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Abstract—A model-free statistical method for detecting 
failures in dynamic systems controlled via output feedback is 
described. In such systems, the impact of the failure on the output 
is minimized but the failure causes a change in the control signal, 
which can be detected. Assuming that historical data of the 
process with and without failure is available, optimization theory 
can be used to determine detection thresholds that ensure any 
desired level of false alarms or detection rate. The proposed 
method is illustrated on a hypothetical bio-reactor and the results 
show that the proposed method allows for both rapid detection of 
the failure and continued operation despite the failure.  
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I.  INTRODUCTION 
Quality control and failure diagnosis are nowadays integral 

components of most manufacturing processes. The objective of 
such procedures is to detect and report any abnormal change in 
the process as soon as possible while maintaining the number 
of false alarms sufficiently low. In particular, impressive 
progresses have been made with regard to model-based 
diagnosis methods that enable both failure detection (detecting 
that something is wrong) and failure identification (pinpointing 
to the most probable failure(s)) (model-based FDI, e.g. [1-3]). 
However, these methods require relatively accurate analytical 
models of the process, which for most practical applications are 
not available. Statistical process control (SPC), which does not 
require an analytical model of the process, provides the natural 
answer for such situations. Loosely stated, SPC is based on the 
comparison of the current output of the process with historical 
data, assuming that the process and the environment in which it 
operates are time-invariant or changing very slowly. In other 
words, historical data is used to determine so-called “control 
limits” and the new measurements are compared to those 
limits. Measurements that fall beyond those limits indicate that 
“something is different”, which is typically the case when a 
failure has occurred in the process or when the operating 
environment has changed. Such an approach is relevant not 
only to static manufacturing processes that should produce the 
same product indefinitely, but also to dynamic processes such 
as for instance water treatment plants that must produce 
effluents of acceptable quality.  

The most popular SPC methods are based on so-called 
control charts that present the “process status” in a way that can 
be easily interpreted by the human operator. One of the main 
drawbacks of standard SPC methods is that they can not be 
used “as is” in systems that are controlled via output feedback 
(also called Engineering Process Control, EPC, in process 
control and monitoring literature). Clearly, since in such 
systems the task of the feedback controller is to ensure that the 
output remains at its desired value, virtually no information can 
be gained from monitoring this output alone. Due to the 
obvious advantages of feedback-controlled operation, a number 
of approaches for monitoring such systems have been 
suggested ([4-10]). The present study shows that output 
feedback control and SPC are not mutually exclusive and can 
be achieved simultaneously after modifying adequately the 
standard SPC methodology. As in [9], the proposed method is 
based on the observation that in feedback-controlled systems a 
failure leads to changes in the control signal, which can be used 
to monitor the process status.  

II. SPC IN OPEN-LOOP DYNAMIC SYSTEMS 
 

The basic configuration of SPC is shown in Fig. 1. It must 
be emphasized that even if the process is continuous, the SPC 
analysis is based on a sampled signal. As a result, standard SPC 
tools, such as the X graph, can not be used since such graphs 
were developed for static discrete processes in which the same 
output (item) can be measured repeatedly. For instance, the 
X graph was developed for data for consist of m samples of n 

measurements (repetitions) each. In this case, control limits for 
the sample mean are calculated according to 

4

3 sCL X
c n

= ±  (1) 

 
 

Figure 1.  Classical statistical process control (SPC) scheme 

 



         

where n is the number of measurements in each sample and c4 

is the so-called c4-factor that depends on n, X  is the grand 
average of all the previous measurements and s  is the average 
standard deviation of the samples 
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where si denote the standard deviation of the sample i. As noted 
above, the underlying assumption is that the n repeated 
measurements are not correlated. Straightforward application 
of this approach to dynamic systems consists of using 
consecutive measurements as repeated measurements. 
Although this is unfortunately done quite often, it must be 
realized that this is incorrect since such measurements are 
always correlated, even if the process is driven by white noise 
of infinite bandwidth. This is due to the fact that this driving 
white noise is actually filtered by the process itself and by the 
anti-aliasing filter, so that the sampled signal consists of 
bandwidth-limited noise (“colored noise”). In particular, since 
the bandwidth of the anti-aliasing filter is at the most half of the 
sampling frequency, the auto-correlation of the sampled signal 
will always be high, regardless of the sampling frequency. 
Therefore, for sampled dynamic systems, regardless of the 
mode of control, it is imperative that the control limits be 
calculated without assuming zero autocorrelation. This can be 
done for instance using exponentially weighted moving 
average (EWMA) if the autocorrelation level is approximately 
known (e.g. [4-5]).  

