
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

Path Planning Based on Improved Binary Particle
Swarm Optimization Algorithm

Zhang Qiaorong Gu Guochang
College of Computer Science and Technology

Harbin Engineering University
Harbin, China

zhangqiaorongs@sina.com

Zhang Qiaorong
College of Information

Henan University of Finance and Economics
Zhengzhou, China

Abstract—A new global path planning approach based on
binary particle swarm optimization algorithm (BPSO) for a
mobile robot is presented. The detailed realization of the
approach is illustrated. The obstacles in the robot’s environment
are described as polygons and the vertexes of obstacles are
numbered from 1 to n. Binary particle swarm optimization is
used to plan the path. The length of the particle is the number of
the vertexes. Every bit in the particle may be 1 or 0 which
represents whether the vertex is in the path or not. To avoid
converging too fast (the algorithm stops when the optimal path is
not found), the algorithm is improved and the mutation operation
is used. Simulation results are provided to verify the effectiveness
and practicability of this approach.

Keywords—Binary Particle Swarm Optimization Algorithm,
Path Planning, Mobile Robots

I. INTRODUCTION
Particle swarm optimization (PSO) is a population based

stochastic optimization technique developed by Dr.Eberhart
and Dr. Kennedy in 1995[1], inspired by social behavior of bird
flocking or fish schooling. In past several years, PSO has been
successfully applied in many research and application areas
such as function optimization, pattern classification and
training neural network because PSO gets better results in a
faster, cheaper way compared with other methods and PSO has
few parameters to adjust. The traditional particle swarm
optimization is mainly used to solve problems in continuous
space and it can not solve problems in discrete space well. In
1997, James Kennedy and Russ Eberhart proposed binary
particle swarm optimization (BPSO) and used it to solve
problems in discrete space successfully [2].

Path planning is a important field in mobile robots research
and it contains global path planning and local path planning.
Global path planning can be considered as a optimization
problem with restriction. The restriction is that the path can not
pass through the obstacles in the workspace. The optimization
aim is that the length of the path is shortest. Using particle
swarm optimization in path planning is a novel attempt [3-5].
Qin et al. described the environment using mark-link graph and
planned the path using Dijkstra algorithm [3], then optimized
the path using particle swarm optimization algorithm. So the
path was not planned by particle swarm optimization algorithm
directly. Sun et al. built a new map by coordinate switch and
considered the length of the path as the optimization function

[4], and then converted the path into the set of points of original
coordinates. Lei et al. divided the workspace into several parts
according to the abscissa of the obstacle vertexes and described
the length of the path as the function of the ordinate of the
vertexes. So the path planning problem was converted into a
optimization problem of the high dimension function with
restriction. All the methods mentioned above consider path
planning as an optimization problem in continuous space and
the traditional particle swarm optimization algorithm is used.

Global path planning includes two sub-problems which are
environment representation and search strategy. If the
appropriate environment representation method is used such as
vertex-graph and cell decomposition, the workspace of the
robot is described as a discrete space. So the binary particle
swarm optimization can be used.

 This paper proposes a novel global path planning approach
based on binary particle optimization algorithm. The obstacles
in the workspace of the robot are described as polygons and the
vertexes of the obstacles are numbered from 1 to n which is the
amount of the vertexes. Then the binary particle optimization
algorithm is used to plan the path. To overcome the
disadvantage of the binary particle optimization algorithm, we
improve the algorithm by using double-structure particle
coding and adding mutation operation into the algorithm.

The rest of the paper is organized as follows. Section II
provides the representation of the environment. The improved
binary particle swarm optimization algorithm is given in
section III. Section IV provides the key technologies in the
implement of the algorithm. Simulation results and analysis are
given in section V. Conclusions are found in section VI.

II. ENVIRONMENT REPRESENTATION
Path planning is to find a set of points passed through when

the robot moves in the workspace, and the path which is
composed of these points can not pass though any obstacle.
This paper uses vertex-graph to represent the environment, and
the path is composed of the start, vertexes of the obstacles and
the destination. Without loss of generality, it is supposed that
the robot moves in the workspace as described below.

• The robot moves in a limited two-dimensional space;
• The robot can be considered as a particle if the boundary

of each obstacle is extended by the half size of the

robot’s maximal dimension in length or width direction;
• The obstacles in the robot’s workspace are described as

polygons. The vertexes of each obstacle in the workspace
are numbered from 1 to n (n is the amount of the
obstacle’s vertexes in the workspace).

