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Abstract—This paper deals with resilient robust H∞ fuzzy
control problem for a class of nonlinear time-delayed systems with
norm-bounded and time-varying uncertainties in the matrices of
state, delayed state and control gain via state feedback controllers.
Firstly, the nonlinear system is represented by Takagi-Sugeno (T-
S) fuzzy model. Sufficient conditions are derived for the existence
of resilient robust H∞ fuzzy controllers in terms of linear matrix
inequalities (LMI), which can be solved by convex optimization
method. Finally, numerical example is presented to demonstrate
the effectiveness of the proposed controller design.

I. INTRODUCTION

During the past years, one of the most challenging problem
for many engineers is to design resilient controller, which is
also called non-fragile controller [1]–[4]. Fragility refers to
the performance debasement of the closed-loop system due to
small perturbations in the coefficients of the controller design.
Some examples in [1] had been presented to show that small
perturbations in the coefficients of the controller designed by
using robust H2, H∞, l1 and µ approaches can destabilize the
closed-loop control system. The authors therein had suggested
taking into account both uncertainties in the controller structure
and in the system structure, so as to make a good trade-off
between fragility and optimality.

On the other hand, dynamical systems with time delays
are common and constitute basic mathematical models of real
phenomena, for instance in chemical processes, communica-
tion network, and mechanics. Since time delays frequently
cause serious deterioration of the performance and even sta-
bility of the system, there are many approaches to solve this
problem over the last decades [5]–[8]. Particularly, resilient
state feedback controller had been discussed in consideration
of implementation errors for linear system with time delays in
[8]. How ever, the efforts in [1]–[3] , [8] were mainly focused
on linear systems. Non-fragility of the controller for nonlinear
system was discussed in [4]. However, the method therein
needs positive-definite solution to a pair of coupled Hamilton-
Jacobi inequalities, which are much complicated and only have
solutions for a special kind of systems.

It has been shown in [9]–[11] that Takagi-Sugeno (T-S)
fuzzy model can act as a universal approximator of any smooth

nonlinear systems having a first order that is differentiable. T-
S fuzzy logic controller design and parallel-distributed com-
pensation (PDC) scheme had been proposed and developed
in [12]. Fuzzy model-based controller can combine the merits
of both fuzzy controller and conventional linear theory, and
furthermore guarantee stability in the sense of Lyapunov
and control performance theoretically. Moreover, linear matrix
inequality (LMI) techniques [13] also make model-based fuzzy
controller design more convenient. Therefore, it is meaningful
to consider applying the fuzzy model to approximate the
nonlinear system with time delays. To stabilize the nonlinear
time-delayed system, some researchers considered T-S fuzzy
system with time delays [14], [15], which had studied the
designs of delay-independent and delay-dependent controller,
respectively.

The main contribution of this paper is to propose a resilient
robust H∞ fuzzy controller design for a class of nonlinear
systems with time delays and norm-bounded time-varying
uncertainties. First, the nonlinear system with time delays is
described by T-S fuzzy model. Then, the sufficient conditions
for resilient robust H∞ fuzzy controller are presented through
PDC scheme. And the conditions are reduced to a set of
LMIs, which can nowadays resort to some popular commercial
software. Finally, numerical example is given to illustrate the
efficiency of the controller design.

The rest of this paper is organized as follows. T-S fuzzy
system with time delays is constructed in Section II. Resilient
robust H∞ fuzzy controller is proposed in Section III. In
Section IV, the proposed scheme is applied to a numerical
example. Some conclusions are collected in Section V.

II. FUZZY SYSTEM WITH TIME DELAYS

A general T-S model employs an affine model with a
constant term in the consequent part of each rule, based on
a fuzzy partition of input space. In each fuzzy subspace a
linear input-output relation is formulated. The output of fuzzy
reasoning is given by the aggregation of the values inferred
by some implications that were applied to an input. This is
often referred to as an affine T-S model. However, what we
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are mostly interested in is another type of T-S fuzzy model,
in which the consequent part for each rule is represented by a
linear model (without a constant term). This type of T-S fuzzy
model is called a linear T-S model.

