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Abstract—A decentralized coordination strategy is developed 
to generate parallel motion of multiple mobile robots. All robots 
communicate with each other to form a robotic network the 
topology of which is modelled by a weighted digraph. The linear 
consensus algorithm is extended to design the coordinated control 
strategy, in which bounded velocity specifications are considered 
to avoid actuator satuation. A design method of information flow 
topology for two modes of parallel motion, leader-follower and 
leaderless, is investigated. The effectiveness of control laws and 
effects of different information flow topologies and sampling 
rates on the group behavior are shown in nontrivial computer 
simulations. 
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I.  INTRODUCTION  
In the field of distributed mobile robotics, group of 

wheeled mobile robots is widely used as a testbed of multi-
vehicle system and mobile wireless sensor network in which 
an individual has capabilities of moving, sensing, computing 
and communicating. For the case that robots can be networked 
with each other by communication links or sensing, we name 
the whole system mobile robotic network (or MRN) to 
emphasize the role of information flow in the group.  

Motion coordination of MRN is a critical problem in its 
potential applications in surveillance, environment monitoring, 
border security, search and rescue, where the objective is to 
make individuals rendezvous at a common point or move in a 
synchronized manner [1]-[5]. In this paper we focus on the 
group behavior of parallel motion meaning that all the robots 
move in the same direction. And decentralized strategies are 
adopted to generate this objective behavior for its superiority 
to centralized ones in terms of robustness to failure of a robot 
and independence on the system scale. 

Consensus algorithm, an inherently decentralized strategy, 
has a long history in the field of distributed computing [6], [7] 
and recently is applied to coordination of multi-agent systems. 
Its basic idea is that each agent changes the value of a shared 
variable based on those of its local neighbors in such a way 
that the final value of each agent converges to a common cons- 
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tant or trajectory. In the literature, A. Jadbabaie et al [8] 
rigorously prove the convergence of alignment algorithm that 
updates agent’s orientation in the context of undirected 
network. Olfati-Saber et al [9] discuss continuous consensus 
algorithms for network of single integrators with fixed and 
switching directed topologies and present sufficient/necessary 
conditions for reaching consensus and average consensus. Ren 
et al [10] extend the work of [8] to the case of directed 
topology. Gao et al [11] investigate linear consensus algorithm 
over acyclic directed graph. R. Olfati-Saber et al [12] and Ren 
et al [13] survey the results available for consensus algorithms 
of single integrator network and its applications. Most of the 
research activities in consensus problem have focused on 
theoretical aspects, where the shared variables are defined in a 
general form that might not be related to the agent’s motion. 

The main purpose of this paper is to build a description 
framework of differential-driven mobile robotic networks and 
develop a design methodology of decentralized control strate-
gy for parallel motion behavior based on consensus algorithm. 
The model of MRN is composed of three parts: individual 
kinematics, information flow structure and objective group 
behavior. The kinematics is described by the unicycle model 
and information flow structure by weighted digraph. With the 
coordinated variable denoting the orientation of each robot, the 
emergence of objective group behavior can be formulated by 
consensus problem. Then the linear consensus algorithm over 
weighted digraph is extended to design the decentralized 
control strategy. Considering the practical velocity constraints, 
we present a method that corrects the control laws to prevent 
actuator saturation. The orientation of a robot is regulated by 
its own local controller using states of its neighbors specified 
in the information flow structure. Thus various structures can 
produce different final modes of parallel motion, two kinds of 
which, leaderless and leader-follower, are reported in this 
paper. 

An outline of this paper is as follows. Section II presents 
the model of mobile robotic network and the objective system 
behavior. Section III investigates the design of decentralized 
control laws and discusses the effect of information flow 
topology on the system behavior. Section IV describes the 
simulated experiments and conclusion is presented in Section 
V. 



 

         

II. SYSTEM AND PROBLEM DESCRIPTION 
Here a MRN S  is a group of N  differential driven mobile 

robots indicated by index set {1 2 , }N=I ，， . The robots can 
control their own actions to move in 2D space, rotate on a spot 
and actively communicate with local neighbors to attain their 
information, e.g. the value of current orientation. 

