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Abstract—Adaptive and coordinated signal setting has been 
research emphasis. Cycle, split, and offset are three important 
parameters. Lessons and experiments about adaptive signal 
control have shown that cycle and phase sequence renewal 
interval should be less than 20 minutes. So frequently optimized 
parameters are split and offset. For Webster signal setting theory, 
the ratio between flow rate to saturation flow rate is the 
determining parameter. But this ratio is not sensitive to small 
flow rate change. Therefore, the paper integrates Q-learning with 
Multiband model to realize adaptive and coordinated signal 
setting, in which the former optimizes split, the latter optimizes 
offset. Based on this integrated model, adaptive and coordinated 
signal setting for the three-intersections artery is done. 

Keywords—adaptive, coordinated, signal timing, Q-learning, 
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I.  INTRODUCTION 
The characteristic of traffic flow is time-dependent. 

Adaptive and coordinated signal control has been research 
emphasis. Signal setting methods separate broadly into two 
classes. The first class consists of methods that maximize 
bandwidth and progression. This group develops from single 
artery to arterial network, and from uniform bandwidth to 
variable bandwidth. MAXBAND[1] maximize a weighted 
combination of the bandwidths in the two directions of the 
arterial by solving mixed-integer linear programming. 
MAXBAND is the base of subsequent bandwidth optimization 
models. MAXBAND can not consider crossing street signal 
optimization. This deficiency was redeemed in an extended 
version of MAXBAND, the MAXBAND-86 model[2] that can 
handle closed grid networks of arterial streets. These two 
models generate uniform bandwidth. By incorporating into the 
model a traffic-dependent criterion, MULTIBAND[3] calculates 
individual bandwidths for each directional link of the arterial 
while still maintaining main street platoon progression. The 
individual bandwidths depend on the actual traffic volumes that 
each link carries, and the resulting signal timing plan is tailored 
to the varying traffic flows along the arterial. This method was 
available only for single arterial problems. MULTIBAND-96[4] 
produces variable-width progressions along each arterial of the 
network. The second group contains methods that seek to 
minimize delay, stops, fuel consumption or other measures of 
disutility. Examples are the combination method, TRANSYT, 
SCOOT. Traffic engineers prefer maximal bandwidth method 

over disutility oriented methods because they have certain 
inherent advantages. For one thing, bandwidth methods use 
relatively little input, the basic requirements being street 
geometry, traffic speeds, and green splits. Secondly, 
progression systems are operationally robust. Time-space 
diagrams let the traffic engineer visualize easily the quality of 
the results. The drivers expect signal progression and take it as 
a measure of signal setting quality.  

Green time optimization of each intersection is another 
important component. Conventional method, such as Webster 
signal setting theory, is based on prespecified models of the 
environment. For Webster signal setting theory, the ratio 
between flow rate to saturation flow rate is the determining 
parameter. But this ratio is not sensitive to small flow rate 
change. Another method is learning method based on artificial 
intelligence. Abdulhai et al.[5] adopted reinforcement learning 
to formulate adaptive traffic signal control. Wiering[6] based 
on Q-learning to study traffic light control, and put forward 
car-based value function. Wiering er al.[7] developed Green 
Light District traffic simulator based on car-based 
reinforcement learning algorithm. Moriarty et al.[8] adopt 
distributed artificial intelligence to formulate traffic control 
and coordinate lane changes to maintain desired speeds. 
Thorpe, Anderson[9] used reinforcement learning to minimize 
the time required to discharge a fixed volume of traffic 
through a road network, but his approach does not appear to be 
directly applicable to real time traffic signal control. 
Bingham[10] applied reinforcement learning in the context of a 
neuro-fuzzy approach to traffic signal control, but met with 
limited success due to the insensitivity of the approach, limited 
exploration in what is a stochastic environment, and off-line 
approach to value updating. Gregoire et al.[11] based on 
learning agents to optimize traffic control policy. The most 
significant advantage of learning method is that learning 
method does not require a prespecified model of the 
environment on which to base action selection.  

The paper integrates Q-learning with Multiband model to 
realize adaptive and coordinated signal setting, in which the 
former optimizes split, the latter optimizes offset. 