T-S fuzzy system can be used to approximate a class of
nonlinear time-delayed systems with norm-bounded parametric
uncertainties [11], which is constructed as follows

Plant Rule i : IF θ1(t) is Ni1, · · · , and θq(t) is Niq,
THEN ẋ(t) = (Ai + ∆Ai)x(t)+ (Adi + ∆Adi)

×x(t − d(t))+ (Bi + ∆Bi)u(t)
+B2iω(t),

z(t) = Cx(t),
x(t) = φ(t), t ∈ [−σ0, 0] , i = 1, 2, · · · , r.

(1)

where θ (t) = {θ 1(t), θ 2(t), . . . , θ q(t)} denote the variables
of premise part, Ai, Adi ∈ ℜn×n, Bi ∈ ℜm×n, x(t)∈ ℜn denotes
state vector, u(t) ∈ ℜm denotes control input vector, and Nil

denotes fuzzy sets, the real-valued functional d(t) is the time-
varying delay in the state and satisfies d(t) ≤ σ0, a real
positive constant representing the upper bound of the time-
varying delay. It is further assumed that ḋ(t) ≤ β < 1 and
β is a known constant. φ (t) are continuous vector-valued
initial functions, and r denotes the number of IF–THEN rules.
∆Ai, ∆Adi ∈ ℜn×n, ∆Bi(t) ∈ ℜm×nare the system’s uncertainty
matrices and satisfy Assumption 1.

Assumption 1: Uncertainty matrices ∆Ai and ∆Bi in system
(1) take the following structures

[
∆Ai ∆Bi ∆Adi

]
= MiFi(t)

[
N1i N2i Ndi

]
(2)

where Mi, Ni1 and Ni2 are constant real matrices of appro-
priate dimensions, and Fi(t) ∈ ℜi× j is unknown matrix-valued
functions with Lebesgue-measurable elements and satisfies

FT
i (t)Fi(t) ≤ I (3)

where I is the identity matrix of appropriate dimensions.
By using the fuzzy inference method with a singleton

fuzzifier, product inference, and center average defuzzifiers,
the final output of the T-S fuzzy model is inferred as follows

ẋ(t) =
r
∑

i=1
hi(θ (t))[(Ai + ∆Ai)x(t)+ (Adi + ∆Adi)

× x(t −d(t))+ (Bi + ∆Bi)u(t)+ B2iω(t)]
(4)

where

hi(θ (t)) =
wi(θ (t))

r
∑

i=1
wi(θ (t))

, wi(θ (t)) =
q

∏
j=1

Ni j(θ (t)),

and Ni j(θ (t)) denotes the degree of membership of z(t) on Ni j.
It is assumed that the degree of membership satisfies

r

∑
i=1

wi(θ (t)) > 0, wi(t) ≥ 0, i = 1, 2, · · · , r.

Note that for all t, there exists

r

∑
i=1

hi(θ (t)) = 1, hi(θ (t)) ≥ 0,

where hi(θ (t)) can be taken as the weights of normalized IF-
THEN rules.

For PDC scheme, resilient robust H∞ fuzzy controller
and the fuzzy model (1) possess the same premises. Then,
supposing that all the states are observable, the i-th controller
rule can be expressed by

Controller Rule i :
IF θ1(t) is Ni1, · · · , and θq(t) is Niq,

THEN u(t) = (Ki + ∆Ki)x(t), i = 1, 2, · · · , r.
(5)

where u(t) is the actually implemented local controller, Ki

is the local nominal gain, ∆Ki represents drifting from the
nominal solution.