A. Individual and Group Kinematics 
We assume that a differential driven mobile robot moves 

without longitudinal slip and lateral slide and is equipped with 
efficient low-level PID controller to regulate the speed of 
wheels. Hence the kinematics is considered to describe robot’s 
motion instead of its dynamics. 

The configuration and size of robot i  are shown in Fig. 1. 
The geometric center iQ  locates at the centre of wheel axis, 

wL  is the distance between the two wheels and wR  the radius 
of a wheel. Let 2[ , ]T

i i ix y= ∈Rq  be the position of iQ  in the 
workspace 2⊂C R  and ( , ]iθ π π∈ −  is the robot’s orientation 
with respect to the global coordinate frame, as shown in Fig. 
1(a). Then the configuration of robot i  is denoted by 

2[ , ] ( , ]T T
i i iθ π π= ∈ × −Rp q  

We use a nonholonomic unicycle to describe the motion of 
robot i , i∀ ∈ I . The Individual kinematics if  is written as 
follows:  
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where iv , iω  is translational and rotational velocity of robot i  
respectively. Let [ , ]T

i i iv ω=u   be robot’s local control input, 
the value of which is actually the desired reference given to 
low-level speed controllers. Then the individual kinematics 
can be simply written as ( , )i i i if=p p u . 

Let 1 2[ , , , ]T T T T
N=p p p p and 1 2[ , , , ]T T T T

N=u u u u  be the 
configuration and control input of MRN respectively. The co-
nfiguration evolves according to group kinematics ( , )F=p p u , 
where F  is column-wise concatenation of individual kinemat-
ics if , Ni ∈ I . 

B. Information Flow Structure 
All the robots in S  exchange information over a wireless 

local network. An example of information flow topology is 
shown in Fig. 2. In order to show the impacts of a robot on 
others, weights on information flow among robots should be 
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Fig. 1 Configuration of robot i             Fig. 2 Information flow topology 

defined. The topology and weights constitute an information 
flow structure. 

Let ( , , )= AG I E , a weighted directed graph, represent the 
information flow structure, where {1 2 , }N=I ，，  represents a 
vertex set with elements corresponding to N  robots and 

⊂ ×E V V  is a non-empty edge set with each element represe-
nting a communication link from one robot to another, e.g., 
( , )i j ∈E   mean that robot i  requests information from j  and 
data flow backwards. Note that ( , )i j ∈E  doesn’t mean 
( , )j i ∈E , and the digraph becomes undirected if ( , )j i ∈E  
anytime ( , )i j ∈E . A  is an N N×  weighted adjacency matrix 
defined by 

0 ( , )
0 ( , )

ij

ij

a i j
a i j

> ∈
 = ∉

E

E
          ,i j∀ ∈ I  

where ija  denotes the weight on the communication link from 
i to j . If 1ija =  for all ( , )i j ∈E , G  turns to a digraph and if 

ij jia a=  for all ( , )i j ∈E , G  is undirected. So both digraph 
and (weighted) undirected graph are special cases of weighted 
digraph. 

The graph G  describes the relation between any two 
robots. All robots receiving requests from i  are called out-
neighbors of robot i and those sending requests to i  in-neigh-
bors. Then let { | ( , ) }i j i j+ = ∈N E  and { | ( , ) }i j j i− = ∈N E  
denote out-neighborhood and in-neighborhood of robot i  
respectively. 

C. Objective Group Behavior 
We define ,1 3r r∈ ≤ ≤c R  to be the coordinated variable 

in S  shared by all the robots to quantify the objective 
behavior and r

i ∈c R  the corresponding variable of robot i  
with initial value (0)ic . In motion coordination problem, this 
variable is related to the configuration of a robot. It mean that 
there exist a map 2: ( , ] rT π π× − →R R and ( ),i iT i= ∀ ∈c p I . 
To encode the desired group behavior, we define an objective 
function 

2

1 1

1( ) ( )
2

N N

ij i j
i j

c a c c
= =

Φ = −∑∑                     (2) 

where ija  is the element of adjacency matrix A of graph G . 
When , ,i jc c i j= ∀ ∈ I , i.e. 

lim 0it→∞
− =c c ， i∀ ∈ I  

the objective function reaches its unique minimum, where c  
denotes the critical point. This situation is called reaching 
consensus. Specially, if  

1

1 (0)
N

i
iN =

= ∑c c  

it is called reaching average consensus. 

