
A Parallel Training Algorithm of Support Vector
Machines Based on the MTC Architecture

Lei Wang, Huading Jia
School of Economics Information Engineering

Southwest University of Finance and Economics
Chengdu, China

{wanglei t, jhd}@swufe.edu.cn

Abstract—For accelerating the training speed of support vector
machines (SVM), a novel “multi-trifurcate cascade (MTC)” archi-
tecture was proposed in this paper, which held the advantages of
fast feedback, high utilization rate of nodes, and more feedback
support vectors. Then, a parallel algorithm for training SVM was
designed based on the MTC architecture, and it was proven to
converge to the optimal solution strictly. The experimental results
showed that the proposed algorithm obtained very high speedup
and efficiency, and needed significantly less training time than
the Cascade SVM algorithm.

I. INTRODUCTION

Support vector machines are modern learning systems
that deliver state-of-the-art performance in real world pattern
recognition applications, such as text categorization, hand-
written character recognition etc., which put their basis on the
statistics learning theory (STL) [1]. However, training SVM
requires resolving quadratic programming under constraints of
inequality, which results in calculation and storage difficulties
when the number of samples gets larger.

Recently, there were some works on developing parallel
implementation for training SVM, and they were proved more
suitable and efficient than chunking and decomposition ap-
proaches, especially on large-scale datasets [2]-[6]. Zanghirati
and Zanni proposed a parallel implementation of SVMlight,
in which the quadratic programming problem was split into
smaller subproblems and then solved by a variable projection
method [5]. Cao et al. found that over 90% of the total
computational time of the sequential SMO algorithm was used
for updating Fi array and calculating bup and blow in each step,
so they parallelized these tasks using multiple CPU processors
and obtained a great speedup than sequential SMO on different
datasets [4].

Different with above methods, several researchers investi-
gated another way to parallelize SVM, they trained multiple
SVM classifiers using subsets of training samples and then
combined them by a multilayer perceptron or another SVM.
Unfortunately, such methods cannot guarantee to converge to
the global optimal solution of SVM [2][3], in particular to
high-dimension problems. More recently, Graf et al. utilized a
special binary cascade architecture to train SVM on multiple
processors, and corresponding parallel algorithm is called Cas-
cade SVM. They proved that the global optimal solution can
be guaranteed with several passes through such architecture.

In this paper, we propose a novel “multi-trifurcate cascade
(MTC)” architecture, which holds the superiorities of fast
feedback, high utilization rate of nodes, and more feedback
support vectors than the binary cascade one. Then, we develop
a MTC-SVM algorithm for training SVM in parallel based
on the MTC, and prove its convergence to the global opti-
mum. Finally, we run the proposed algorithm on at most 27
processors simultaneously under different large-scale datasets,
the experimental results show that the obtained speedup and
efficiency are both high, and the training speed is much faster
than Graf’s Cascade SVM.

II. BRIEF REVIEW OF CASCADE SVM

The binary cascade architecture is developed based on de-
composing the problem into a number of independent smaller
subproblems, and the partial results are combined pairwisely
in later layers in a hierarchical fasion [6].

As shown in Fig. 1, the original training dataset S is
decomposed into p disjoint subsets S1, S2, · · · , Sp in the first
layer, and they are distributed to p computational nodes (CPU
processors) to train p local SVM classifiers in parallel. Then,
in the next layer, sets of support vectors from two SVMs are
combined pairwisely into p/2 training subsets, and p/2 local
SVMs are learned on them. This continues until only one SVM
is left in the last layer. But if such SVM can’t reach to the
global optimum, its support vectors should be fed back into
the first layer and a new pass through this cascade architecture
is needed.

Fig. 1. The binary cascade architecture (p = 23)

According to the comments of Graf, the Cascade SVM

978–1–4244–1674–5/08/$25.00 c© 2008 IEEE CIS 2008

algorithm will converge to the global optimum within several
passes for most classification tasks.

However, we analyze that there are two main deficiencies
of the binary cascade architecture, as follows.

(1) Feedback of support vectors in the last layer is too slow.
we can easily verify that the binary cascade architecture has

k+1 layers if the number of nodes is p = 2k. That is to say, at
least one node has to train k+1 local SVMs before it receives
the feedback from previous pass. Obviously, if we can reduce
the layers of the cascade architecture, the support vectors will
be fed back more early and the algorithm will converge more
quickly.

(2) Utilization ratio of computational nodes is too low.
Take Fig. 1 for example, all the 8 nodes need to train

local SVM in the first layer, but the number reduces to 4
in the second layer, while 2 and 1 in the last two layers.
Hence, many nodes are idle during a pass, which causes severe
computational inefficiency.