Remark 1: Generally speaking, there are two types of
structured gain uncertainties, i.e. additive and multiplicative
norm-bounded uncertainties. Haddad and Corrado [2] extended
the robust fixed-structure guaranteed cost controller synthe-
sis framework to synthesize resilient controllers for additive
controller gain variations and system parametric uncertainty.
Multiplicative controller gain variations were addressed in [4].
In this paper, only additive gain uncertainties are taken into
consideration. It is assumed that ∆Ki = HiFKi(t)EKi, where Hi,
EKi are constant real matrices of appropriate dimensions.

At the consequent part, fuzzy control rules have linear state
feedback gain. It has been proved that the controller using the
PDC scheme (5) is an approximator for any nonlinear state
feedback controller [11]. The overall fuzzy controller can be
represented as follows

u(t) =
r

∑
i=1

hi(θ (t))(Ki + ∆Ki)x(t) (6)

Applying the controller (6) to the system (4) will result in
the following closed-loop system

ẋ(t) =
r
∑

i=1
hi(θ (t)){[(Ai + ∆Ai)+ (Bi + ∆Bi)

× (Ki + ∆Ki)]x(t)+ (Adi + ∆Adi)
× x(t −d(t))+ B2iω(t)}

x(t) = φ(t), t ∈ [−σ0, 0] .

(7)

Next, we will introduce a definition for the closed-loop
system (7).

Definition 1: The closed-loop system (7) is asymptotically
stable with disturbance attenuation level γ and stable, if the
following is fulfilled for all time delay and the uncertainties
therein satisfy (2) and (3):

1. The closed-loop system (7) is asymptotically stable;
2. The closed-loop system guarantees, under zero initial

conditions, ‖z(t)‖2 ≤ γ2 ‖ω(t)‖2, for all non-zero ω(t) ∈
L2 [0, ∞).

Then, the objective of this paper is to design a resilient
robust H∞ controller in the presence of time-varying delays,



parameter uncertainties of system and additive uncertainty of
controller. Also the controller guarantees disturbance attenua-
tion of the closed-loop system from ω(t) to z(t).

III. RESILIENT ROBUST H∞ FUZZY CONTROLLER DESIGN

In this section, we will present stability conditions for the
closed-loop fuzzy system (7). Some useful matrix inequalities
are introduced first, which will be used in the proof of our
main results.

Lemma 1: [7]
1. For any real vectors x, y and matrix P > 0 of compatible

dimensions,

2xT y ≤ xT P−1x + yT Py (8)

2. Let A, D, E and F(t) be real matrices of appropriate
dimensions. Then we have

(a) For any scalar µ > 0,

DFE + (DFE)T ≤ µ−1DDT + µET E (9)

(b) For any real matrix P = PT > 0, scalar µ > 0, F satisfy-
ing FFT ≤ I. For any scalar µ > 0 such that µI−EPET > 0,

(A + DFE)P(A + DFE)T ≤ µDDT + APAT

+ APET (µI −EPET )−1EPAT (10)

(c) For any real matrix P = PT > 0, and scalar µ > 0 such
that P− µDDT > 0,

(A + DFE)T P−1(A + DFE) ≤ µ−1ET E
+ AT (P− µDDT )−1A

(11)

Lemma 2: [13] Suppose that Λ = ΛT ∈ ℜ(l+k)×(l+k) is
partitioned as

Λ =
[

A B
BT C

]

where C ∈ℜk+k is nonsingular, then Λ > 0 if and only if C > 0
and A−BC−1BT > 0.

Now we are in a position to present the main result in this
paper. Firstly, stability conditions are presented for the systems
(7) without external disturbances.