In this paper, where parallel motion is the objective group 
behavior, iθ  is an instance of ic  and [0 0 1]i iθ = p . Let 

i
+pN  be the state of 'si  neighbors defined by the information 

flow structure. The design objective is to derive a proper   
decentralized control laws in the form of ( , )

i
i i iNϕ +=u p p that 

drive the robots moving in the same direction θ  and find out 
the effect of information flow structure on system behavior. 



 

         

III. DESIGN AND ANALYSIS OF COORDINATION STRATEGY 

A. Preliminary Developments 
Let ( , , )= AG I E  be a weighted digraph with the same 

definition given in Section II. The out-degree and in-degree of 
vertex i  are defined by:  

i id + += N , i id − −= N  

where i
+N and i

−N are the cardinality of i
+N  and i

−N , 
respectively. The weighted out-degree and in-degree of vertex 
i  are defined by: 

i

i ij
j

d a
+

+

∈

= ∑
N

, 
i

i ji
j

d a
−

−

∈

= ∑
N

                          (3) 

Let 1 2( , , , )Ndiag d d d+ + +
+ =D and 1 2( , , , )Ndiag d d d− − −

− =D  
denote the weighted out-degree and in-degree matrix. The�
digraph�G  is� topologically� balanced� if� i id d+ −=  and weight-
balanced if i id d+ −= , i∀ ∈ I .  

Then the weighted Laplacian matrix of G  is defined by 
+= −L D A                                        (4) 

Note that 0=L1 , i.e. L  has a zero eigenvalue corresponding 
to a right eigenvector 1 , and that L  is symmetric iff G  is 
undirected or bi-directed. As G  is weight-balanced, 0T =1 L . 

We assume the directed graph G  is simple. A path in G  is 
an� ordered� sequence� of� distinct� vertices� such� that� every�
pair� of� consecutive� vertices� is� a� edge� of�G . If any two 
vertices are connected by a path,�G  is strongly connected. If a 
vertex of G   can be reached from any other node by traversing 
a path, we call it a sink of G . 

B. Proposed Decentralized Control Strategy 
The design objective is to drive the orientations of all the 

robots to a common value. According to the kinematics (1), 
the updates of iθ  is only manipulated by iω  that is calculated 
using a control law. Hence we consider a subsystem of (1): 

i iθ ω=        ( , ]iθ π π∈ − , i ∈ I                (5) 
Now, following [9] and [13], we apply the linear consensus 
algorithm over networks of single integrators to the design of 
decentralized strategies. The algorithm is given by 

1
( )

N

i ij j i
j

aω θ θ
=

= −∑                              (6) 

Using (5) and (6), we can write the equation which 
governs the evolution of iθ  such that 

1
( )

N

i ij j i
j

aθ θ θ
=

= −∑                               (7) 

where ija is the ( , )i j  entry of the adjacency matrix A of the 
associated information flow structure G , a weighted digraph, 
defined in Section II. Setting 0ija ≠  indicates that robot i  
receives information about jθ  from robot j  and the difference 
between the orientations of the two robots is calculated. iθ  of 
robot i  is driven toward the orientations of its neighbors 
defined by G .  

Also the factor ija  represent the contribution of jθ  to the 
control input iω . We assume that the robots in the out-

neighborhood of robot i  have same impacts on it and define 
ija  by 

1          

0              
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                             (8) 

Finally, we rewrite (7) as  
1 ( )

i

i j i
j i

θ θ θ
+

+
∈

= −∑
N N

       i∀ ∈ I              (9) 

1) Convergence analysis 
Here N  subsystems of (5) are coupled by the information 

flow among the robots to form a networked system. Using (3), 
(4) and (7), we derive this closed-loop linear system 

= −θ Lθ                                    (10) 
where 1 2[ , , , ]T

Nθ θ θ=θ and L  is graph Laplacian of G . 