Fig.1 shows a representation of a sample environment. The
vertexes are numbered from 1 to 20 according to their x-
coordinate values and y-coordinate values.

III. IMPROVED PARTICLE SWARM OPTIMIZATION
ALGORITHM

The particle swarm optimization algorithm was first
reported in 1995 by James Kennedy and Russell C. Eberhart. In
1997, James Kennedy and Russ Eberhart proposed binary
particle swarm optimization (BPSO).

In BPSO, the potential solutions, called particles, fly
through the problem space by following the current optimum
particles. Each particle keeps track of its coordinates in the
problem space which are associated with the best solution
(fitness) it has achieved so far. This value is called pBest.
Another "best" value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in
the neighbors of the particle. This location is called lBest.
When a particle takes all the population as its topological
neighbors, the best value is a global best and is called gBest.
The particle swarm optimization concept consists of, at each
time step, changing the velocity of each particle toward its
pBest and gBest locations. Acceleration is weighted by a
random term, with separate random numbers being generated
for acceleration toward pBest and gBest locations.

Assuming that the particle swarm contains N particles and
the dimension of each particle is D. Each particle can be
described as (Xi,Vi,Pi). Xi=(xi1,xi2,…xid) represents the location
of the ith particle. Vi =(vi1,vi2,…vid) represents the velocity of
the ith particle and Pi=(pi1,pi2,pi3…pid) represents the pBest
value of the ith particle. The gBest value, the best value
obtained by any particle in the particle swarm so far, is
described as gBest=(g1,g2,g3….gd). Each particle changes its
velocity and location in terms of (1) and (2).

))()((()1)()1(txtprandctvwtv idididid −××+×=+

))()((()2 txtgrandc idd −××+ (1)

>+
≤+

=+
3))1((1
3))1((0

)1(
rtvsign
rtvsign

tx
id

id
di (2)

 x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 1. Environment representation

Where c1 and c2 are positive constants; rand() is a random
variable; w is the inertial weight; pid represents the best location
that the ith particle has found so far and gd represents the best
location that the particle swarm has found so far. sign() is a
sigmoid function which can be defined as sign(x)=1/(1+e-x).
The initial location and velocity of the particles are generated
randomly and updated using (1) and (2) until the best solution
is obtained.

Equation (1) can be modified as (3) if we define V1 and V2
as (4) and (5).

21)()1(VVtvwtv idid ++×=+ (3)

))()((()11 txtprandcV idid −××= (4)

))()((()22 txtgrandcV idd −××= (5)
Where w×vid(t) represents the velocity of the particles in the

generation t. V1 represents the influence on the current velocity
of this particle’s best location in the first t generations. V2
represents the influence on the current velocity of all the
particles’ best location in the first t generations. In binary
particle swarm optimization algorithm, pid(t), xid(t) and gd(t) are
0 or 1. So there are many zeroes in V1 and V2. If there are too
many zero elements in V1 and V2, the effect of V1 and V2 on
the current velocity will be slight. So the state of the particles
can not be adjusted sufficiently and the diversity and
convergence of the particles are reduced. So the particle swarm
runs into the premature convergence easily and the
performance of the algorithm is reduced. To avoid this case, we
use double-structure particle coding [6] and add mutation
operation to the algorithm to improve the binary particle swarm
optimization algorithm.

 In the improved binary particle swarm optimization
algorithm, each particle can be denoted as

),,,,(iiiii PPVXX .),...,,(21 idiii xxxX = represents the

assistant location of the ith particle.),...,,(21 idiii pppP =

represents the assistant best location that the ith particle has
searched so far. The assistant best location that all the particle

have searched can be described as),...,,(21 dggggBest = .
The assistant locations are not composed of only 0 and 1 but
continuous values. So using the assistant locations to update the
velocity can reduce the amount of zero in V1 and V2, and the
state of the particles can be adjusted sufficiently. (6) and (7) are
used to update the location and the velocity of the particles.

))()((()1)()1(txtprandctvwtv idididid −××+×=+

))()((()2 txtgrandc idd −××+ (6)

)1()()1(++=+ tvtxtx dididi

>+
≤+

=+
3))1((1
3))1((0

)1(
rtxsign
rtxsign

tx
id

id
di (7)

The path planning approach based on improved binary
particle swarm optimization algorithm can be described as
follows.

• Step1: Initialize the velocity and location of each particle
randomly.

• Step2: Calculate the fitness value of each particle and the
pBest value the particle has searched so far.

• Step3: Choose the location of the particle with the best
fitness value of all the particles as the gBest.