Theorem 1: Consider the uncertain nonlinear systems with
time-varying delays (7) and suppose that the disturbance
input is zero for all the time. The closed-loop system (7) is
asymptotically stable if there exist positive definite matrix P,
and controller gains Ki such that

[
Π̃1 ∗
AT

diP Γ1

]
< 0, (12)

[
Π̃2 ∗
AT

diP+ AT
d jP Γ2

]
< 0, (13)

where

Π̃1 = PAi + PBiKi + AT
i P+ KT

i BT
i P +(1−β )−1R1,

+(ε1i + ε3i · ε2i)BT
i P+ ε−1

1i (E1i + E2iKi)T ,

× (E1i + E2iKi)+ ε−1
2i ET

KiEKi,

Π̃2 = PAi + PBiKj + AT
i P+ KT

j BT
i P+ PA j + PB jKi.

+ AT
j P+ KT

i BT
j P+

2
1−β

R1 +(ε1i j + ε2i j

× ε3i j + ε2i j)PBi(I− ε−1
3i j (E2iHj)T (E2iHj))−1

×BT
i P+(ε5i j · ε6i j + ε4i j + ε4i)PDiD

T
i P

+ ε4 jPD jD
T
j P+ ε−1

1i j (E1i + E2iKj)T (E1i

+ E2iKj)+ ε−1
2i j ET

K jEK j + ε5i jPB j(I− ε−1
6i j

× (E2 jHi)T (E2 jHi))−1BT
j P+ ε−1

5i j ET
KiEKi

+ ε−1
4i j (E1 j + E2 jKi)T (E1 j + E2 jKi),

Λ1 = ε−1
4i ET

diEdi − 1
1−β

R1,

Λ2 = ε−1
4i ET

diEdi + ε−1
4 j ET

d jEd j − 1
1−β

R1,

where 1 ≤ i < j ≤ r, εci (1 ≤ c ≤ 4), εdi j (1 ≤ d ≤ 6) are
arbitrary positive scalars, * denotes the transposed element
in the symmetric position, and I is identity matrix with
appropriate dimension.

Define the following Lyapunov functional candidate for the
system (7) as follows

V (x(t)) = xT (t)Px(t)+
1

1−β

∫ t

t−d(t)
xT (s)R1x(s)ds (14)

where P is a time-invariant, symmetric positive definite matrix.
It is straightforward that V (x(t)) is positive definite and radially
unbounded.

Then, the time derivative of the Lyapunov candidate V (x(t))
along the trajectory of (7) is given by

dV (x(t))
dt

= ẋT (t)Px(t)+ xT (t)Pẋ(t)+
1

1−β
xT (t)

×R1x(t)− 1−σ(t)
1−β

xT (t −d(t))R1x(t −d(t))

=
r

∑
i=1

r

∑
j=1

hi(θ (t))h j(θ (t))(xT (t)(P((Ai + ∆Ai),

+(Bi + ∆Bi)(Kj + ∆Kj))+ ((AT
i + ∆AT

i )

+ (KT
j + ∆KT

j )(BT
i + ∆BT

i ))P)x(t)+ xT (t)

×P(Adi + ∆Adi)x(t −d(t))+ xT (t −d(t))

× (AT
di + ∆AT

di)Px(t))+
1

1−β
xT (t)R1x(t)

− 1−σ(t)
1−β

xT (t −d(t))R1x(t −d(t))

After some manipulations, the above formulae can be
rewritten as follows



dV (x(t))
dt

=
r

∑
i=1

h2
i (θ (t))xT (t)(P((Ai + ∆Ai)+ (Bi

+ ∆Bi)(Ki + ∆Ki)+ ((AT
i + ∆AT

i )+ (KT
i + ∆KT

i )

× (BT
i + ∆BT

i ))P)x(t)+
r

∑
i=1

hi(θ (t))h j(θ (t))

× (P(Ai + ∆Ai)+ (Bi + ∆Bi)(Kj + ∆Kj))

+ ((AT
i + ∆AT

i )+ (KT
j + ∆KT

j )(BT
i + ∆BT

i ))

×P+ P(A j + ∆A j)+ (B j + ∆B j)(Ki + ∆Ki))

+ ((AT
j + ∆AT

j )+ (KT
i + ∆KT

i )(BT
j + ∆BT

j ))

