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Abstract—Directing to the difficulties of fault isolation based 
on mathematical model, this paper presents a new fault isolation 
method that utilizes the limit apriori knowledge of expert, infers 
the failure process recursively and realizes the fault isolation with 
Bayes’ reasoning. Through dividing the system into several levels 
hierarchically according to their information flow, the system 
failure process can be reasoned from bottom to up with Bayes’ 
sufficient factor LS and Bayes’ necessary factor LN, and find the 
fault place with likelihood rate by the Bayes’ reasoning.. Because 
the subjective Bayes reasoning can strength the fault information 
and eliminate specious information, this method is suitable to 
determine the failure location for complicated system. 
Application of tri-redundant actuation system indicates that the 
subjective Bayes’ reasoning can accomplish the fault isolation 
effectively. 

Keywords—Subjective Bayes’ reasoning, fault isolation, 
likelihood rate, tri-redudnat actuation system 

I.  INTRODUCTION 
Model-based fault diagnosis method is widely used in 

control system state monitoring and management through 
comparing the residual error and designed threshold, in which 
the residual error is generated by difference between actual 
system output and model output [1]. However, it is difficult to 
find the fault place because most of the failures can lead to the 
output variance. In order to improve the system maintainability, 
it is required to determine the exact fault location in fault 
diagnosis system design.  

In the beginning of fault diagnosis research, many 
academicians focused on the fault observer design such as Tae 
Kyeong Yue provided a sliding mode observer to detect the 
known fault model [2], F. W. Poon adopted Luenberger 
observer to detect the failure of hydraulic system [3] and 
Gaddouna B. O. utilized the unknown input observer to extract 
the failure information [4]. The above methods can detect the 
failure existing in system, but it is difficult to find the fault 
place accurately. Then many fault diagnosis methods based on 
intelligent techniques came forth such as multimode neural 
networks and rough sets techniques [5]. Although the fault 
diagnosis methods aforementioned can determine the fault unit, 
it needed lots of training samples to obtain their regulation. As 
a matter of fact, we only know limit knowledge when we 
design the fault diagnosis system. So it is urgent to find an 

effective method that not only can detect the failure but also 
can isolate it with limit information. 

Based on the Bayes principle, this paper presents a 
subjective Bayes’ reasoning method, in which the data fusion 
and likelihood rate reasoning are integrated hierarchically. 
With the limit apriori knowledge, we can get the likelihood rate 
of every sub-model, and then infer the failure probability of key 
component with Bayes’ reasoning. Application results indicate 
that the subjective Bayes’ reasoning method can strengthen the 
failure characteristics and eliminate the amphibolous 
information, so that it can be used in fault isolation effectively.  

The rest of this paper is organized as follows. Section II 
gives the notation of hydraulic actuation system (HAS). In 
section III, the hierarchical model of hydraulic actuation system 
is provided for fault diagnosis. In section IV, we present the 
subjective Bayes’ reasoning method and provide the reasoning 
process. Section V gives an application of tri-redundant 
actuation system. Section VI concludes the paper.  

II. NOTATION 

u―input voltage (V) 

aK ―I/V transform coefficient (A/V) 

vx ―core displacement of servo valve (m) 

vK ―gain of servo valve (m3/s•A) 

vT ―time constant of servo valve (s) 

fP ―load pressure (N/m2) 

sP ―power pressure (N/ m2) 

W ―orifice width of servo valve (m) 
C ―flow coefficient  
ρ―oil density (N•s2/m4 ) 

fQ ―load flow (m3/s) 

tA ―effective area of piston (m2) 

tx ―piston displacement (m) 

lC ―leakage coefficient (cm5/N•s) 

tV ―effective volume (m3) 

yE ―plastic module of oil (N/m2) 



 

         

M ―equivalent mass of piston output (N) 

tM ―mass of load (N) 

tB ―damping coefficient of load (N•m•s ) 

px ―rudder displacement (m) 

bK ―feedback coefficient 

sK ―stiffness coefficient  

px ―displacement of transform mechanism (m) 