From the viewpoint of control theory, the convergence of 
states of system (10) is determined by the eigenvalue of matrix 
L . In terms of its definition, L  has a zero eigenvalue and 1  is 
the associated right eigenvector. From Gerschgorin’s disk 
theorem [14], the nonzero eigenvalues of −L  have negative 
real part. Therefore, the equilibrium of linear system (10) lies 
in the null space of L  denoted by ( )null L . In the literature of 
matrix theory, if L  has a simple eigenvalue at zero, 

( ) { }null span=L 1  such that θ α→ 1  where α is a constant. 
In other words, if L  has only one zero eigenvalue, system (10) 
can reach consensus with value α . 

The multiplicity of 0 eigenvalue is related to the 
characteristics of the structure ofG . The work in [8][9][10] 
has discussed sufficient and necessary conditions for 
consensus problem over directed or undirected graph by using 
tools from spectral graph theory. It’s easy to extend the results 
to the case of weighted digraph: 

Theorem 3.1 (for consensus) Let G  be a weighted digraph, 
System (10) asymptotically reaches consensus iff G  has a sink; 

Theorem 3.2 (for average consensus) If a weighted digraph G  
is strongly connected, system (10) reaches average consensus 
asymptotically iff G  is weight-balanced. 

Theorem 3.1 and 3.2 denote that the convergence of 
system (10) to a common value can be guaranteed by the 
design of the information flow topology. Note that a 
topologically balanced graph is not necessarily weight-
balanced. 

The final equilibrium can be calculated from the initial 
orientations of all the robots in the network. The method is 
reported as follows. 

Lemma 3.1 ([9], Corollary 2) Let G  be a strongly connected 
digraph. Suppose L  has a nonnegative left eigenvector ψ

1[ , , ]T
Nγ γ γ=  associated with zeroψ eigenvalue� that 

satisfies 0ii γ >∑ . System (10) reaches a consensus with the 
common value 
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Proposition 3.1 If a weighted digraph G  is strongly connected 
and topologically balanced, system (10) with weights defined 
by (8) can reach consensus. The equilibrium is 

(0)i ii
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α

+

+
=
∑
∑
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N
                            (11) 

Proof. Let 1 1[ , , ] [ , , ]T T
N Nd d+ + + += =d N N . By definition, 

0T =d L . Clearly, d  is a left eigenvector of L  with positive 
elements. Based on Lemma 3.1, the equilibrium is the 
weighted average of (0)iθ s.                                                   ■ 

2) Strategies with  velocity constraints 
To avoid wheel slide, limits of velocity are always adopted. 

The control input iω  calculated from (6) may exceed the 
admitted maximum of rotational velocity. Hence, considering 
velocity constraints we design a more practical strategy for 
parallel motion as follows. 

max max

( )         if 0          (12.a)

0                                    if 0          (12.b):

                                if        (12.c)
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where maxv  is the maximum of iv , maxω  the maximum of iω  
as the robot moves with translational velocity maxv  and k  is a 
proportional factor. 

According to (12), two steps are executed on the local 
controller of a robot: i) if robot i  has at least one out-neighbor, 
the consensus algorithm (12.a) is executed and control input 

iω  is calculated. Otherwise it keeps moving in original directi-
on. ii) if the calculated iω  exceeds maxω , the robot stops and 
regulates its direction with iω . Otherwise robot i  moves with 

max( , )iv ω  as control input. 

The factor k  is used to adjust the algorithm (12.a) in order 
to make the calculated result executed by low-level PID 
controller without actuator saturation.  