×P)x(t)+ xT (t)P(Adi + ∆Adi)x(t −d(t))

+ xT (t −d(t))(AT
di + ∆AT

di)Px(t))+
1

1−β
xT (t)

×R1x(t)− 1−σ(t)
1−β

xT (t −d(t))R1x(t −d(t))

Applying Lemma 1 to the above formulae results in

dV (x(t))
dt

≤ Ξ1 + Ξ2, (15)

where

Ξ1 =
r

∑
i=1

h2
i (θ (t)){xT (t)[PAi + PBiKi + AT

i P

+ KT
i BT

i P+ ε1iPDiD
T
i + ε−1

1i (E1i + E2iKi)T

× (E1i + E2iKi)+ ε2iPBi(I − ε−1
3i (E2iHi)T

× (E2iHi))−1BT
i P + ε3i · ε2iPDiD

T
i P

+ ε−1
2i ET

KiEKi]x(t)+ xT ε4iPDiD
T
i Px(t)

+ ε−1
4i xT (t −d(t))ET

diEdix(t −d(t))+ xT(t)P

×Adix(t −d(t))+ xT (t −d(t))AT
diPx(t)

+
1

1−β
xT (t)R1x(t)− 1

1−β
xT (t −d(t))

×R1x(t −d(t))},

Ξ2 =
r

∑
i< j

hi(θ (t))h j(θ (t)){xT (t)[PAi + PBiKj

+ AT
i P + KT

j BP+ ε2i jPBi(I− ε−1
3i j (E2iHj)T

× (E2iHj))−1BT
i P+ ε3i j · ε2i jPDiD

T
i P

+ ε−1
2i j ET

K jEK j + PA j + PB jKi + AT
j P+ KT

i BT
j P

+ ε4i jPDiD
T
i P+ ε−1

4i j (E1 j + E2 jKi)T (E1 j

+ E2 jKi)+ ε5i jPB j(I − ε−1
6i j (E2 jHi)T (E2 jHi))−1

×BT
j P + ε5i j · ε6i jPD jD

T
j P+ ε−1

5i j ET
KiEKi)x(t)

+ ε4ix
T (t)PDiD

T
i Px(t)+ ε4 jPD jD

T
j Px(t)

+ ε−1
4i xT (t −d(t))ET

diEdix(t −d(t))+ ε−1
4 j xT (t

−d(t))ET
d jEd jx(t −d(t))+ xT (t)PAdix(t −d(t))

+ x(t −d(t))ET
d jEd jx

T (t −d(t))+ xT (t −d(t))AT
di

×Px(t)+ xT (t −d(t))AT
d jPx(t)+

2
1−β

xT (t)R1x(t)

− 2
1−β

xT (t −d(t))R1x(t −d(t)).

From the properties of quadratic form, the above formulae
will lead to

dV (x(t))
dt

=
r

∑
i=1

h2
i (θ (t))

[
x(t)
x(t −d(t))

]T

×
[

Π̃1 PAdi

AT
diP Γ1

][
x(t)
x(t −d(t))

]

+
r

∑
i< j

hi(θ (t))h j(θ (t))
[

xT (t) xT (t −d(t))
]

×
[

Π̃2 PAdi + PAd j

AT
diP+ AT

d jP Γ2

]

×
[

x(t)
x(t −d(t))

]
.

So far, if inequalities (12) and (13) hold, there exists
dV (x(t))

dt < 0. Therefore, the closed-loop system (7) will asymp-
totically stable.

Next, resilient robust H∞ fuzzy controller will be presented
for the T-S fuzzy system (7) with external disturbances based
on Theorem 1.