II. Q-LEARNING 
Learning methods broadly separates into supervised 



         

learning and unsupervised learning. Supervised machine 
learning algorithms require a large number of examples for 
training purposes. For unsupervised machine learning 
algorithm, knowledge is learned through dynamic interaction 
with the environment. Q-learning is unsupervised, the outcome 
associated with taking a particular action in any state 
encountered is learned through dynamic trial-and-error 
exploration of alternative actions and observation of the 
relative outcomes. Rather than being presented with a large set 
of training examples, the generation of which is a chanlleging 
task in many cases, even for a domain expert, a Q-learning 
agent essentially generates its own training experiences from 
its environment. Q-learning is adaptive, in the sense that they 
are capable of responding to dynamically changing 
environment through ongoing learning and adaptation. For 
TRANSYT and SCOOT system, optimization method is hill-
climbing method. Q-learning method has more larger action 
space than TRANSYT and SCOOT optimization mechanism. 
The interaction between agent and environment is illustrated 
as Fig. 1[12]. 
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Figure 1. Agent-environment interaction in reinforcement learning 

Q Learning Algorithm[13] goes as follow: 
(1) Set parameter γ , and environment reward matrix R 
(2) Initialize matrix Q as zero matrix 
(3) For each episode:  

 Select random initial state 
 Do while not reach goal state 

 Select one among all possible actions for 
the current state 

 Using this possible action, consider to go 
to the next state  

 Get maximum Q value of this next state 
based on all possible actions  

 Compute 
( , ) ( , )

[ ( , )]
Q state action R state station

Max Q next state all actionsγ
= +

⋅
 

 Set the next state as the current state  
If Q value increase, or interval terminate, learning terminate. 

End Do  
End For 

III. MODELING ADAPTIVE SIGNAL CONTROL BASED ON 
Q-LEARNING 

A. Modeling the Environment 
For traffic signal control, the environment is traffic flow. 

Abdulhai et al.[5] adopt queue length as state information, and 

delay as reward, which is achieved by vedio imaging 
technology. Because not all the intersection will install vedio 
imaging equipment, so queue length information can not be 
obtained for all intersections. Liu Zhiyong et al.[14] adopt 
operating speed as state, and supposed function as reward, 
which has no physical meaning. Delay theories have been 
developed for many years, which have been mature. Three 
typical delay theories are steady state delay theory, 
deterministic delay theory, transition curve delay theory. For 
transition curve theory has more adaptability, it has been 
applied widely. For example, TRANSYT(8) used transition 
curve theory to calculate delay. In this paper, we adopt 
transition curve theory to estimate delay. 

B. State, Action, and Reward Definition 
The state information is total delay of the intersection. 

According to the experience of adaptive traffic signal control, 
frequently updating cycle will cause the fluctuation of traffic 
flow, and the loss of traffic flow fluctuation is larger than 
improvement of signal setting. So Q-learning focuses on the 
optimization of green time. For every cycle, signal control 
agent will adopt action. Action sets are the combination of 
each phase green time change. Since the addition of green time 
change scale will dramatically increases the size of action 
space, a balance has to be sought between the benefit of this 
information and its impact on problem tractability. For 
example, for four-phase intersection if each phase green time 
change is 2 seconds, action sets have 1 1 1

2 2 24 32c c c× =  actions. 
If each phase green time change is 2 seconds and 4 seconds, 
action sets have 1 1 1

4 4 44 256c c c× =  actions. For convenience, 
each phase green time change is 2 seconds in this paper. The 
definition of reward is total delay of the intersection. For 
traffic signal control, reward is the penalty. 

C. Exploration Policies 
For traffic signal control, there are no definite goal state. 

When there are traffic flow, signal control agent will always 
optimize based on Q-learning. For action selection, we adopt 
greedy selection strategy. 

IV. INTEGRATED Q-LEARNING AND MULTIBAND MODEL 
Integrated MULTIBAND and Q-learning model is Mixed 

Integer Linear Programming, which is as following:  
Find b , b , iw , iw , z , im , iδ , iδ to  

max i i i i
i

b bα α+∑ , 1, ,i n=                                     (1) 

subject to 
i

i
i

q
S

α = , 1, ,i n=                                                     (2) 

i
i

i

q
S

α = , 1, ,i n=                                                    (3) 

1 2

1 1z
T T

≤ ≤                                                              (4) 

1i i iw b r+ ≤ − , 1, ,i n=                                            (5) 
1ii iw b r+ ≤ − , 1, ,i n=                                          (6) 



         

ir  and ir  are determined by Q-learning. 

