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Abstract—This paper concerns the reliable guaranteed cost 
control problem of nonlinear systems with time-varying state 
delays and actuator failures for a given quadratic cost function. 
The problem is to design a delay-dependent reliable guaranteed 
cost state feedback control law which can tolerate actuator 
failures, such that the closed-loop cost function value is not more 
than a specified upper bound. Based on the linear matrix 
inequality (LMI) approach, a sufficient condition for the 
existence of reliable guaranteed cost controllers is derived. 
Furthermore, a convex optimization problem with LMI 
constraints is formulated to design the optimal reliable 
guaranteed cost controller which minimizes the upper bound of 
the closed-loop system cost. A numerical example is given to 
illustrate the proposed method. 
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I.  INTRODUCTION 
The problem of designing robust controllers for systems 

with parameter uncertainties has drawn considerable attention 
in recent control system literatures. It is also desirable to design 
a control system which is not only stable but also guarantees an 
adequate level of performance. One approach to this problem is 
the so-called guaranteed cost control approach first introduced 
by Chang and Peng [1]. This approach has the advantage of 
providing an upper bound on a given performance index and 
thus the system performance degradation incurred by the 
uncertainties is guaranteed to be less than this bound. Based on 
this idea, some significant results have been proposed for the 
continuous-time case [2, 3] and for the discrete-time case [4]. 

In practical application, actuators are very important in 
transforming the controller output to the plant. Actuator failures 
may be encountered sometimes. Furthermore, how to preserve 
the closed-loop system performance in the case of actuator 
failures will be tougher and more meaningful. Recently, there 
have been some efforts to tackle the reliable guaranteed cost 
controller design problem, and some good results have also 
been obtained for the continuous-time case [5] and for the 
discrete-time case [6]. However, up to our knowledge, there 
have been few results in the literature of an investigation for the 

reliable guaranteed cost controller design of nonlinear uncertain 
systems with time-varying state delay and actuator failure. 

In this paper, the problem of reliable guaranteed cost 
control for nonlinear systems with time-varying state delays is 
considered. In Section 2, the problem under consideration and 
some preliminaries are given. In section 3, several stability 
criteria for the existence of the reliable guaranteed cost 
controller are derived in terms of LMI, and their solutions 
provide a parameterized representation of the controller. A 
numerical example is given in Section 4. Finally, Section 5 
concludes the paper. 

II. PROBLEM  STATEMENT 
Consider the following nonlinear  systems with time-

varying state delays 
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where ( ) nx t R∈  is the state vector, [ 1 2( ) ( ) ( )u t u t u t=  

]( ) T m
mu t R∈  is the control vector, A , iA  and B  are 

known real constant matrices of appropriate dimensions, 
( ) : n nf R R R+⋅ × →  is the nonlinear uncertainties, being 

denoted f  in the following. ( )i tτ  is the time-varying 
bounded delay satisfying  
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φ  is a given continuous vector-valued initial function on 

]0,[ h− . 

Assumption 1. The nonlinear uncertainty f  satisfies  
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where 1{ ( ) ( ( )) ( ( ))}kcol x t x t t x t tτ τΞ = − − , 

and H  is a known constant matrix satisfying 

{ }0 1 1 1Block-diag , , , 0T T T
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Associated with this system is the cost function 

dttRututQxtxJ TT ))()()()((
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∞

+= ,                 (4) 

where Q  and R  are given positive-definite matrices. 

For the control input ( )iu t , 1, 2, ,i m= , let ( )F
iu t  

denote the signal from the actuator that has failed. The 
following failure model is adopted in this paper: 

  ( ) ( ), 1, 2, , ,F
i i iu t u t i mα= =                   (5) 

where  
 0 , 1, 2, ,i i i i mα α α≤ ≤ ≤ =                  (6) 

with 1iα ≤  and 1iα ≥ . 

In the above model of actuator failure, if i iα α= , then it 

corresponds to the normal case ( ) ( )F
i iu t u t= . When 

0iα = , it covers the outage case. If 0iα > , it corresponds 
to the partial failure case, namely, partial degradation of the 
actuator. 
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α  is said to be admissible if α  satisfies α α α≤ ≤ . 
The objective of this paper is to develop a procedure to 

design a memoryless state feedback control law 
( ) ( )u t Kx t= ,                                        (8) 

such that for any admissible uncertain α , the resulting closed-
loop system 
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is asymptotically stable and the cost function (4) satisfies 

*JJ ≤ , where *J  is some specified constant. 
Definition 1. If there exists a control ( ) ( )u t Kx t=  and a 

positive scalar *J  such that for all admissible α , the closed-

loop system (9) is asymptotically stable and *JJ ≤ , then 
*J  is said to be a guaranteed cost and ( ) ( )u t Kx t=  is said 

to be a reliable guaranteed cost control law for system (1) and 
cost function (4). 
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From (7) and (10), we define 

0( )Iα α β= +                                   (12) 
and  

0 0 ,Iα β≤ ≤                                   (13) 

where { }0 01 02 0diag , , , mα α α α= , and 0 diagα =  

{ }01 02 0, , , mα α α .                                     