Theorem 2: Consider uncertain nonlinear system with time
delays (7). (5) is resilient robust H∞ fuzzy controller for the
system (7), if there exist matrices Mi, symmetric positive
definite matrix N, U such that LMIs (16) and (17) holds, where

Ωii = AiN + BiMi + NAT
i + MT

i BT
i +

U
1−β

+(ε1i

+ ε3i · ε2i + ε4i)DiD
T
i + ε2iBi(I− ε3i(E2iHi)T

× (E2iHi))T BT
i ,

Ωi j = AiN + BiMj + NAT
i + MT

j BT
i + A jN + B jMi

+ NAT
j + MT

i BT
i +

2U
1−β

+(ε1i j + ε2i j · ε3i j

+ ε5i j · ε6i j + ε4i j + ε4i)DiD
T
i + ε4 jD jD

T
j

+ ε−1
1i j (E1iN + E2iMj)T (E1iN + E2iMj)

+ ε−1
4i j (E1 jN + E2 jMi)T (E1 jN + E2 jMi),

1 ≤ i < j ≤ r, εci (1 ≤ c ≤ 4), εdi j (1 ≤ d ≤ 6) are arbitrary
positive scalars. Feedback gain Kis are obtained by

Ki = MiN
−1, P = N−1. (18)

Proof: For our convenience, we introduce

Λ = (Ai + ∆Ai)x(t)+ (Adi + ∆Adi)x(t −d(t))
+ (Bi + ∆Bi)(Ki + ∆Ki)x(t),

then we have






Ωii ∗ ∗ ∗ ∗ ∗ ∗
NAT

di − U
1−β ∗ ∗ ∗ ∗ ∗

BT
2i 0 −γ2I ∗ ∗ ∗ ∗

E1iN + E2iMi 0 0 −ε1iI ∗ ∗ ∗
EKiN 0 0 0 −ε2iI ∗ ∗
CN 0 0 0 0 −I ∗
0 EdiN 0 0 0 0 −ε4iI




< 0 (16)




Ωi j ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N(AT

di + AT
d j) − 2U

1−β ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
BT

2i + BT
2 j 0 −2γ2I ∗ ∗ ∗ ∗ ∗ ∗ ∗

E1iN + E2iMj 0 0 −ε1i jI ∗ ∗ ∗ ∗ ∗ ∗
E1 jN + E2 jMi 0 0 0 −ε4i jI ∗ ∗ ∗ ∗ ∗

EK jN 0 0 0 0 −ε2i jI ∗ ∗ ∗ ∗
EKiN 0 0 0 0 0 −ε5i jI ∗ ∗ ∗
EN 0 0 0 0 0 0 −0.5I ∗ ∗
0 EdiN 0 0 0 0 0 0 −ε4iI ∗
0 Ed jN 0 0 0 0 0 0 0 −ε4 jI




< 0 (17)

J =
∫ ∞

0
[zT (t)z(t)− γ2ωT (t)ω(t)]dt

≤
∫ ∞

0
[zT (t)z(t)− γ2ωT (t)ω(t)+

dV (x(t))
dt

]dt

=
∫ ∞

0
{zT (t)z(t)− γ2ωT (t)ω(t)

+
r

∑
i=1

r

∑
j=1

hi(θ (t))h j(θ (t))[ΛT Px(t)+ xT (t)PΛ

+ ωT (t)BT
2iPx(t)+ xT (t)PB2iω(t)]}dt

=
∫ ∞

0
[

r

∑
i< j

hi(θ (t))h j(θ (t))ξ T (t)Φ2ξ (t)

+
r

∑
i=1

h2
i (θ (t))ξ T (t)Φ1ξ (t)]dt,

where

ξ (t) =
[

xT (t) xT (t −d(t)) ωT (t)
]T

Ψ1 =


 Π1 ∗ ∗

AT
diP Λ1 ∗

BT
2iP 0 −γ2I


 ,

Ψ2 =


 Π2 ∗ ∗

AT
diP + AT

d jP Λ2 ∗
BT

2iP + BT
2 jP 0 −2γ2I


 ,

Π1 = Π̃1 +CTC,

Π2 = Π̃2 + 2CTC.