1 1

1 1 1 1

1 1
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, 1, 1i n= −                         (7)  

( )

1

( ) (1 ) i

n
T t

i i i
i

t t T F F −

=

= −∑ , 1, ,i n=                                      (8) 

1
1 0.35

F
t

=
+

                                                                   (9) 

t  is travel time of the fastest vehicle.                        (10) 
, , , , , , 0i i i i i ib b z w w t t ≥ , 1,i n=                                         (11) 

intim eger=                                                                  (12) 
,i iδ δ are 0-1variables                                                  (13) 

iq  is link flow rate. iS  is saturation flow rate. z  is the 
reciprocal of cycle length T . ( )b b  is outbound (inbound) 
bandwidth. ( )i ir r  is outbound (inbound) red time. The unit is 
cycles. ( )i iw w  is time from right (left) side of red to left (right) 
edge of outbound (inbound) green band. ( )i it t  is mathematical 
expectation of travel time from intersection i  to 1i + . ( )i il l  is 
outbound(inbound) left turn green time. ( )i iτ τ  is queue 
clearance time, an advance of the outbound (inbound) 
bandwidth. The unit of the above variables is signal cycle. 

V. EXPERIMENT 

A. Basic Data 
The paper optimizes bandwidth for the artery of three 

intersections with integrated MULTIBAND and Q-learning 
model. Layout of intersection is illustrated by Fig.2. Saturation 
flow rate of through lane is 1650veh/hr, saturation flow rate of 
other type lane is 1550veh/hr. 

Figure 2. Layout of intersection. 
The detailed traffic data of the first 15-minute time interval is 
illustrated in Table 1[15]. For the second 15-minute time 
interval, flow rate of all approachs increase 40 veh/hr than first 
15-minute time interval. For the third 15-minute time interval, 
flow rate of all approacha increase 40 veh/hr than the second 
15-minute time interval.  

TABLE I.  DETAILED TRAFFIC DATA AND LAYOUT OF EACH 
INTERSECTION 

Intersectio
n 1 

Westbound 
Approach 

Eastbound 
Approach 

Northbound 
Approach 

Southbound 
Approach 

Left Turn 61 12 273 121 
Straight 619 554 95 119 
Right Turn 40 307 69 48 
Total 720 873 437 288 

Lane 
Function 

One Left 
Lane, One 
Straight Lane, 
One Straight 
and Right 
Lane. 

One 
Straight 
and Left 
Lane, One 
Straight 
Lane, One 
Right Lane 

One Left 
Lane, One 
Straight and 
Right Lane 

One Straight, 
Left and 
Right Lane 

Intersectio
n 2 

Westbound 
Approach 

Eastbound 
Approach 

Northbound 
Approach 

Southbound 
Approach 

Left Turn 68 77 106 90 

Straight 546 520 187 186 

Right Turn 130 122 157 124 

Total 744 719 449 400 

Lane 
Function 

One Left 
Lane, One 
Straight Lane, 
One Straight 
and Right 
Lane. 

One Left 
Lane, One 
Straight 
Lane, One 
Right Lane 

One 
Straight, 
Left and 
Right Lane 

One Straight, 
Left and 
Right Lane 

Intersectio
n 3 

Westbound 
Approach 

Eastbound 
Approach 

Northbound 
Approach 

Southbound 
Approach 

Left Turn 54 132 104 9 

Straight 488 657 75 88 

Right Turn 18 144 112 102 

Total 560 933 291 199 

Lane 
Function 

One Left 
Lane, One 
Straight Lane, 
One Straight 
and Right 
Lane. 

One Left 
Lane, One 
Straight 
Lane, One 
Right Lane 

One 
Straight and 
left lane, 
One 
Straight and 
Right Lane 

One Straight, 
Left and 
Right Lane 

B. Mathematical Expectation of Travel Time With Traffic 
Flow Dispersion 

Parameter setting: minimum speed is 35km/hr, maximum 
speed is 60km/hr. Mathematical expectation of travel time 12t  
between intersection 1 and 2 is (1 ) iT t

i
i

T F F −−∑ . t  is travel time 

of the fastest vehicle, 340 20
60 /

m
km hr

= s. 1 0.125
1 0.35

F
t

= =
+ ×

. 

 
35

( 20)
12

20

0.125 0.875 i

i

T

T

t −

=

= ×∑ =22s. 

Mathematical expectation of travel time 23t  between 

intersection 2 and 3 is (1 ) iT t
i

i
T F F −−∑ . t  is travel time of the 

fastest vehicle, 500 30
60 /

m
km hr

= s. 1 0.087
1 0.35

F
t

= =
+ ×

.  