In next section, we propose a promising multi-trifurcate
cascade architecture to ease above deficiencies, and based on
which develop an efficient parallel algorithm for training SVM.

III. THE MULTI-TRIFURCATE CASCADE ARCHITECTURE

For accelerating the feedback of support vectors, we adopt
a trifurcate cascade architecture, as Fig. 2.

Fig. 2. The trifurcate cascade architecture (p = 32)

It’s easy to observe from Fig. 2 that: (1) In the first layer, the
original training dataset S is decomposed into p = 32 disjoint
subsets and distributed to computational nodes P1, P2, · · · , Pp

to train p local SVMs. (2) In the second layer, the nodes
P2, P5, P8 assemble their new training subsets respectively
by collecting support vectors from their two adjacent nodes,
together with their local sets of support vectors, and then p/3
local SVMs are trained on these new subsets. (3) In the third
layer, the node P5 assembles its new training subset to train
the final SVM by collecting support vectors from nodes P2

and P8 together with its local support vectors. (4) If the final
SVM doesn’t reach to global optimum, its support vectors are
fed back into all the nodes in the first layer, and then the next
pass starts.

Obviously, each nodes needs to train at most 3 local SVMs
before receives the feedback support vectors from node P5 in
Fig. 2, while the number is 4 in Fig. 1. Therefore, the trifurcate
cascade architecture holds fast feedback speed than the binary
one.

However, we notice that the node P1, P3, P4, P6, P7, P9 are
all idle in the second and the third layers, which causes severe
computational inefficiency. Here, we let these nodes collect
their adjacent sets of support vectors and train local SVMs
in the second and the third layer, according to the other two
isomorphic trifurcate cascade architectures in Fig. 3. Further,
we are easy to analyze that the newly added architectures won’t
disturb existing computational tasks in nodes P2, P5, P8, but
just make full use of the idle nodes P1, P3, P4, P6, P7, P9,
namely such three architectures are independent with each
other during a pass.

Fig. 3. The other two isomorphic trifurcate cascade architectures (p = 32)

Thus, we obtain the proposed “multi-trifurcate cascade ar-
chitecture (MTC)” in this paper immediately after superposing
above three isomorphic and independent trifurcate cascade
architectures in Fig. 2 and Fig. 3. Furthermore, we can easily
extend the MTC architecture to more general cases where
p = 3k, k = 2, 3, 4, · · ·, and find that it obeys the following
rules in the j-th pass:

(1) In the first layer, the training subset of each node Pi

is the union of Si and the feedback set of support vectors Uj

(U0 = ∅ in the first pass).
(2) In the r-th layer (1< r ≤k), the training subset of each

node Pi is composed of the sets of support vectors from Pz1

and Pz2, as well as its local set, where z1 = (i−3r−2) mod p
and z2 = (i + 3r−2) mod p.

(3) In the (k+1)-th layer, only p/3 nodes need to train local
SVMs, with subscripts satisfying p/3 < i ≤ 2p/3. Similarly,
the each Pi builds its training subset in the same way as in rule
(2), just with z1=(i−3k−1) mod p and z2=(i+3k−1) mod p.
Then, the feedback set U j+1 is the union of the sets of support
vectors from such p/3 nodes.

Hence the MTC is equivalent to the superposition of p/3
isomorphic trifurcate cascade architectures. Compared with
Graf’s binary cascade architecture, it holds three main advan-
tages as follows.

(1) Faster feedback speed.
Since trifurcate cascade architectures are independent with

each other, the needed training time of MTC within a pass is

comparable with that of a single trifurcate cascade architecture.
Hence, the feedback speed of MTC is faster than Graf’s binary
cascade architecture.

(2) Higher utilization ratio of computational nodes.
Except for only p/3 nodes in the last layer (see also

P4, P5, P6 in Fig. 2 and Fig. 3), all nodes in MTC have
participated in training local SVMs. Hence, the utilization ratio
of MTC is much higher.

(3) More feedback support vectors.
Since the feedback set in MTC is composed of p/3 sets of

support vectors in the last layer, while that in binary cascade
architecture is composed of only one set of support vectors,
hence more support vectors can be fed back into next pass.
According to the comments of Graf [6], this means faster
convergence of parallel training process.

IV. TRAINING SVMS BASED ON THE MTC

A. The proposed MTC-SVM algorithm

Based on the proposed MTC architecture, we develop a
parallel algorithm for training SVM efficiently, which is called
“MTC-SVM” as follows.

Initialization: Divide the training set S into p equivalent
subsets S1, S2, · · · , Sp with p = 3k, and distribute them to p
nodes respectively. Let U0 = ∅ and t = 1.