• Step4: Calculate the velocity of each particle using (6).
• Step5: Update each particle’s location according to (7),

and the next generation is obtained.
• Step6: Do the mutation operation.
• Step7: Goto step2 until the maximum iterations is

attained or the fitness is small enough (the algorithm
converges).

IV. KEY TECHNOLOGIES

A. Particle Representation
According to the environment representation method

mentioned above, the obstacles in the workspace are described
as polygons and the vertexes of the obstacles are numbered
from 1 to n which is the amount of the vertexes. Each particle
can be encoded as a binary vector with the dimension n. The 0
value of a bit represents the path does not pass through this
vertex and the 1 value represents the path passes through the
vertex. For example, the current location of a particle in Fig.2
is denoted as (0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0), which
represents a path: start- vertex 2 vertex 10 vertex
16 destination.

B. Initialization
• Initialize each particle’s velocity randomly.

• Decide each element is zero or nonzero at the
probability 0.5.

C. Inertial Weight
The inertial weight w in (1) is to make the particles

maintain inertia and have the ability to explore new areas. If w
is large, the algorithm has a strong global search capability, and
if w is small, the algorithm has a strong local search capability.
Generally, (8) is used to adjust the inertial weight w.

 x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
S

D

Figure 2. Example of the particle representation

max

minmax
max *

iter
wwiterww −

−= (8)

Where minw ＝0.9 is the largest inertial weight minw ＝
0.4, which is the smallest inertial weight. iter is the current
iteration and iterMax is the total iteration number.

D. Fitness Function
The fitness function is an important factor for the

convergence and the stability of particle swarm optimization
(PSO). The collision avoidance and the shortest distance should
be considered in path planning. In this paper, the collision
avoidance can be considered as a restriction which can be
solved by using penalty function [7]. The length of the path is
to be optimized, and then the fitness function is defined as (9).

+−+−

−+−
=
∑

∑

=
++

=
++

Nyyxx

yyxx
f d

i
iiii

d

i
iiii

1

2
1

2
1

1

2
1

2
1

)()(

)()(
 (9)

Where ∑
=

++ −+−
d

i
iiii yyxx

1

2
1

2
1)()(represents the

sum of the distance between the two adjacent vertexes in the
path. (xi,yi) represents the coordinate of the vertex in the path.
N is the penalty and its value is very large. When the path
which is denoted by the particle does not satisfy the restriction
(the path passes through the obstacles), the particle can be
punished by the penalty N. So the problem with restriction can

If constraints are satisfied

otherwise

be converted into a problem without restriction and the
algorithm can be simplified.

E. Mutation
Generally the reason why the particle swarm optimization

algorithm gets into the local extremum easily is that the
diversity of the particle swarm decreases in the search space. In
the evolutionary algorithms, mutation operation can increase
the diversity of the particle swarm, and then the early
convergence can be avoided. In this paper, mutation is applied
in the algorithm to overcome the demerit mentioned above.

For each bit in the particle, a number between 0 and 1 is
generated randomly. If the number is less than the mutation
probability, the mutation operation is done to this bit. If the
original value of the bit is 0, it is changed to 1. If the original
value of the bit is 1, it is changed to 0. Although the
convergence speed is decreased because of the mutation, the
diversity of the particle swarm is increased. So the global
search ability is improved and the local extremum can be
avoided.

V. SIMULATION RESULTS AND DISCUSSION
This algorithm was implemented to validate the correctness

and practicability. The size of the particle swarm is as 1.5 times
as the quantity of the vertexes of the obstacles. The values of c1
and c2 in (6) are equal to 2. The mutation probability is 0.1 and
the total iteration number is 100. Fig.3 shows the simulation
results of the algorithm in different environments.

In this paper, the length of the particle is the number of the
obstacles’ vertexes and the quantity of the particles in the
swarm is not defined as a constant but defined as the multiple
of the number of the vertexes. In this way, with the number of
the obstacles increasing the quantity of the particles also
increases. So the initial particles can distribute in the whole
search space. Table 1 shows the impact of the quantity of the
particles on the results of the algorithm in different
environment (the environment differ in the number of the
obstacles’ vertexes). From Table 1 we can see with the size of
the swarm increases the average fitness value decreases slightly
but the time consumption is increased. Taking the average
fitness value and the time consumption into consideration, we
let the size of the swarm be 1.5 times as the number of the
obstacles’ vertexes.

