear system observer is one of the 

essential problems in control theory. With the development of 
the Kalman Filter [1] and Luenberger observer [2], there have 
been many works on nonlinear observer for nonlinear system. 
Most of the early attempts were based on extending the linear 
methodology through various kinds of linearization techniques 
[3-5]. The research results during that period were required to 
satisfy some assumptions, such as matching conditions, or 
extended matching conditions. R. Marino and P. Tomei 
presented a global adaptive observer for a class of single-output 
nonlinear systems which are linear with respect to an unknown 
constant parameter vector [6]. However, it is difficulty for 
many physical control systems to satisfy the assumption of 
linearity because of their more and more complexity.  

Whereas neural network possesses a lot of advantage, 
observers based on neural network have greatly been developed 
recently. The design methods are divided into two catalogues: 
non-adaptation and adaptation. The main drawback of the non-
adaptive neural networks is that the weight updating laws 
utilize information on the local data structures (local optima) 
and the function approximation is sensitive to the training data 
[7]. Dynamic neural network was first introduced by Hopfield 
[8] and may successfully overcome these disadvantages 
because of feedback structure. Dynamic neural network can 
change its weight matrix using the estimate error between 
observer and observed object and then has ability to adapt the 
circumstances. On the other hand, the neural networks have 
some problems such as converge to local minimum, the over-
fitting and the structure of NN is always decided by experience 
because it doesn’t have a good guiding theory.  

To overcome these problems of NN, Support Vector 
Machine (SVM) was proposed by Vapnik. SVM is a newly 
developed technique which based on statistical learning theory. 
It adopts structure Risk Minimization principle, avoids local 
minimum, effectively solves the over learning, assures good 
generalization ability, and better predict accuracy. The special 
predominance of SVM in resolving limited samples, non-linear 
function and multidimensional pattern recognition make it 
become a kind of excellent machine learning method. Suykens 
first put forward Least Squares Support Vector Machine (LS-
SVM). As a result the solution follows directly from solving a 
set of linear equation, instead of quadratic programming. While 
in classical SVM’s many support values are zero, in least 
squares SVM’s, the support values are proportional to the 
errors. 

This paper utilizes LS-SVM to design a nonlinear observer 
to overcome the problems of NN. A SVM is inserted in the 
feedback path to capture the nonlinear characteristic of the 
observer system. We will show that the state estimation errors 
are suitable small and bounded. 

II. OBSERVER BASED CONTROLLER DESIGN 
Before the description of the observer system and 

problem formulation, some notation and definition are stated 
as follow: 

           xxx T=                 nRx ∈  

     ][min ⋅λ  represents the minimum eigenvalue of a matrix. 

A. Dynamic Model of Nonlinear Uncertain System 
Consider the nonlinear system 
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With nRx ∈ , Ry ∈ and Ru ∈ , )(tm  is the unknown 

disturbances with a known upper bound dm , and 

RRgf n →:,  unknown smooth functions. We assume 
)(xf  and )(xg  contain parameter uncertainties which are 

not necessarily linear. Note that nonlinearities of 



         

functions )(xf  and )(xg  depend on the system state x  
and y . 
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      A nonlinear observer for the states in (1) is 
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Where x̂ denotes the estimates of the state x  and 
T

nkkkK ],,,[ 21=  is the observer gain matrix chosen so 

that the characteristic polynomial of TKCA +  is strictly 

Hurwitz. The functions )ˆ(ˆ xf and )ˆ(ˆ xg  are estimated for 
)(xf  and  )(xg  respectively.  

Lemma1: If a strictly proper rational function 
BAsICsH T 1)()( −−=  with A a Hurwitz matrix SPR, 

then there exists a positive, definite symmetric matrix P  such 
that  

        0=++ QPAPAT , CPB =  

HereQ is a positive definite symmetric matrix. 

Defining the state error as xxe ˆ−≡ , then gain the 
estimation error dynamics 
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Where the functional estimation error )ˆ,( xxf and )ˆ,( xxg  
are defined by 
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   This paper utilizes SVM to form the functions )ˆ(ˆ xf  
and )ˆ(ˆ xg , and assures this system has excellent performance. 

B. LS-Support Vector Machin[9] 

Given a training samples set of { }N
kkk yx 1, = , n

k Rx ∈ , 

Ryk ∈ , N is the samples number, n is the number of input 
dimension. In LS-SVM the optimization problem is 
formulated  
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Subject to the equality constrains 
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The solution is obtained after constructing Lagrangian 
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With Lagrange multipliers Rk ∈α . Then, due to the 
Karush-Kuhn-Tucher (KKT) conditions, we can gain the 
following equations and constrain conditions 
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Meantime we can gain the following set of linear 
Equations from (6).  
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  So, the non-linear regression function is defined as  
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 Here we use Radial Basis Function Kernel (RBF) 
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  Here the Kernel parameter is the width σ of the radial 
basis function. 

C. LS-SVM Observer Design 

Thus, )ˆ(ˆ xf and )ˆ(ˆ xg  in (2) can been replaced by the 
observer of the nonlinear system   
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Here we have 
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Here *
kiα ),,,,1( gfkNi == are the constant according 

to the result of the training set. In addition, the continuous 
nonlinear functions )(xf , )(xg can be represented by LS-

SVM with “ideal” parameters kiα ),,,,1( gfkNi ==  

and ( )ixxK ,  
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      So we can gain the e  
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Lemma 2: Let RV →∞),0[: , 

βλ +−≤ VV 2 , 0>∀t ,We can get  

       λ
βλ 200 )](2exp[)()( +−−≤ tttVtV , 0tt >∀  

Where λ  and β  are constants, 0>λ , 0>β [10]. 

Assumption1: To kiα , *
kiα , gfk ,= , Ni ,,1= , we 

can assume that ffifi m≤− *αα , ggigi m≤− *αα . 

Assumption2: The mismatch values of fb  and gb  are 

bounders according to ff cb ≤  and gg cb ≤ .Then, we can 

design controller 
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Theorem:  For the nonlinear system (1), under the 
condition of assumption 1 and 2, we can choose to controller 
u (13), and make the nonlinear system stable. 

Proof: consider the follow Lyapunov function 
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      And then, u  is replaced by (13) 
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According to the lemma 2, we gain µ
εµ

2
2)0()( +≤ − teVtV , 

0>∀t . This completes the proof. 

III. SIMULATION EXAMPLE 
In this section, to illustrate the application of the proposed 

approach, we considered a nonlinear system 
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Let xx =1  and xx =2 , then the state-space description of 
the system is 
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Figure 1.  State estimation and actual(Trajectory of state 11 ˆ, xx ) 

Figure 2.  State estimation and actual(Trajectory of state 22 ˆ, xx ) 

The observer for the above system is given by (11). In this 
example, the data of 1x  and 2x can be divided into two 

sections. The first section is used to train kiα  
),,1,,( Nigfk ==  of LS-SVM observer. These data are 

sampled in the period of 0 to 3.5s. In this meantime, u  equals 
zero. Then the second section of data is used to observe the x̂ . 
The process lasts from 3.5 to 10s and u is used in this process. 
In this example, Tx ]25.0,0[)0( = .Figure 1 and 2 show 
bound of the estimation errors and indicate x̂  can track 
x accurately. From Figure 1, 2, we can see the approach is 
effect. 

IV. CONCLUSION 
We have presented a nonlinear system control approach 

based on LS-SVM. The approach has some advantages for 
uncertain nonlinear systems. The reason is that LS-SVM can 
adopt structure Risk Minimization principle, avoids local 
minimum. The simulation experiment shows that the approach 
is effective. 
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