Step 1: Each node Pi(1≤ i≤ p) prepares its current training
subset St

i as the following way:
(a) If t mod (k + 1) = 1, St

i is the union of Si and
the feedback set U t−1.
(b) If t mod (k + 1) = r and 1< r ≤k, the current

subset St
i is equivalent to St

i =Svt−1
i

⋃
Svt−1

z1

⋃
Svt−1

z2 .
Here, Svt−1

j is the set containing all support vectors
of St−1

j , and subscript j (= z1, z2) satisfies z1 = (i−
3r−2) mod p and z2 = (i + 3r−2) mod p.
(c) If t mod (k + 1) = 0, only nodes belonging to
{Pi | p/3 < i ≤ 2p/3} need to prepare their current
training subsets. Here, St

i is equivalent to St
i =Svt−1

i

⋃

Svt−1
z1

⋃
Svt−1

z2 , and subscripts z1, z2 satisfy z1 = (i−
3k−1) mod p and z2 = (i + 3k−1) mod p.

Step 2: Each node Pi trains local SVM on subset St
i and

gains current set of support vectors Svt
i .

Step 3: If t mod (k + 1) = 1 and Svt
i ⊂ U t−1 are satisfied

for each Pi, algorithm stops.
Step 4: If t mod (k + 1) = 0, set U t =

⋃
Svt

i with p/3<
i≤ 2p/3.

Step 5: Let t = t + 1, return to step 1.

B. Analysis of Convergence

The following theorems show that MTC-SVM converges to
the global optimum within finite steps. Let T denote a subset
of training set S, W (T) is the optimal (or minimal) objective
function of SVM over T , and let Sv(T) ⊂ T be the subset
that contains all the support vectors of T .

Since the solution of SVM is determined only by support
vectors [1], we have W (Sv(T)) = W (T). Furthermore, let
Sv(S) be set of support vectors when SVM reaches to the

global optimal solution on S, we have W (Sv(S)) = W (S).
Thus, we can easily deduce the following equation for ∀T ⊂ S:

W (T) = W (Sv(T)) ≥ W (Sv(S)) = W (S) (1)

Let G represent a family of subsets of S. The set T ∗
G that

achieves the smallest W (T) will be called the best subset in
family G. Thus, we further define W (G) as

W (G) = min
T∈G

W (T) = W (T ∗
G) ≥ W (S) (2)

Theorem 1: Let us consider two families F and G of
subsets of S, where T ∗

G is the best subset of G. Then, if there
exists a subset TF ∈ F that contains all support vectors of T ∗

G ,
we have W (G) ≥ W (F).

Proof: Since Sv(T ∗
G) ⊂ TF , we have W (T ∗

G) =
W (Sv(T ∗

G)) ≥ W (TF). Therefore, W (G) = W (T ∗
G) ≥

W (TF) ≥ W (F).

Theorem 2: Let us consider two families F and G of
subsets of S, where T ∗

G is the best subset of G. Assume that
each subset TF ∈ F contains all support vectors of T ∗

G . Then,
if W (G) = W (F), we have W (T ∗

G) = W (
⋃

TF).
Proof: Since any subset TF ∈ F contains Sv(T ∗

G), we
have W (TF) ≤ W (Sv(T ∗

G)) according to Theorem 1. We
also have W (TF) ≥ W (F) = W (G) = W (Sv(T ∗

G)) for any
subset TF ∈ F according to the given condition. Therefore,
W (TF) = W (Sv(T ∗

G)), which implies that any subset TF ∈ F
have the same set of support vectors as Sv(T ∗

G)
Further, we can easily analyze that the union of subsets⋃
TF also have the same set of support vectors as Sv(T ∗

G),
namely W (T ∗

G)=W (Sv(T ∗
G)) = W (

⋃
TF).

During the running of MTC-SVM algorithm, we let all
the training subsets St

i in t-th step compose a family Gt

of subsets of S, and label all the families in sequence as
G1,G2, · · · ,Gt, · · ·.

Theorem 3: The MTC-SVM algorithm converges to the
global optimal solution of SVM in finite steps.

Proof: According to the character of MTC architecture,
each family Gt(t > 1) has at least one subset St

i ∈ Gt that
contains all the support vectors of S

(t−1)∗
j , where S

(t−1)∗
j is

the best subset of previous family Gt−1. Then, from Theorem
1, we can easily verify that the sequence W (Gt), t = 1, 2, · · ·
is monotonically decreasing and is bound by W (S).