Proposition 3.2 (Bound of k ) Let wL  be the distance between 
two wheels, wR  the radius of wheel and maxm is the maximum 
of wheel speed in unit of round per second. If  

max 2 w

Lm
R

≥  

let 1k = , otherwise, let 
max2 wR m

k
L

≤  

such that the result of algorithm(12.a) can be executed. 
Proof. Let 1m and 2m  denote the speed of left and right wheels 
of a robot, respectively. Let mω be the maximal turning rate 
when robot i  rotates with 0iv = . The relation between wheel 
speed and robot velocity is given by 

1 22 ( )
2

w
i

R m m
v

π +
= ,  2 12 ( )w

i
R m m

L
πω −

=          (13) 

Obviously, 0iv =  and i mω ω=  when 1 2 maxm m m= − = − . Thus 
max4 w

m
R m

L
πω =                                (14) 

For ( , ]iθ π π∈ − , according to algorithm (12.a) , we attain the 
bound of the calculated and desired iω : 

( )
max( ) 2

i
i

j i
i j i

jj i

k
k k

θ θ
ω θ θ π

++
+ ∈∈

−
= ≤ − ≤∑

NN N
      (15) 

If 2mω π≥ , i.e. 

max 2 w

Lm
R

≥                                      (16) 

2i mω π ω≤ ≤  when 1k = .  
Otherwise, when 

max2 wR m
k

L
≤                                     (17) 

using (14),(15) and (17), we get 
max4

2 w
i m

R m
k

L
πω π ω≤ ≤ =  

Both of the case (16) and (17) denotes that the result of 
algorithm (12.a) can be executed without exceeding mω .     ■ 

C. Topology and Mode of Parallel Motion 
Theorem 3.1 and 3.2 and Proposition 3.1 demonstrate that 

the convergence of system behavior and the final equilibrium 
are closely related to the topology of arbitrary information 
flow structureG . In other words, different network topology 
can generate various kinds of parallel motion. Here we 
investigate two types of parallel motion, leadless mode and 
leader-follower mode, and design methodology of associated 
topologies.  

Leaderless mode denotes that the final direction θ  is not 
decided by some robot but by the weighted average of iθ s. We 
define the topology of G  by a Hamilton cycle [15] (See Fig. 
3(a)) to generate this motion mode. Obviously, G  is strongly 
connected, i.e. ,i j∀ ∈ I  there is a directed path from i to j , 
and satisfies  

1i i
− += =N N , i∀ ∈ I  

Thus G  is topologically balanced and weight-balanced with 
weights defined by (8). According to Theorem 3.2, system (10) 
can reach average consensus with the equilibrium  

1

1 (0)
N

i
iN

θ θ
=

= ∑  

  
(a)                         (b)                         (c)                         (d) 

 Fig. 3 Three types of information flow topology. (a) and (c) are weight-
balanced, (b) is topologically balanced but not weight-balanced and (d) is a 
rooted spanning tree. 



 

         

Obviously, any vertex in a Hamilton cycle is a sink. Theref-
ore, adding edges to a Hamilton cycle, e.g. the graph shown in 
Fig 3(b) is derived from that of Fig 3(a) by adding edges (1,5)  
and (5,1) , will still get leaderless mode generated. However, 
G  in Fig 3(b) is not weight-balanced even if topologically bal-
anced such that it’s consensus but not average consensus that 
is reached. If G designed by this method is regular (See Fig. 
3(c)), i.e. 

i i
− +=N N      i∀ ∈ I  

    i j
+ +=N N      ,i j∀ ∈ I  

G is weight-balanced, which guarantees the generation of 
leaderless mode with average consensus reached. 

Leader-follower Mode denotes that a robot l  is defined as 
leader and the others as follower such that the equilibrium 

lθ θ= . Note that not all followers have knowledge of the state 
of leader. Our design methodology for this mode of motion: 
Let the leader, robot l , be a sink without any out-neighbor, 
that is, 0l

+ =N  and any other robot can reach l . An instance 
of such kind of network topology is shown in Fig. 3(d). 