51
( )

23
30

0.087 0.913 i

i

T t

T
t −

=
= ×∑ ＝32s. 

C. Green Splits Calculation 
Green splits is computed by using the theory of Webster. 

Webster has shown that under certain circumstances, total 
delay at an intersection is minimized by dividing the available 

340m 500m 



         

cycle time among competing streams of traffic proportional to 
their volumes divided by their capacities. Let  

TRAT(i)=through traffic ratio of volume to capacity in 
direction i. 

LRAT(i)=left turn traffic ratio of volume to capacity in 
direction i. 

i=OUT, IN, OUTC, INC=outbound main, inbound main, 
outbound cross street, inbound cross street. 

MAIN=max{TRAT(OUT)+LRAT(IN),TRAT(IN)+LRAT(
OUT)}=the larger of through volume/capacity plus opposite 
left turn volume/capacity for the two directions on the main 
street. 

CROSS=max{TRAT(OUTC)+LRAT(IN),TRAT(INC)+LR
AT(OUTC)} 
The basic split between main street and cross street is  

MM= MAIN
MAIN CROSS+

=green split allocated to main street. 

CC= CROSS
MAIN CROSS+

=green split allocated to cross street. 

Let L(OUT) [L(IN)]=outbound [inbound] left split. 
      G(OUT) [G(IN)]=outbound [inbound] through split. 

Then L(OUT)= ( )LRAT OUT MM
MAIN

× , L(IN)= ( )LRAT IN MM
MAIN

× , 

G(OUT)=MM-L(IN), G(IN)=MM-L(OUT). 

For intersection 1, 

554 61 619 12max ,
1650 1550 1550 1650 1550 1550

MAIN  = + + + + 
=0.21. 

95 121 119 273max{ , } 0.25
1550 1550 1550 1550

CROSS = + + = .  

0.21 0.46
0.21 0.25

MM = =
+

. L(OUT)= 12 0.46
1550 0.21

×
×

=0.017, 

L(IN)= 61 0.46
1550 0.21

×
×

=0.086, G(OUT)=MM-L(IN)=0.374, 

G(IN)=MM-L(OUT)=0.443.  

For intersection 2, 

520 68 546 77max{ , } 0.38
1650 1550 1650 1550

MAIN = + + = . 

187 90 186 106max{ , } 0.19
1550 1550 1550 1550

CROSS = + + =  

0.38 0.67
0.38 0.19

MM = =
+

, L(OUT)= 77 0.67 0.088
1550 0.38

× =
×

, 

L(IN)= 68 0.67 0.077
1550 0.38

× =
×

, G(OUT)=0.67-0.077=0.593, 

G(IN)=0.67-0.088=0.582. 

For intersection 3, 

657 54 488 132max{ , } 0.43
1650 1550 1650 1550

MAIN = + + =

75 9 88 104max{ , }
1550 1550 1550 1550 1550

CROSS = + +
+

=0.124, 

0.43 0.776
0.43 0.124

MM = =
+

, L(OUT)= 132 0.776 0.15
1550 0.43

× =
×

, 

L(IN)= 54 0.776 0.063
1550 0.43

× =
×

, G(OUT)=MM-L(IN)=0.713, 

G(IN)=MM-L(OUT)=0.626.  

D. Bandwidth Optimization with MULTIBAND  Model For 
the First 15-minutes Time Interval 

MULTIBAND model is mixed integer linear programming, 
which can be solved by Branch and Bound method. In this 
paper, this model is solved by Matlab programming. The 
corresponding mixed integer linear programming model is 

21 1 2 3 3max{0.17 0.19 0.32 0.17 0.4 0.15 }b b b b b b+ + + + +             (14) 
1 1 11 0.374w b r+ ≤ − =                                                      (15) 

1 1 11 0.443w b r+ ≤ − =                                                       (16) 
2 2 21 0.593w b r+ ≤ − =                                                     (17) 

2 2 21 0.582w b r+ ≤ − =                                                     (18) 
3 3 31 0.713w b r+ ≤ − =                                                     (19) 

3 3 31 0.626w b r+ ≤ − =                                                    (20) 

1 1 2 2 1 1

2 2 1

( ) ( ) 44 0.017 0.086

0.088 0.077 6 (0.407 0.626)

w w w w z

m z

δ δ
δ δ

+ − + + + − −

+ − = + −
                   (21) 

2 2 3 3 2 2

3 3 2

( ) ( ) 64 0.088 0.077

0.15 0.063 6 (0.287 0.407)

w w w w z

m z

δ δ
δ δ
+ − + + + − −

+ − = + −
                  (22) 