In the present study, a different approach is presented, in 
which the control limits are calculated based on the probability 
distribution of the average of each sample ( X ) in historical 
data of the process in the absence and presence of failures. If 
such data is available, it is possible to determine control limits 
of guaranteed significance [11]. Denoting the probability 
density function of the measurement with and without failure 
as P0(x) and P1(x) respectively, the problem of determining the 
control limits can be formulated as the following optimization 
problem: 
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In (4), P(xi) denotes the probability of x falling within the 
xi-xi+1 interval, u(xi) is the binary decision variable and is equal 
to 1 when rejecting P0 (i.e. when rejecting the assumption that 
there is a failure). According to (4) the probability of correctly 
accepting P1 is maximized while the probability of missing a 
failure is A percent at the most (so-called test significance). 
Clearly, the role of P0 and P1 can be reversed, leading to 
control limits of known power (known probability of false 
alarms). This approach has two main advantages over the 
classical “3σ” approach. First, there is no need to assume 
normal distribution of the data. Second, the control limits have 
a clear and well-defined meaning and can be easily adjusted 
according to the user or process requirements. This approach is 
illustrated on an example in Section IV. 

III. EXTENSION OF SPC TO CLOSED-LOOP DYNAMIC 
SYSTEMS 

A typical single input-single output system controlled via 
output feedback is shown in Fig. 2. As mentioned above since 
in closed-loop systems the task of the feedback controller is to 
ensure that the output remains at its desired value, very little 
information relative to the occurrence of failures can be gained 
from monitoring this output. Indeed, only in cases when the 
controller is unable to perform its task does the output differ 
significantly from its desired value. However, the presence of a 
failure will be reflected in the control signal (the required 
control effort). For processes that are meant to operate at a 
time-invariant working point, SPC can be performed on this 
signal: In the absence of failures, the control signal will vary 
slightly due to external disturbances and/or changes in the 
process parameters, while failures will cause larger change of 
this signal. The example detailed in the next Section shows 
how the guaranteed power approach detailed above can be used 
to detect failures via the control signal.  

IV. ILLUSTRATIVE EXAMPLE  
We consider a hypothetic biological reactor driven by the 

following non-linear differential equations 
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Figure 2.  Statistical process control scheme for dynamic systems controlled 

via output feedback 



         

TABLE I.  NOMINAL PARAMETER VALUES 

Parameter, units Nominal value 
α, m3/(gh)  1.3 
β, 1/(oCs) 1E-6 
γ, m3/(gh) 0.1 

θ, oC 120 
φ, Wm3/g 70 

Cv, J/(oCm3) 1000 
Q, m3/h 6E-4 
V, m3 1 

H (open loop), W 10 
 

The first and second equations describe the rate of change 
in bacterial and contaminant concentrations (B [g/m3] and C 
[g/m3], respectively) that depend on the inflow concentrations 
(Bin and Cin), the flow rate Q [m3/h] and the temperature T [oC]. 
The third equation describes the rate of change of the reactor 
temperature, which depends on the supplied heat flux H [W] 
and heat consumption (sink) by the bacteria. The reactor 
volume (V [m3]) and flow rate are assumed to remain constant. 
It must be emphasized that these equations are not expected to 
describe a real process but merely serve as an illustrative 
example for the proposed approach.  