Figure 3. Simulation results

TABLE I. THE IMPACT OF THE SIZE OF THE SWARM ON THE RESULTS

The
number of

the
vertexes D

The size of the
swarm N

The average
fitness

The time
consumption

N=D 362.615 0.062s
N=1.5D 362.615 0.094s 8
N=2D 360.652 0.1250s
N=D 446.136 0.312s

N=1.5D 420.847 0.436s 16
N=2D 415.104 0.625s
N=1D 436.234 0.797s

N=1.5D 429.251 1.187s 24
N=2D 412.406 1.578s
N=D 337.640 1.593s

N=1.5D 329.207 2.468s 32
N=2D 321.113 3.202s

The mutation probability has great effect on the
performance of the algorithm. If the mutation probability is
small, it will be difficult to generate new particles and the
diversity of the swarm will decrease. If the mutation probability
is large, the algorithm will become the random search and the
individual experience and global experience obtained will not
be saved. The algorithm was implemented 30 times with
different mutation probability. Fig.4 shows the comparison of
the average fitness values obtained in these 30 experiments.
Form Fig.4, we can see that with the mutation probability
increases, the average fitness value decrease at first and then
increases gradually. So 0.1 is a better choice for the mutation
probability.

Fig.5 shows the comparison of the convergence process of
three algorithms which are genetic algorithm, BPSO without
mutation and BPSO with mutation. From Fig.5 we can see that
with the mutation operation the convergence speed of the
BPSO decreases (the algorithm with mutation converges near
the 80th generation and it converges near the 40th generation
without mutation), but the average fitness value also decreases.
This phenomenon means that the algorithm converges rapidly
without mutation but it probably traps into the local extremum.
Although using mutation in the algorithm lowers the
convergence speed but it can increase the diversity of the
swarm and overcome the early convergence. The convergence
speed of BPSO with mutation is close to the convergence speed
of genetic algorithm, but it is simpler to implement BPSO than
to implement genetic algorithm because there are no selection
operation and crossover operation in BPSO.

Figure 4. Effect of the mutation probability on the result

Figure 5. Convergence of three algorithms

VI. CONCLUSION
Global path planning is one of the key technologies of

mobile robots, and it represents the intelligence level of mobile
robots in some ways. This paper presents a new global path

planning approach based on improved binary particle swarm
optimization algorithm. In this approach, path planning is
considered as a optimization problem with constraint and the
binary particle swarm optimization algorithm is used. The
length of the particle is equal to the number of the obstacles’
vertexes in the environment and the particles are encoded as
binary vectors. To overcome the demerit of the traditional
binary particle swarm optimization algorithm, double-structure
particle encoding and mutation operation are used in the
algorithm. The simulation results show that compared with
traditional binary particle swarm optimization algorithm and
genetic algorithm, the algorithm presented in this paper has a
better performance. This algorithm overcomes the problem of
early convergence well and the length of the path obtained is
shorter and the convergence speed is close to genetic algorithm.

REFERENCES

[1] R.C.Eberhart , J.Kennedy, “A New Optimizer Using Particle Swarm
Theory,” in Proc. of the 6th Int. Symp. On Micro Machine and Human
Science, Nogoya, Japan, pp. 1995:39-43, April 1995.

[2] J.Kenedy, R.C.Eberhart, “A Discrete Binary Particle Swarm
Optimization,” in Proc. of Conf. on System, Man and Cybernetices,
Piseateway,NJ, 1997, pp. 4104-4109.

[3] Qin Yuanqing, Sun Debao and Li Ning, “Path Planning for Mobile
Robot Based on Particle Swarm Optimization,” Journal of Robot, vol.
26, June 1963, pp. 222-225.

[4] Sun Bo, Chen Weidong and Xi Yugeng, “Particle Swarm Optimization
Based Global Path Planning for Mobile Robots,” Journal of Control and
Decision,, vol. 20, September 2005, pp. 1052-1055.

[5] Lei Kaiyou, Qiu Yuhui, “A Modified Particle Swarm Optimizer for
Mobile Robot Global Path Planning,” Journal of China Southwest
Normal University, vol. 31, April 2006, pp. 103-106

[6] He Yizhao, Wang Yanqi, “A New Particle Swarm Optimization for
Solving Discrete Problems,” Journal of Computer Applications and
software, vol. 24, January 2007, pp. 157-159

[7] Zhang Gibiao, Zhou Chunguang, “A novel evolutionary algorithm for
solving constrained optimization problem,” Journal of Jilin University,
vol. 42, August 2004, pp. 534-539