F ―load force (N) 

mB ―damping coefficient of transform mechanism (N•m•s ) 

eK ―plastic coefficient of transform mechanism 

III. HIERARCHICAL MODEL OF ACTUATION SYSTEM 

A. Mathematical Model of Hydraulic Actuator  
Fig.1 shows the structural diagram of tri-redundant 

actuation system, in which the single hydraulic actuator 
consists of controller (PID), amplifier, servo valve, cylinder 
and LVDT. The output of different channel of actuator is 
colligated in the output rod to drive the rudder of airplane 
through switching mechanism. Due to tri-redundant design, 
the actuation system has good performance with high 
reliability. 
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Figure 1.  Structural diagram of tri-redundant actuation system 

According to the operation principle of HAS, we can 
establish the mathematical model of hydraulic actuator as 
follows. 

 PID and amplifier 

( )a a fi PID K u PID K u u= Δ = −i i              (1) 

 Servo valve 
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With high frequency width (≥100Hz), servo valve can be 
considered as inertia unit. 

 Flow equation of servo valve 

s f
f v

P P
Q CWx

ρ
−

=                                        (3) 

It is a nonlinear relationship between servo valve flow 
and load pressure.  

 Flow continous equation 

( ) ( ) ( ) ( )
4

t
f t t l f f

y

VQ s A Sx s C P s SP s
E

= + +              (4) 

 Force balance equation 
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 Feedback equation 

= ( )f b tu K x s                                (7) 

In Fig.1, it is obvious that there exists strong information 
coupling among components and channels, i.e. the output of 
component not only depends on its input but also relies on the 
coupling factors come from other component; the output of tri-
redundant actuation system is affected both by command and 
coupling from other channels. Considering the information 
flow relation of hydraulic actuator, we can establish the 
hierarchical model shown in Fig.2, in which the fault 
information can be strengthened from basic level to system 
level. With the stepwise reasoning with probability, we can 
find a method to carry out fault isolation for HAS. 
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Figure 2.  Basic level sub-model of hydraulic actuator 

In order to realize the hierarchical fault reasoning, this 
paper establishes three level sub-models as follows: 

(1) Basic level sub-model 



 

         

Focusing on the single hydraulic actuator, we establish 
the five key component sub-models, in which module I-1 is 
PID & amplifier, module I-2 is servo valve, module I-3 is 
cylinder, module I-4 is output rod and module I-5 is LVDT 
shown in Fig.2. 

(2) Second level sub-model 

Combine module I-1 and module I-2 as module II-1, and 
integrate module I-3 and module I-4 as module II-2, then 
obtain the second level sub-model that can reduce the coupling 
among components. 

(3) System level sub-model 

Directing to the tri-redundant actuation system, consider 
the single actuator as module III-1 and the switching 
mechanism as module III-2 to describe the coupling among 
channels.  

Based on the hierarchy information flow model, we can 
reason the fault place from basic level to system level if the 
probability between bottom level and up level is known. We 
can define the relative probability with Bayes formula and push 
the recursion reasoning from component to system to realize 
the fault isolation. 

IV. SUBJECTIVE BAYES’ REASONING PRINCIPLE 
Supposing that “B” expresses “phenomenon” and “C” 

denotes “reason”, its uncertainty of “B→C” can be described 
with conditional probability ( )p C B . If the probability of “B” is 
known, the probability of “C” under B can be described with 
Bayes theory: 

( | ) ( )( | )
( )

p B C p Cp C B
p B

×
=                                    (8) 

Where ( )p B  and ( )p C  express the apriori probability of B 
and C separately, which is independent to of the rule “B→C”; 

( )p B C  is the posterior probability of “B” under “C”. 

Generally, there are a lot of reasons “C” that can lead to 
phenomenon “B”, so it is more difficult to get the apriori 
probability of B than that of C. In order to overcome the 
difficulties, we make some modification on the Bayes’ 
formula as follows.  