 
It is assumed that Bin=0 and that during normal operation 

(no failure), the contaminant inflow concentration remains 
within the 9.5E-3 – 10.5E-3 range, and we focus on detecting 
small increase or decrease of the contaminant inflow 
concentration beyond the normal range: 8.5E-3<Cin < 9.5E-3 or 
10.5E-3<Cin <11.5E-3. For this purpose, we assume that only 
the temperature T can be measured, since real-time 
measurements of B and C would usually not be possible in real 
reactors. It can be easily verified that with the nominal 
parameter values listed in Table I the system is stable during 
failure-free operation and the output concentration C remains 
around 4E-4 g/m3. Changes in the contaminant inflow 
concentration Cin are reflected by changes of the temperature T, 
so that T can indeed be used for detecting such changes. 
Clearly, such an approach would enable only failure detection 
and not failure identification. However, failure identification is 
not considered by classical SPC and is beyond the scope of the 
present study.  

The simulation scheme is presented in Fig. 3. Random 
noise corresponding to ±10% of the parameter’s nominal value 
was added to the nominal value of all the parameters except V 
and Cv. The system’s outputs (B, C and T) were passed through 
a third-order Butterworth anti-aliasing filter with a 4.44E-7 
rad/s (6.94E-8 Hz) bandwidth and sampled at a rate of 1000 
measurements/hours. The system was simulated both in open-
loop (Gain K=0) and in closed-loop with a simple proportional 
integral (PI) controller tuned according the Ziegler-Nichols 
rule. The system was initially close to steady-state and was 
simulated for 5E6 hours with Cin within the no-failure range. At 
t=5E6 hours a step was introduced in Cin to bring it into one of 
the failure ranges. Altogether, 150 simulations were performed. 
One hundred of these simulations were used to determine the 

 
Figure 3.  Simulation scheme 

 

control limits (calibration stage) and the remaining simulations 
were used to test the procedure. To prevent artifacts due to the 
initial conditions at start-up, in each simulation only the 
measurements performed after t=1E5 seconds were used in the 
analysis. 

 

A. Open-loop SPC 
Fig. 4 shows the results of 10 typical simulations. The step 

change introduced in Cin at t=5E6 hours causes a rapid 
deviation of C from its normal value and is also reflected by a 
strong change of the temperature T.  

Fig. 5 shows the probability density functions of the 
temperature T with and without failure (calibration data only). 
Based on these historical measurements, the control limits that 
ensured 0.1 % false alarms were calculated following the 
optimization procedure outlined in Section 2 (bottom frame, 
also shown in bottom frame of Fig 4). It must be noticed that 
the distribution of the no-failure temperature is not normal (top 
frame), so that a classical “3σ" limits would not be appropriate. 
Applying these limits to the validation simulations led to the 
results shown in Fig. 6. The top frame shows the average run 
length (ARL - the average time between false alarms) for each 
simulation and it can be seen that only one false alarm occurred 
during the validation runs. The failure was correctly detected in 
all 50 cases, with detection times ranging from 1.5E4 hours (3 
“samples” of 5 consecutive measurements) to 17E4 hours. 
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Figure 4.  Typical results of open-loop simulations. A step change in Cin was 
introduced at t=5E6 hours. The top frame shows the concentration C and the 

bottom frame shows the temperature T.  
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Figure 5.  Distribution of the temperature measured during normal operation 

(top frame) and during failure (middle frame), and control limits (bottom 
frame).  

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
x 10

5 Average run length (ARL), Hours

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

x 10
4 Time to detection, Hours

Simulation number  
Figure 6.  Average time between false alarms (top frame) and time to failure 
detection (bottom frame). When ARL is not shown, there was no false alarm 

during the respective simulation run.  

B. Closed-loop SPC 
 

Fig. 7 shows the signals recorded during a typical closed-
loop simulation. It can be verified that the feedback controller 
is able to maintain the temperature at its desired level (180oC, 
chosen based on normal open-loop operation). As a result the 
reactor concentration C is not affected by the failure in Cin. It 
can also be seen that the failure causes a change in the control 
signal H. The probability density functions of the control signal 
H in the absence and presence of the failure are shown in Fig. 8 
(calibration data only), and it can be seen that, as was observed 
in the open-loop case, the distribution of the failure-free 
variable is not normal. The control limits that ensure 0.1% false 
alarms are shown in the bottom frames of Fig. 7 and 8, and 
applying these limits to the validation simulations yielded the 
results shown in Fig. 9. False alarms were reported in only 4 
cases, with ARL beyond 4E5 hours. The failure was detected in 
all 50 simulations, with the vast majority of detections 
occurring within 1E4 hours (2 samples) of the failures.  
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Figure 7.  Typical results of closed-loop simulations. A step change in Cin 

was introduced at t=5E6 hours. The top frame shows the concentration C, the 
middle frame shows the temperature T and the bottom frame shows the control 

signal H. 
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Figure 8.  Distribution of the control signal applied during normal operation 