Lemma 1.(Barmish [7]) Given matrices Y , H , E  of 
appropriate dimensions and with Y  symmetric, then for all 
F  satisfying IFFT ≤ , 0<++ TTT HFEHFEY  holds, if 
and only if there exists 0>ε  such that 

1T TY HH E Eε ε −+ +  0< . 

Lemma 2.(Moon et al. [8])  Assume that pa R∈ , qb R∈ , 

and ,p qN R ×∈  then for any matrices p pZ R ×∈ , 
p qY R ×∈ , q qR R ×∈ , the following holds:  
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III. MAIN RESULTS 
Since it holds that 
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The following Lyapunov-Krasovskii functional is applied 

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + + ,                           (15) 
where 
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Then, the following theorem gives the delay-dependent 
reliable guaranteed cost control for the systems (1) and (4). 
Theorem 1. ( ) ( )u t Kx t=  is a reliable guaranteed cost 

control law if there exist positive-definite matrices P , iS , 

iR , matrices iY , iZ , and a scalar 01 >ε , such that for any 
admissible α , the following matrix inequalities hold: 
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where ( )∗  denotes the symmetric element of a matrix, and 
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Moreover, the cost function (4) satisfies the following bound: 
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Proof. Taking ( ) ( )u t Kx t=  in the system (1), the resulting 
closed-loop system is given by (9).  

Differentiating 1 ( )V t  with respect to t  gives 
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Using lemma 2, taking  

i iN N PA= = , iZ Z= , iY Y= ,  
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 we obtain 
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Substituting (25) into (23) and using (3), we have 
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From the above inequalities, we can obtain 
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Noting that 0>Q  and 0>R , this implies that the system 
(9) is asymptotically stable by Lyapunov stability theory. 
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This completes the proof. 
The criterion for the existence of guaranteed cost controller 

is equivalent to the feasibility of a LMI. 
Theorem 2. For system (1) with cost function (4), if there 
exist scalars 1 0ε > , matrices 0X > , W , 0iM > , 
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is a reliable guaranteed cost controller of system (1), and the 
corresponding closed-loop value of the cost function satisfies 

0 0

( )
1

0 1 *

( )
1

(0) (0) ( ) ( )

      ( ) ( ) .

i

i

k
T T

it
i

k
T

it
i

J x Px x s R x s dsd

x M x d J

τ θ

τ

θ

τ τ τ

−
=

−

−
=

≤ +

+ =

∑∫ ∫

∑∫
      

Proof. Letting 0Y ≡  ， 0iR >  and 0iZ >  in (20), in light 
of Lemma 1 and using the Schur complement, we can obtain 
the results. The proof is omitted. 
 

The following theorem presents a method of selecting a 
controller minimizing the upper bound of the guaranteed cost 
(34). 

 
Theorem 3. Consider the systems (1) with performance index 
(4), if the following optimization problem 
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an optimal reliable guaranteed cost control law which ensures 
the minimization of the guaranteed cost (34) for system (1), 
where  

0 0

( )

0

( )

( ) ( ) ,

( ) ( ) .

i

i

T T

t

T T

t

x s x s dsd C C

x x d D D

τ θ

τ

θ

τ τ τ

−

−

=

=

∫ ∫

∫
                   (38) 

Proof. By Theorem 2, (i) in (37) is clear. Using the Schur 
complement, (ii)-(iv) in (37) are equivalent to  
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       (42) 
Thus, the minimization of (42) implies the minimization of 

the guaranteed cost for the system (1). This completes the 
proof. 

IV. SIMULATIONS 
Consider the nonlinear dynamic systems with multiple time-

varying delays in (1)-(4) with 
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It is assumed that the single input to the system has partial 
failure as follows: 

0.8α = , 1.2α = . 
By applying Theorem 3 and solving the corresponding 

optimization problem (37), the optimal reliable guaranteed 
cost controller is given by 

[ ]( ) 7.4532 2.8194 ( )u k x k= − − , 

and the upper bound of the corresponding closed-loop cost 
function is * 70.4173J = . 
 

V. CONCLUSION 
In this paper, based on the Lyapunov method, we have 

presented a design method to the reliable guaranteed cost 
controller via memoryless state feedback control for nonlinear 
systems with time-varying state delays in an LMI framework. 
The parameterized representation of a set of the controller, 
which guaranteed not only the robust stability of the closed-
loop system but also the cost function bound constraint, has 
been provided in terms of the feasible solutions to the LMIs. 
Furthermore, a convex optimization problem has been 
introduced to select the optimal reliable guaranteed cost 
controller.  
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