A. Likelihood Rate of Rule Intensity 
In order to avoid the utilization of ( )p B ,  we can 

calaulate the ( | )p C B  firstly as follows. 
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With (8) and (9), we can get the following relation: 
( | ) ( | ) ( )
( | ) ( | ) ( )

p C B p B C p C
p C B p B C p C

×
=

×
                        (10) 

Define the apriori likelihood rate ( )O C  and conditional 
likelihood rate ( | )O C B  as: 

( ) ( )( )
( ) 1 ( )

( | ) ( | )( | ) ( )
( | ) ( | )

p C p CO C
p C p C

p C B p B CO C B O C
p C B p B C

= =
−

= = ×

          (11) 

Where ( )O C  means the ratio of probability of C  to the 
probability of C . It is obvious that ( )O C  increases with ( )p C . 

( | )O C B  is the ratio of probability of C  to the probability of 
C  under condition B . 

Define the likelihood rate of rule intensity as: 

( | )
( | )

p B CLS
p B C

=                                    (12) 

Where LS  expresses the influence degree of B  to C , then 

( | ) ( )O C B LS O C= ×                             (13) 

(12) is named as Bayes’ sufficient factor of “B→C” that 
makes it easy to calculate the conditional likelihood ratio of C  
with its apriori probability and likelihood rate. Then 

( | )( | )
1 ( | )

O C Bp C B
O C B

=
+

                              (14) 

The value of LS  consists of three conditions: 
1 ( | ) ( ), doesn't affect 
>1 ( | ) ( ),  support  partly
<1 ( | ) ( ),  doesn't support  partly

O C B O C B C
LS O C B O C B C

O C B O C B C

=⎧
⎪= >⎨
⎪ <⎩

 

B. Non-likelihood Rate of Rule Intensity 
Similarity, define the likelihood rate under condition B  as: 

( | )
( | )

p B CLN
p B C

=                                       (15) 

Where LN  denotes the influence degree of B  to C , then 

( | ) ( )O C B LN O C= ×                                    (16) 

LN  is called as necessary factor of “B→C”. The scaling 
scope of LN  includes following relation: 

1 ( | ) ( ),  doesn't affect 
>1 ( | ) ( ),  support  a certain extent
<1 ( | ) ( ),  doesn't suport  a certain extent

O C B O C B C
LN O C B O C B C

O C B O C B C

⎧ =
⎪= >⎨
⎪ <⎩

 

It is noted that LS  and LN  can improve the application of 
Bayes’ reasoning. Even if there is not enough statistical data, 
we also can get the LS and LN  based on expert knowledge. 
Herein, we call ( )p C B as subjective probability because it is 
calculated by expert subjective evaluation. At the same time, 
the reasoning method of subjective probability is called as 
subjective Bayes’ reasoning.  



 

         

C. Transmission of Uncertainty 
Assume the uncertainty of B is related to another 

phenomenon 'B , that is 'B B C⇒ ⇒ , the probability of C  
under 'B  can be described as 

' ' '
'

' '

' ' ' '

' ' ' '

' ' ' '

( , ) ( , , ) ( , , )( | )
( ) ( )

( , , ) ( , ) ( , , ) ( , )
( ) ( , ) ( ) ( , )

( | , ) ( | ) ( | , ) ( , )

p C B P C B B p C B Bp C B
p B p B

p C B B p B B p C B B p B B
p B p B B p B p B B

p C B B p B B p C B B p B B

+
= =

× ×
= +

× ×
= × + ×

        (17) 

Where '( | , )p C B B  is the probability of C  under B  and 'B ; 
'( | , )p C B B  is the probability of C  under B  and B′ , in 

which B′  affect C  through B  while B  and B  have 
determined. So 

' ' '( | ) ( | ) ( | ) ( | ) ( | )p C B p C B p B B p C B p B B= × + ×  

Where ( | )p C B  and ( | )p C B can be calculated by (14). 
Similarity, only ( )p B  is known, we can get the '( | )p B B , then 
get the ' '( | ) 1 ( | )p B B p B B= − , next we can obtain the '( | )p B B , 
finally we can get the '( | )p C B , that is the probability of C  
under 'B . 