0.009 0.02z≤ ≤                                                             (23) 
, , , , , , 0, 1, 2,3ii i i i ib b z w w iδ δ ≥ =                                        (24) 

1 2, , ,i im m δ δ  are integers, 1, 2,3i =                               (25) 
, 1i iδ δ ≤                                                                     (26) 

The results are 1 0.371b = , 1 0.443b = , 2 0.593b = , 2 0.582b = , 

3 0.713b = , 3 0.626b = , 1 0.003w = , 1 0w = , 2 0w = , 2 0w = , 3 0w = , 

3 0w = , 0.018z = , 1 1δ = , 1 0δ = , 2 0δ = , 2 1δ = , 3 1δ = , 3 1δ = , 1 1m = , 

2 1m = . So cycle length is 1
z

=56s, 1 21b = s, 1 25b = s, 2 33b = s, 

2 33b = s, 3 40b = s, 3 35b = s, 1 0w = , 1 0w = , 2 0w = , 2 0w = , 3 0w = , 

3 0w = . Optimized left turn green phase of intersection 1 is 
outbound left lags and inbound leads. Right of way switch is 
illustrated in Fig.3.  
 
 
 
 
 
 

Figure 3. Right of way of intersection 1 
Optimized left turn green phase of intersection 2 is outbound 
left leads, inbound lags. Right of way switch is illustrated in 
Fig.4. 
 
 
 
 
 
 

Figure 4. Right of way of intersection 2 



         

Optimized left turn green phase of intersection 3 is outbound 
left lags, inbound lags. Right of way switch is illustrated in 
Fig.5. 
 
 
 
 
 
 

 
Figure 5. Right of way of intersection 3 

E. Spilit and Bandwidth Optimization Based on Integrated 
Q-learning and MULTIBAND Model For the Second and 
Third 15-minutes Time Interval 
   For the second 15-minutes time interval, flow rate of all 
entrance increases 40 veh/hr. Initial signal setting is solved in 
Part D. For intersection 1, initial green time of each phase is 
(25,21,10), critical flow rate is 659veh/hr, 313veh/hr, 
161veh/hr. Initial total delay is 231veh-s/cycle. For 
intersection 2, initial green time of each phase is (33,13,12), 
critical flow rate is 560veh/hr, 227veh/hr, 226veh/hr. Initial 
total delay is 201veh-s/cycle. For intersection 3, initial green 
time of each phase is (40,10,6), critical flow rate is 697veh/hr, 
115veh/hr, 128veh/hr. Initial total delay is 126veh-s/cycle. 

TABLE II.  Q-LEARNING FOR ACTION SELECTION OF INTERSECTION 1 
FOR FIRST TIME INTERVAL 

Action Delay(veh-
s) 

Action Delay(veh-
s) 

Greedy 
Selection 

1a (27,23,6)a 218 
7a (23,21,12) 241 

2a (27,19,10) 225 
8a (23,25,8) 235 

3a (23,23,10) 238 
9a (29,19,8) 216 

4a (23,19,14) 245 
10a (21,23,12) 248 

5a (27,17,12) 228 
11a (25,19,12) 234 

6a (27,21,8) 221 
12a (25,23,8) 227 

9a (29,19,8) 

a. Each phase green time. 

TABLE III.  Q-LEARNING FOR ACTION SELECTION OF INTERSECTION 2 
FOR FIRST TIME INTERVAL 

Action Delay(veh-
s) 

Action Delay(veh-
s) 

Greedy 
Selection 

1a (35,15,8) 199 
7a (31,13,14) 209 

2a (35,11,12) 198 
8a (31,17,10) 208 

3a (31,15,12) 207 
9a (37,11,10) 196 

4a (31,11,16) 208 
10a (29,15,14) 213 

5a (35,9,14) 199 
11a (33,11,14) 202 

6a (35,13,10) 198 
12a (33,15,10) 202 

9a (37,11,10) 

TABLE IV.  Q-LEARNING FOR ACTION SELECTION OF INTERSECTION 3 
FOR FIRST TIME INTERVAL 

Action Delay(veh-
s) 

Action Delay(veh-
s) 

Greedy 
Selection 

1a (42,12,2) 122 
7a (38,10,8) 134 

2a (42,8,6) 119 
8a (38,14,4) 135 

3a (38,12,6) 134 
9a (44,8,4) 114 

9a (44,8,4) 