Supposing that current family Gt is composed of all the
training subsets St

i = Si

⋃U t−1 in the first layer of MTC
architecture, where U t−1 is the feedback set of previous pass,
we can prove that:

(1) If all subsets St
i ∈ Gt satisfy W (St

i) = W (U t−1), we
have W (U t−1) = W (

⋃
St

i) = W (S) according to Theorem 2,
which implies that the optimal solution of SVM can be trained
on U t−1. Hence, the algorithm can stop now.

(2) If any subset St
i ∈ Gt satisfies W (St

i) < W (U t−1), we
have W (U t−1)>W (St

i)≥W (Gt) ≥ W (S), which means that
the optimal solution cannot be trained on U t−1. However, we

can easily get W (Gt−1) ≥ W (U t−1) > Gt according to (1).
Since W (Gt) takes W (S) as its lower bound, there must exist
a constant d > 0 that all subsets St+b

i ∈ Gt+b satisfy W (St+b
i) =

W (U t+b−1) after d training passes, where b=d · (k+1). Hence,
the algorithm can stop at the global optimal solution after d
pass.

Therefore, above analyses prove that the MTC-SVM algori-
thm will converge to the global optimum of SVM in finite
steps.

V. EXPERIMENTAL RESULTS

To verify the advantages of MTC-SVM, we test it exten-
sively against Graf’s Cascade algorithm using several UCI1

datasets. Both algorithms are implemented in C and run on a
cluster which has a total of 27 nodes, with each node being a
IBM P4 2.66GHz Processor.

The first experiment investigates the performance of MTC-
SVM algorithm with different number of nodes (p = 3, 9, 27)
on splice, letter, adult and shuttle datasets. For each dataset,
about 10% samples are used for testing, while the rest is
divided equally into p parts and distributed to p nodes for
training SVM in parallel. In each computational node, the local
SVM classifiers are trained by the SVMlight algorithm [7] with
Gaussian kernel, and kernel parameter σ and penalty parameter
C are set as Table I.

In this experiment, five indices are evaluated for each
dataset, including total training time, speedup, efficiency, test-
ing accuracy and total number of passes. Main experimental
results are reported as Table I, where p=1 represents results
of SVMlight on entire training samples and single node.

TABLE I
TESTING ACCURACY(ACCU.), TRAINING TIME(TIME), TOTAL NUMBER OF

PASSES(#PAS.), SPEEDUP(SPEE.) AND EFFICIENCY(EFFI.) OF MTC-SVM
ALGORITHM UNDER DIFFERENT NUMBERS OF PARALLEL NODES

accu. time
datasets # nodes

(×100%) (sec.)
pas. spee./effi.

p = 1 90.60 183.3 — —/—
splice p = 3 90.60 120.8 4 1.52/0.51

p = 9 90.60 10.1 2 18.15/2.02
(

σ=0.5
C=1.0

)

p = 27 90.60 3.8 2 48.24/1.79
p = 1 86.45 517.9 — —/—

letter p = 3 86.45 631.0 6 0.82/0.27
p = 9 86.45 60.4 3 8.57/0.95

(
σ=2.0
C=10

)

p = 27 86.45 21.3 3 24.31/0.90
p = 1 85.21 2974.0 — —/—

adult p = 3 85.21 2619.4 5 1.14/0.38
p = 9 85.21 305.7 3 9.73/1.08

(
σ=1.0
C=10

)

p = 27 85.21 60.5 2 49.16/1.82
p = 1 99.91 481.2 — —/—

shuttle p = 3 99.91 231.0 3 2.08/0.69
p = 9 99.91 24.8 2 19.40/2.16

(
σ=10.0
C=1000

)

p = 27 99.91 7.6 2 62.92/2.33

From the obtained results of Table I, we observe that MTC-
SVM reaches to the optimal testing accuracy (same with that of
SVMlight on single node) in all cases. This confirms Theorem 3
that MTC-SVM can converge to the global optimum of SVM.

1Available at http://www.ics.uci.edu/∼mlearn/MLRepository.html

We also observe that MTC-SVM can improve training speed
remarkably and obtains very high speedup and efficiency,
especially as p = 9 and p = 27. For example, the efficiency
is greater than one on 3 datasets. This phenomenon is easy to
explain according to our previous theory analyses. The MTC
is “three-trifurcate cascade architecture” and “nine-trifurcate
cascade architecture” respectively as p = 9 and p = 27, on one
hand, the costs for training local SVM classifiers on each node
are decreased since the reduced scale of training subsets. And
on the other hand, the total number of passes of MTC-SVM
before convergence is decreased greatly since more support
vectors are fed back into next pass. Therefore, MTC-SVM
algorithm can significantly reduce the training time.