Here, (15) is called uncertainty transmission formula that 
has a characteristics that is ( | ) ( )p C B p C=  when 

'( | ) ( )p B B p B= . With the transmission formula, the 
uncertainty can transfer for a long distance, for example, if 

'B B C W⇒ ⇒ ⇒ , then: 
' ' '( | ) ( | ) ( | ) ( | ) ( | )p W B p W C p C B p W C p C B= × + ×  

D. Combination of Uncertainty 
If there are two preconditions support same result, that is: 

'
1 1
'
2 2

B B C

B B C

⇒ ⇒

⇒ ⇒
                                           (18) 

Suppose ' ( 1, 2)iB i = is independent, then we can get the 
probability of C  under '

1 2,B B′  as: 

' ' ' ' ' '
1 2 2 1 2 2 1 2

' ' ' '
2 1 2 2 1 2

( | , ) ( | , , ) ( | , )

( | , , ) ( | , )
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p C B B B p B B B

= ×

+ ×
           (19) 

It is obvious that 
2B  is independent of 1B ′ , so the influence 

of 2B ′  can be ignored when 2B  is absolutely true or false. 
Then (19) can be transferred as: 

' ' ' '
1 2 2 1 2 2

' '
2 1 2 2

( | , ) ( | , ) ( | )

( | , ) ( | )

p Q P P p C B B p B B

p C B B p B B
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Then we can get: 
'

' ' '2 1 2
2 1 1 1'

2 1 2

( | , ) ( | )( | , ) ( | ) 2 ( | )
( | , ) ( , )

p C B B p B CO C B B O C B LS O C B
p C B B p B C
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Similarly, we also can get the following relation: 

' '2
2 1 1 1

2

( | )( | , ) ( | ) 2 ( )
( | )

p B CO C B B O C B LN O C B
p B C

′= × = ×   (21) 

It is obvious that we can calculate the '
2 1( | , )O C B B  and 

'
2 1( | , )O C B B  if 2LS  and 2LN  are known, then achieve the 

'
2 1( | , )p C B B  and '

2 1( | , )p C B B . In addition, we can get 
' '

1 2( | , )p C B B  if we know '
2 2( | )p B B . 

V. FAULT ISOLATION WITH SUBJECTIVE BAYES’ 
REASONING FOR REDUNDANT ACTUATION SYSTEM 

To the tri-redudnant actuation system shown in Fig.1, we 
can get the fault reasoning hiberarchy shown in Fig.3. 
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Figure 3.  Fault reasoning relation of tr-redundant actuation system 

Define the content of sub-model as Table I. 

TABLE I.  SYMBOL AND ITS CONTENT OF ACTUATION SYSTEM 

Symbol Content 

FPID Controller and I/V failure 
FVQ Servo valve leakage failure 
FVL Cylinder block failure 

FCYL Colligation failure 
M11（F11） Module I-1 detect failure 
M12（F12） Module I-2 detect failure 
M13（F13） Module I-3 detect failure 
M14（F14） Module I-4 detect failure 
M21（F21） Module II-1 detect failure 
M22（F22） Module II-2 detect failure 
M31（F31） Module III-1 detect failure 

 

Using the modified Bayes’ reasoning formula, we can get 
the failure probability depending on the measurement of sub-
models. For example, M11 means the detection based on 
module I-1. If PID fails, its probability submits to following 
relation: 
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The failure probability of PID is: 

1

1

1

( ) [ ( | 11) ( | 11)]

[ ( | 21) ( | 21)]

[ ( | 31) ( | 31)]

p FPID r p FPID F p FPID F
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+

+
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Where: 