IV. SIMULATED EXPERIMENTS 

A. Simulated Testbed 
The motion of a MRN is simulated by a program built in 

MATLAB running on a PC. This software is composed of 
three parts (See Fig. 4):  a console for setting parameters and 
manipulating experiments, a solver for numerical simulation 
and a recorder for drawing trajectories and animation.  

In this testbed, a MRN has 6 robots with max 0.5m sv = , 

max 0.5rad sω =  and 0.3mwL = . We assume that no obstacle 
exists. The standard 4-order Runge-Kutta method is adopted to 
resolve the differential equations of kinematics (1). This 
simulated MRN is synchronous for all the robots calculate 
their desired velocity in the same time. 

B. Experiments 
The initial configurations of this MRN are shown in Fig. 5. 

The average orientation can be calculated: 0.104radθ = . We 
set the simulation step 0.01s and the duration 18s. The control 
law (12) is applied to the simulated MRN. The three topolo-
gies in Fig. 3, (a), (b) and (d) are adopted in experiments with 
results shown in Fig. 6 (a), (b) and (c) respectively. 

Fig. 6 shows that any of the three topologies can result in 
the robots moving in the same direction while the final states 
are different from each other. When the weight-balanced 
topology in Fig. 3(a) is applied, not only leaderless mode of 
parallel motion but also average consensus is reached as 
shown in Fig. 6(a). Fig. 6 (b) demonstrates that the topology in 
Fig.3 (b), topologically balanced but not weight-balanced, 
guarantees the emergence of group behavior of leaderless 
parallel motion but 0.104radθ ≠ . Fig. 6 (c) shows that the 
orientations of the others converge to that of leader robot 5 
defined as the unique sink with no outneighbors in Fig. 3 (d). 

 
Fig. 4 Three parts of simulation software 
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Fig. 5   Initial configuration of MRN 

 Note that many robots, e.g. No. 1, 2, 3, 6 in Fig. 6(a), rotate at 
their initial positions until the control input maxiω ω≤   which 
calculated by equation (10.a). These results verify the 
effectiveness of the coordination strategy and the correctness 
of the design methodology of information flow topologies. 

Fig. 7 demonstrates the results of applying the control laws 
with three different sampling rates 200ms, 600ms, 850msτ =  
under the same topology of Fig. 3(a). Clearly, as the sampling 
interval increases, the settling time of orientation trajectories 
increases. It means that the longer the robots wait for the data 
packets about states of their neighbors, the worse the system 
performance is. 

V. CONCLUSION 
We propose a decentralized control strategy for a group of 

wheeled mobile robots to move in the same direction with 
local information exchange and without priori knowledge 
about the final state. The description of a differential-driven 
MRN is reported including individual kinematics, information 
flow structure among robots and the object group behavior. 
With this framework one can naturally extend consensus 
algorithm to design the coordinated control rules. While speed 
constraints exist, the proposed consensus-based strategy must 
be corrected by multiplying by a factor which is related to 
basic parameters of the wheel and chassis. Two kinds of mode 
of parallel motion can be generated when different information 
flow topologies adopted, which are verified in those simulated 
experiments. Also the influence of sampling rate on system 
performance is demonstrated. 

The model of mobile robotic system and proposed 
methods can form principles for the design of wheeled multi-
robot system and coordinated group behavior. In future work, 
we’ll consider noise or disturbance from environment and 
obstacles in the way.  
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   (a)                                                                                  (b)                                                                                    (c) 

Fig. 6  Three modes of parallel motion are resulted from different information flow topologies. (a) Leaderless mode reaching average consensus, (b) Leaderless 
mode reaching consensus and (c) Leader-follower mode 

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4

Time (s)

O
rie

nt
at

io
n 

θ 
(r

ad
)

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4

Time (s)

O
rie

nt
at

io
n 

θ 
(r

ad
)

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4

Time (s)

O
rie

nt
at

io
n 

θ  
(r

ad
)

 
(a)                                                                                  (b)                                                                                    (c) 

Fig. 7 The orientation trajectories corresponding to different sampling rates (a) 200msτ = , (b) 600msτ =  and (c) 850msτ =  