For a better understanding of the superiority of MTC-
SVM on training speed, we compare it deeply against Cascade
SVM algorithm on large-scale forest dataset in our second
experiment, where MTC-SVM runs on a cluster of 9 nodes
while the latter utilizes 8 nodes.

In the experiment, about 10% samples in forest dataset are
used for testing, and the rest are distributed to computational
nodes equally for training. The training parameters are set with
σ =0.1 and C =10. Table II reports the main results of both
algorithms after each pass, where column “NF ” presents the
number of support vectors in current feedback set.

TABLE II
COMPARISON OF TRAINING TIME(TIME), TESTING ACCURACY(ACCU.)

AND NF BETWEEN MTC-SVM AND CASCADE SVM ALGORITHMS

MTC-SVM Cascade SVM
time accu. time accu.no. pass
(sec.) (×100%)

NF (sec.) (×100%)
NF

1 1,476 94.81 9,970 2,171 94.62 9,503
2 2,352 95.12 10,797 3,204 94.90 10,366
3 2,533 95.16 10,832 3,518 95.05 10,680
4 3,670 95.14 10,808
5

——
3,650 95.16 10,825

SUM 6,291 95.16 16,213 95.16

The results in Table II show that the needed total training
time of MTC-SVM algorithm is significantly less than that
of Cascade SVM, at the cost of only one more computational
node. The reasons for such superiority can further be explained
directly from Table II that: (1) MTC-SVM needs much less
passes; (2)The training time of MTC-SVM for each pass is
remarkably less than that of the latter.

The reason for less passes of MTC-SVM is obviously.
Since the MTC is equivalent to the superposition of multiple
isomorphic trifurcate cascade architectures, its feedback set is
composed of the support vectors of each trifurcate cascade
architecture in the last layer during any pass. Therefore,
the feedback set always contains more support vectors than
that of binary cascade architecture, which accounts for the
faster convergence ratio. For example, after the first pass the
MTC-SVM already obtains a testing accuracy of 94.91% and
corresponding feedback set contains 9,970 support vectors,
while those of Cascade SVM are only 94.62% and 9,503
respectively.

The reason for less training time of each pass is also easy
to undertand. Since the MTC has fewer layers than binary
cascade architecture when the number of nodes is comparable,
the maximal number of local SVMs that each node needs to
train during a single pass is smaller than than that of the latter.
Therefore, the total training time of each pass for MTC-SVM
algorithm is much less.

VI. CONCLUSION

One efficient way to accelerate the training speed of SVM is
to implement it in parallel. For conquering the deficiencies of
binary cascade architecture[6], such as slow feedback of sup-
port vectors and low utilization ratio of computational nodes,
we propose a novel and efficient “multi-trifurcate cascade
architecture” and develop corresponding parallel algorithm
with it for training SVM quickly. Theoretical analysis shows
that the proposed MTC-SVM algorithm can converge to the
global optimal solution of SVM in finite steps. Experimental
results show that it can reach to very high speedup and
efficiency, and obtains much faster training speed than Graf’s
Cascade SVM algorithm.

This work is very useful for the research where a cluster of
CPU processors is available. Future work needs to extend the
parallel MTC-SVM algorithm from classification to regression
estimation by implementing the same methodology for SVM
regressors.

ACKNOWLEDGMENT

This paper is sponsored by the National Natural Science
Foundation of China (NSFC) under Grant No. 69732010.

REFERENCES

[1] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New
York, 1995.

[2] R. Collobert, S. Bengio and Y. Bengio, “A parallel mixture of SVMs for
very large scale problems,” Neural Computation, vol. 14, pp. 1105-1114,
2002.

[3] J. X. Dong, A. Krzyzak and C. Y. Suen, “Fast SVM training algorithm
with decomposition on very large data sets,” IEEE Transaction on Pattern
Analysis and Machine Intelligence, vol. 27, pp. 603-618, 2005.

[4] L. J. Cao, S. S. Keerthi, et al., “Parallel sequential minimal optimization
for the training of support vector machines,” IEEE Transaction on Neural
Networks, vol. 17, pp. 1039-1049, 2006.

[5] G. Zanghirati, L. Zanni, “A parallel solver for large quadratic programs
in training support vector machines,” Parallel Computing, vol. 29, pp.
535-551, 2003.

[6] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic and V. Vapnik, “Parallel
support vector machines: the cascade SVM,” in Advances in Neural
Information Processing Systems. MIT Press, Cambridge, 2005, pp. 521-
528.

[7] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods: Support Vector Learning, B. Scholkopf, C. Burges
and A. Smola, Eds. MIT Press, Cambridge, 1999, pp. 169-184.

