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Abstract—In this paper, a logical control algorithm for a class 
of single-input-single-output (SISO) affine nonlinear systems with 
known parameters is approached: first, an inside-loop nonlinear 
feedback control is built, and a pseudo linear system is 
established based on the inverse system method. Second, an 
outside-loop control net——logical controller to make the system 
approximate stable is designed. Beside, the control result of the 
considered nonlinear system is much better than normal logical 
controllers by adjusting the parameters of logical controller given 
out in the paper. 

Keywords—affine nonlinear systems; logical control; input-
output error 

I.  INTRODUCTION 
The nonlinear control based on the feedback linearization [1] 

(chaos systems, fuzzy systems, and adaptive controllers) has 
received much attention recently [2, 3, 4]. In such schemes, the 
stability of the closed-looped system is established according to 
Lyapunov’s theory or the universal approximation theorem [8]. 
A tracking control method [2] based on nonlinear feedback 
control theory is developed to synthesize chaos from n-
dimensional systems ( 3n ≥ ) in a unified form. The paper [3] 
focuses on the construction of a fuzzy adaptive output feedback 
control based on any observer (high-gain (HG) 11 observers, 
sliding mode (like) observer, etc.) for a class of single-input–
single-output (SISO) uncertain or ill-defined affine nonlinear 
systems. However, we need lots of mathematical operator and 
theoretic suppose for dealing with the nonlinear systems. 

In recent years, a new method of control begins to be 
popular in China. It is logical control [5]. And it has received 
some application [6, 7]. In fact, logical control has a lot of 
similarities with fuzzy control. Both of them provide a 
systematic and efficient framework to incorporate linguistic 
information from human expert. The fuzzy control has more 
complicated mathematical method than logical control. 
Compared with fuzzy control, logical control is easy to 
comprehend. Here is the merit of logical control. However, the 
pure logical control is only a changeable proportional controller 
[6], it will cause the micro oscillating problems. In this paper, 
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we design a logical control for a class of SISO affine nonlinear 
systems with known parameters based on exact feedback 
linearization. Meanwhile, a loop of adjusting parameters is 
designed to solve the micro oscillating problems. 

Unlike the above contribution, in this paper, a stepped-up 
logical control for a class of nonlinear systems is designed. 
There are three main contributions that are worth to be 
emphasized. Firstly, there are still no reports of the logical 
control with generic nonlinear systems. In the literature [7], the 
design methods of nonlinear system deal with the simplest 
nonlinear problem. Secondly, the filter loop introduced in 
literature [8] is recommended as the adjusting parameter of the 
logical controller to approach the better results than general 
logical controller. Finally, a simulation based on our analysis is 
addressed in section Ⅳ. 

II. PROBLEM DESCRIPTIONS 
Consider SISO system [1] 
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Where state vector ( 1)
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belonging to an open-set K  of nR , u R∈  is input vector, 
y R∈  is output vector, ( ), ( ), ( )f x g x h x  are smooth 

functions defined on an open set K  of nR .  

Therefore, the exact feedback linearization of system (1) 
can be described as [1]:  

For a given point xD , and find a domainU , the feedback u  
is defined in the U  

 ( ) ( )u x x vα β= +                         （2） 

where v  is the input. Substituting (2) into (1), 

 ( ) ( ) ( ) ( ) ( )x f x g x x g x x vα β= + +�  （3） 

And a coordinate transformation ( )z x= Φ  defined inU  
makes the corresponding closed-loop system be linear and 



         

controllable in the new coordinate ( )z x= Φ  ,namely 
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To some suitable matrix n nA R ×∈  and vector nB R∈ , we 
have 

 1( )nrank B AB A B n− ="  （5） 

So, we obtain the precise linearization form (4) of the state-
space of considered nonlinear systems.  

Lemma 1. The precise linearization problem of state-space 
is solvable, if and only if when xD  exists a domain U  and a 
real function ( )xλ  that defined inU , and the system (6) has 

relation degree= n  in xD . 
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On the basis of feedback-linearization, we can introduce the 
theory of linear control systems and design controller such as 
PID, adaptive and fuzzy control algorithm shown in literature 
[3]. In this paper, we will design a new logical controller based 
on the precise linearization. 

Logic control generally refers to the systems’ condition 
model that expressed by a group of concepts and corresponding 
operation, the decision-making, in order to meet the required 
performance. Such a process is known as logic control. The 
theoretical basis is the pan-Boolean algebra. The control 
method is judged by the reflect deviation composed by state-
variable and the trend of variable systems’ operating 
conditions, according to different conditions output under 
designed control variable. The viewpoint of control is viewed 
as the process of compensating and consuming energy. 