(top frame) and during failure (middle frame), and control limits (bottom 
frame).  
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Figure 9.  Average time between false alarms (top frame) and time to failure 
detection (bottom frame). When ARL is not shown, there was no false alarm 

during the respective simulation run.  

V. DISCUSSION – ADVANTAGE OF THE CLOSED-LOOP 
OPERATION 

The results presented in the previous Section clearly show 
that single input-single output dynamic systems that are 
controlled by output feedback can be monitored in a statistical 
way in a manner that is very similar to open-loop systems. The 
main advantage of the closed –loop approach is that the system 
output remains virtually unaffected by the failure. In other 
words, the failure is detected and the system continues to 
operate and produce an acceptable product despite the failure. 
Clearly, this is at the expense of an increased (or decreased) 
control effort and hence a higher production cost. However, in 
most practical applications, continued production at a higher 
cost would be highly preferable over system shut-down until 
repair.  

The main advantage of the proposed method is that no 
assumption is made with respect to the signal auto-correlation 
or the normality of the measurements. Also, although the 
method was illustrated with an input failure, it could be applied 
similarly for detecting any other type of failure (actuator, 
sensor, or change in the process itself).  

REFERENCES 
 

[1] J. Chen, and R. J. Patton, Robust model-based fault diagnosis for 
dynamic systems, Kluwer Academic Press, Boston, MA, 1999. 

[2] P. M. Frank, Analytical and qualitative model-based fault diagnosis-A 
survey and some new results, European Journal of Control, vol. 2, pp. 6-
28, 1996. 

[3] J. Gertler, Residual generation in model-based fault diagnosis, Control-
Theory and Advanced Technology, vol. 9, pp. 259-285, 1993. 

[4] D C. Montgomery, J. B. Keats, G. C. Runger, and W. S. Messina 
"Integrating statistical process control and engineering process control", 
Journal of Quality Technology, vol 26, pp. 79-87, 1994. 

[5] D. Q. Cai, M. Xie, and T. N. Goh, "SPC in an automated manufacturing 
environment", International Journal of Computer Integrated 
Manufacturing, vol 14, pp. 206-211, 2001. 

[6] F. Tsung, and D. W. Apley, "The dynamic T2 chart for monitoring 
feedback-controlled processes", IIE Transactions, vol 34, pp. 1043-1053, 
2002. 

[7] D. Shi, and F. Tsung "Modelling and diagnosis of feedback-controlled 
processes using dynamic PCA and neural networks", International 
Journal of Production Research, vol 41, pp. 365-379, 2003. 

[8] G. Runger, M. C. Testik, and F. Tsung, "Relationships among control 
charts used with feedback control", Quality and Reliability Engineering 
International, vol 22, pp. 877-887, 2006. 

[9] F. W. Faltin, and W. T. Tucker ,"On-line quality control for the factory 
of the 1990s and beyond" in Statistical Process Control in 
Manufacturing, J. B. Keats and D. C. Montomery, Eds. Marcel-Dekker, 
NY, 1991, pp. 331-354. 

[10] W. S. Messina, D. C. Montgomery, J. B. Keats, and G. C. Runger, 
"Strategies for statistical monitoring of integral control for the 
continuous process industries" in Statistical  Applications in Process 
Control, J. B. Keats and D. C. Montgomey, Eds. Marcel-Dekker, NY, 
1996, pp. 193-215. 

[11] E. L. Lehman, Testing Statistical Hypotheses, Wiley & Sons, NY, 1986.

 