( )p FPID ─failure probability of PID in detection; 
( 11)p FPID F ─probability of PID when M11 detect failure; 

( | 11)p FPID F ─probability of PID when M11 detect normal; 
( 21)p FPID F ─probability of PID when M21 detect failure; 

( | 21)p FPID F ─probability of PID when M11 detect normal; 
( 31)p FPID F ─probability of PID when M31 detect failure; 

( | 31)p FPID F ─probability of PID when M31 detect normal; 

1r ─the contribution rate of M11 detection to ( )p FPID ; 

1s ─the contribution rate of M21 detection to ( )p FPID ; 

1t ─the contribution rate of M31 detection to ( )p FPID . 

Where 1 1 1 1r s t+ + = . 

Similarity, we can get the following relation when servo 
valve leakage occurs: 

2
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Where 2 2 2 1r s t+ + = . 

The failure probability of cylinder block can be described 
as: 

3

3

3
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Where 3 3 3 1r s t+ + = . 

The failure probability of colligation failure is expressed 
as: 

4

4

4

( ) [ ( | 14) ( | 14)]
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Where 4 4 4 1r s t+ + = . 

Adopt modified subjective Bayes’ method to calculate the 
conditional probability as follows: 
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                  (21) 

Where the subscript “p” denotes “PID”, the subscript number 
expresses the number of sub-model. The rest may be deduced 
by analogy to obtain the relation of ( ), ( )p FVQ p FVL  and 

( )p FCYL .  

Here we provide the apriori probability and likelihood rate 
of every component according to the expert experience shown 
in Table II.  

TABLE II.  APRIORI PROBABILITY AND LIKELIHOOD RATE OF 
COMPONENTS FOR HYDRAULIC ACTUATOR 

para value para value Para value para value

1r  0.7 2r  0.6 3r  0.7 4r  0.8 

1s  0.2 2s  0,25 3s  0.2 4s  0.15

1t  0.1 2t  0.15 3t  0.1 4t  0.05

1PLS 200 1QLS  150 1LLS  200 1CLS 400 

1PLN 0.2 1QLN 0.5 1LLN  0.2 1CLN 0.1 

2PLS 100 2QLS  100 2LLS  100 2CLS 100 

2PLN 0.4 2QLN 0.4 2LLN  0.4 2CLN 0.5 

3PLS 50 3QLS  50 3LLS  50 3CLS 50 

3PLN 0.6 3QLN 0.6 3LLN  0.6 3CLN 0.2 

FPIDp 0.001 FVQp  0.005 FVLp  0.003 FCYLp 0.01

 
Where “para” is the abbreviation of parameter.  

In Table II, all the parameters are determined by subject 
experience of expert. FPIDp ， FVQp ， FVLp ， FCYLp  denote 
apriori probability of PID, servo valve, cylinder and 
colligation separately. The value of LS and LV indicate the 
support degree of sub-module to failures. If LS and LN are 
greater than 1, the module supports the failures a certain extent. 
The greater the value is, the more support the module will. If 
LS and LN equal to 1or be less than 1, the module is 
independent to the failure. Suppose PID fails, we can get the 
result based on basic level shown in Table III. 

TABLE III.  PID FAILURE  DETECTION RESULTS WITH SUB-MODEL 

model M11 M12 M13 M14 M21 M22 M31 
Detect 
result F N N N F N 

N 
(fail to report) 

 

In Table III, F means “failure” and N means “normal”. 



 

         

According to the Fig.3, M11, M21 and M31 can detect the 
fault PID if there is not coupling and disturbance.  But in fact, 
only M11 and M21 detect the failure while M31 fails to report 
PID failure because the traditional fault detection is easy to be 
confused by amphibolous information under limit data, which 
always makes the failure isolation rate low. 

With the appiori probability and likelihood rate in Table II 
and Bayes’ reasoning, we can reason the fault process and find 
the exact fault place with high fault isolation rate from bottom 
to up shown in Table IV, in which “─” express “no item”. 