4a (38,8,10) 133 
10a (36,12,8) 144 

5a (42,6,8) 119 
11a (40,8,8) 126 

6a (42,10,4) 120 
12a (40,12,4) 127 

Bandwidth optimization for the first greedy selection is: 
1 24b = s, 1 29b = s, 2 37b = s, 2 37b = s, 3 44b = s, 3 39b = s, 1 0w = , 1 0w = , 

2 0w = , 2 0w = , 3 0w = , 3 0w = . 
For the third 15-minutes time interval, flow rate of all 

entrance increases 40veh/hr more. Initial signal setting is the 
result of first 15-minutes time interval. For intersection 1, 
initial green time of each phase is (29,19,8), critical flow rate 
is 699veh/hr, 353veh/hr, 201veh/hr. Initial total delay is 
252veh-s/cycle. For intersection 2, initial green time of each 
phase is (37,11,10), critical flow rate is 600veh/hr, 267veh/hr, 
266veh/hr. Initial total delay is 232veh-s/cycle. For 
intersection 3, initial green time of each phase is (44,8,4), 
critical flow rate is 737veh/hr, 155veh/hr, 168veh/hr. Initial 
total delay is 150veh-s/cycle. 

TABLE V.  Q-LEARNING FOR ACTION SELECTION OF INTERSECTION 1 
FOR SECOND TIME INTERVAL 

Action Delay(veh-
s) 

Action Delay(veh-
s) 

Greedy 
Selection 

1a (31,21,4) 243 
7a (27,19,10) 259 

2a (31,17,8) 249 
8a (27,23,6) 253 

3a (27,21,8) 256 
9a (33,17,6) 243 

4a (27,17,12) 263 
10a (25,21,10) 265 

5a (31,15,10) 253 
11a (29,17,10) 256 

6a (31,19,6) 245 
12a (29,21,6) 249 

9a (33,17,6) 

TABLE VI.  Q-LEARNING FOR ACTION SELECTION OF INTERSECTION 2 
FOR SECOND TIME INTERVAL 

Action Delay(veh-
s) 

Action Delay(veh-
s) 

Greedy 
Selection 

1a (39,13,6) 222 
7a (35,11,12) 235 

2a (39,9,10) 231 
8a (35,15,8) 236 

3a (35,13,10) 235 
9a (41,9,8) 231 

4a (35,9,14) 236 
10a (33,13,12) 238 

5a (39,7,12) 232 
11a (37,9,12) 232 

6a (39,11,8) 232 
12a (37,13,8) 233 

1a (39,13,6) 

TABLE VII.  Q-LEARNING FOR ACTION SELECTION OF INTERSECTION 3 
FOR SECOND TIME INTERVAL 

Action Delay(veh-
s) 

Action Delay(veh-
s) 

Greedy 
Selection 

1a (46,10,0) unfeasible 
7a (42,8,6) 153 

2a (46,6,4) 146 
8a (42,12,2) 156 

3a (42,10,4) 155 
9a (48,6,2) 145 

4a (42,6,8) 153 
10a (40,10,6) 160 

5a (46,4,6) 144 
11a (44,6,6) 149 

6a (46,8,2) 146 
12a (44,10,2) 151 

5a (46,4,6) 

Bandwidth optimization for the second greedy selection is: 



         

1 26b = s, 1 33b = s, 2 39b = s, 

2 39b = s, 3 46b = s, 3 41b = s, 1 3w = , 1 0w = , 2 0w = , 2 0w = , 

3 0w = , 3 0w = , 1 2 1m m= = . 
Time and space diagram of optimized bandwidth is illustrated 
in Fig. 6. 

Figure 6. Time space diagram of bandwidth optimization for the second      
15-minutes interval. 

VI. CONCLUSION 
    The paper integrates Q-learning with MULTIBAND model 
to realize adaptive and coordinated signal control. In this 
integrated model, Q-learning is used to optimize split, and 
MULTIBAND model is used to optimize offset. In 
comparison to Webster signal setting theory, Q-learning can 
respond to gradual change of flow rate. From the numerical 
experiment, we know that signal timing generated by Q-
learning can reduce delay 15s/cycle at most. The cycle in this 
paper is 56s. Equally, Q-learning can reduce 16 minutes per 
hour in delay. This has significant practical meaning for 
reducing traffic congestion. Based on signal timing generated 
by Q-learning, MULTIBAND model optimizes offset. 

Therefore, this integrated model achieves adaptive and 
coordinated signal control. 
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