If there exist Ψ1 < 0 and Ψ2 < 0, then J ≤ 0, which
implies that ‖z(t)‖2 ≤ γ ‖ω(t)‖2, for any ω(t) ∈ L2 [0, ∞).
Therefore, when Ψ1 ≤ 0 and Ψ2 < 0, the closed-loop system
is asymptotically stable with disturbance attenuation level γ
according to definition 1 in section 2. Then, multiply the

resulting inequalities Ψ1 < 0 and Ψ2 < 0 by Θ = diag(P−1,
P−1, I) both left and right side, respectively.

However, the conditions are not jointly convex in Kis and P
in Theorem 1. Therefore, Schur complement is applied to the
obtained matrix inequalities. Introduce new variables N = P−1,
Mi = KiP−1 and U = NR1N. Then, the LMIs (16) and (17)
can be obtained. The search for the common matrix P and Kis
nowadays can resort to some efficient numerical methods [13]
in terms of LMIs. So far, LMIs are tractable and N, Mi and U
can be determined.

IV. NUMERICAL EXAMPLE

To demonstrate the use of our method, we consider a
nonlinear system with time delays approximated by using the
following IF-THEN fuzzy rules:

IF x1(t) is P, THEN
ẋ(t) = (A1 + ∆A1)x(t)+ (Ad1 + ∆Ad1)x(t −d(t))

+ (B1 + ∆B1)u(t)+ B21ω(t);
IF x1(t) is N, THEN
ẋ(t) = (A2 + ∆A2)x(t)+ (Ad2 + ∆Ad2)x(t −d(t))

+ (B2 + ∆B2)u(t)+ B22ω(t);

where the membership functions of ‘P’, ‘N’ are given as
follows

M1(x1(t)) = 1− 1
1 + exp(−2x1)

(19)

M2(x1(t)) = 1−M1(x1(t)) (20)

The uncertainties ∆Ai, ∆Adi and ∆Bi are assumed to have
the form of (2). Then, the relevant matrices in the T-S fuzzy
model are given as follows

A1 =
[ −1 0.4

0 −0.5

]
, Ad1 =

[
0.3 −0.4
0 0

]
,



B1 =
[

0
0.1

]
, B21 =

[
0
1

]
,

A2 =
[ −0.5 0

0.5 −1

]
, Ad2 =

[
0.4 0
0.4 0.3

]
,

B2 =
[

0
0.5

]
, B22 =

[
0
1

]
,

D1 =
[

0.1
0.2

]
, D2 =

[
0.1
0.5

]
,

ET
11 = ET

12 =
[

1
0

]
, Ed1 = Ed2 =

[
0.1 0

]
,

E21 = 0.3, E22 = 0.2,

F1(t) = F2(t) = sin(t), H1 = H2 = 0.5,

EK1 = EK2 =
[

0.5 0.5
]
,

φ(t) =
[

et+1 0
]T

,

and d(t) = hsin t. In Theorem 1, we choose the scalar coeffi-
cients εci = εdi j = 1, 1 ≤ c ≤ 4, 1 ≤ d ≤ 6, γ = 1.5. By using
Matlab LMI Control Toolbox [16], positive definite matrices
P, R1 and feedback gain Kis can be obtained as follows

P =
[

5.8361 2.6938
2.3181 2.6022

]
,

R1 =
[

1.9767 1.1741
1.6807 2.4234

]
,

K1 = [ - 3.3698 - 4.5295] ,
K2 = [ - 2.4277 - 0.2184] .

V. CONCLUSIONS

In this paper, resilient robust H∞ fuzzy controller design
has been addressed for a class of nonlinear systems with time
delays via fuzzy interpolation of a series of linear systems. The
fuzzy controller is reduced to the solution of a set of LMIs,
which make the design much more convenient. Furthermore,
an example has demonstrated the use of the proposed fuzzy
model-based controller.
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