TABLE IV.  PID FAULT ISOLUTION WITH SUBJECTIVE BAYES’ REASONING 

( | 11)p FPID F  0.167 ( | 12)p FVQ F  —— ( | 13)p FVL F  —— ( | 14)p FCYL F  —— 
( | 11)p FPID F  —— ( | 12)p FVQ F  0.0025 ( | 13)p FVL F  0.0006 ( | 14)p FCYL F  0.001 
( | 21)p FPID F  0.09 ( | 21)p FVQ F  0.333 ( | 22)p FVL F  —— ( | 22)p FCYL F  —— 
( | 21)p FPID F  —— ( | 21)p FVQ F  —— ( | 22)p FVL F  0.0012 ( | 22)p FCYL F  0.005 
( | 31)p FPID F  —— ( | 31)p FVQ F  —— ( | 31)p FVL F  —— ( | 31)p FCYL F  —— 
( | 31)p FPID F  0.001 ( | 31)p FVQ F  0.003 ( | 31)p FVL F  0.0018 ( | 31)p FCYL F  0.002 

Detection results  
( )p FPID  0.135 ( )p FVQ  0.0005 ( )p FVL  0.0008 ( )p FCYL  0.0017 

 

It is obvious that the value of ( )p FPID  (0.135) is larger 
than any other item, so it is easy to detect and isolate the PID 
failure even there exists failing to report. 

If the servo valve fails, we can get the detection results in 
Table V. It is obvious that M21 fails to report the servo valve 
failure and M22 gives the false alarm only depending on the 
sub-model detection. If we utilize the subjective Bayes’ 
reasoning, we can find the exact fault place shown in Table VI. 

TABLE V.  SERVO VALVE  FAILURE  DETECTION WITH SUB-MODEL 

model M11 M12 M13 M14 M21 M22 M31
Detect 
result N F N N N 

(fail to 
report) 

F 
(false 
alarm) 

F 

 

 

TABLE VI.  SERVO VALVE FAULT ISOLUTION WITH SUBJECTIVE BAYES’ REASONING 

( | 11)p FPID F  —— ( | 12)p FVQ F  0.4286 ( | 13)p FVL F  —— ( | 14)p FCYL F  —— 
( | 11)p FPID F  0.0002 ( | 12)p FVQ F  —— ( | 13)p FVL F  0.0006 ( | 14)p FCYL F  0.001 
( | 21)p FPID F  0.01 ( | 21)p FVQ F  —— ( | 22)p FVL F  0.2308 ( | 22)p FCYL F  0.01 
( | 21)p FPID F  —— ( | 21)p FVQ F  0.002 ( | 22)p FVL F  —— ( | 22)p FCYL F  —— 
( | 31)p FPID F  0.048 ( | 31)p FVQ F  0.2 ( | 31)p FVL F  0.13 ( | 31)p FCYL F  0.33 
( | 31)p FPID F  —— ( | 31)p FVQ F  —— ( | 31)p FVL F  —— ( | 31)p FCYL F  —— 

Detection results  
( )p FPID  0.007 ( )p FVQ  0.2877 ( )p FVL  0.0596 ( )p FCYL  0.0188 

 

In Table VI, the ( )p FVQ (0.2877) shows that the 
subjective Bayes’ reasoning can gain satisfied fault isolation 
result under failing to report and false alarm. So it is content in 
fault isolation of complex system. 

CONCLUSIONS 

This paper presents the subjective Bayes’ reasoning 
method based on hierarchy that can strengthen the failure 
characteristics with likelihood rate of rule intensity and 
eliminate the amphibolous information existed in measurable 
point. Application of tri-redundant actuation system indicates 
that the subjective Bayes’ reasoning can determine that fault 
location with high probability even the sub-model can not 
detect the failure correctly or gives false alarm. So the 
subjective Bayes’ reasoning can realize fault isolation 
effectively with good robustness. 
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