III. CONTROLLER DESIGN AND STABILITY ANALYSIS 
Review the process for precision linearization at first [1]. 

A. Precise linearization 

For system (1), assume the related degree is r n=  at xD . 
Based on the definition of related degree, we can let 
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Easily find the description of that system in the new 
coordinate ( ),1i iz x i nφ= ≤ ≤ :  

For 1, , rz z" , satisfied: 
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for nz , we have 
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let 
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The description of system as follows: 
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Where 1( , , )T
nz z z= "  Based on the definition of 

relative degree, at ( )z x= ΦD D , ( ) 0m z ≠D .so coefficient 

( )m z  is not equal to 0 at neighborhood zD . So, choose the 
state feedback control laws as follows: 
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Then we get the (13) by substituting (12) into (11)  
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And we can summarize the precise linearization ( r n= ) as 
Figure.1. 

 
Figure 1.  The scheme of precise linearization ( r n= ) 

B. The basic theory of logic control 
The logic controller according to error e and the error rate 

of change e� make corresponding control action based on 
different conditions, so as to achieve real-time tracking control. 
The basic logic controller, the error e can be divided into 
positive, zero, negative. When the error is positive, that is 

0e > , the value of output ( )y t  is less than the set value 
( )r t  and the system is at shortage energy condition, we should 

set up a larger control role to supply energy. When the error is 
zero, that 0e = , the value of output ( )y t  is equal the set 
value ( )r t , and we can assume that the energy is at balance 
state, we do not need doing anything. When the error is 
negative, that 0e < , the value of output ( )y t  is larger than the 
set value ( )r t  and the system is at excessive energy state, we 
can inhibit excessive energy according to inhibiting action. 
Similarly, we can use the same method to deal with the error 
rate of change in various situations. We can get nine different 
working conditions, and according to different working 
conditions we can have corresponding control quantity（TABLE 
Ⅰ）. 

TABLE I.  ACTION OF BACIS LOGICAL CONTROL 

e   

e�  positive zero negative 

positive Bigger 
compensate 

Compensate No action 

zero Compensate No action Inhibition 

negative No action Inhibition Bigger 

 inhibition 

For the realization of logic control quantity, at present there 
is only proportion control plan. So, in essence, we can call 
logical control as logic proportional control, the control system 
structure as the following (Figure.2): 

 
Figure 2.  Scheme of the basic logic control 

For general logic controller, we can look upon v  of (12) 

 t
cv K=   （14） 

so 
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Thus, the relation of input and output becomes a simple 
integral compensation. Obviously, for general affine non-
linearization only integral control effect is not enough. 

 

C. Design of parameter self-adjusting controller 
From above, for the further steady state problem of system, 

we choose the local parameter self-adjusting au  as follow: 

 ( )T
a fu sign eθ= − ， （17） 

Where, 1 2,,T
nθ θ θ θ =  … is parameter adjusting vector. 

Here fe is based on literature [8]. 

Defined a new vector, specific as follows:  

 0 ( )f fe Ke e eα α+ = +� �  （18） 

From (18) we know 
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Where K  and 0α  are positive design parameters. 

To summarize, Figure.3 shows the overall scheme of the 
logical control based on input and output error proposed in this 
paper. 

 
Figure 3.  Overall scheme of the parameter self-adjusting logical controller 

D. Stability analysis and proof 
    For large-scale stability, we can easily see in the phase 

plane [5], the relation of input-output of system is under a trend 
that energy constantly becomes stable. 

Based on the above analysis we can use the Routh-Hurwitz 
criterion in the process of local error adjustment. So we can get 
the open-loop transfer function 
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And close-loop system characteristic equation 

 2
0 0( ) ( )D s s K sα α α= + + +   （21） 

Obviously, system is stable if and only if 0 , , 0Kα α > . 

IV. SIMULATION 
Considering the following third-order nonlinear system: 
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for the system, we have: 

 
2

1 2

2 2
1 2

2
2

3 2
2 1 2

( ) 0, ( )

( ) 0, ( )

( ) (1 2 )

( ) 2 ( )

g f

g f f

x
g f

f

L h x L h x x x

L L h x L h x x x

L L h x x e

L h x x x x

= = −

= = − −

= − +

= − +

  （23） 

Obviously, for each point suits 21 2 0x+ ≠ , the relative 
degree of the system is 3(equal to n ). Such an arbitrary point in 
the vicinity, for example near the point 0x = , by means of 
feedback control (24) and coordinate transformation (25) we 
can transform the original system into a linear and controllable 
system. 
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In the new coordinates, we can get 
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Obviously, the transfer function after feedback-linearization 
is:  
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The simulation of the system shows that the original system 
changes to a one-order integral loop after precise feedback-
linearization. The open-loop unit step response is shown as 
Figure.4. From Figure.4, the response approximate to open-
loop step-response and the curve slope of the response is 
similar to its relative degree. 

 
Figure 4.  Open-loop step response after feedback-linearization 



         

Preliminary design logic controller, we can get the control 
effect of simulation as Figure.5. 

 
Figure 5.  Simulation of basic logical controller  

From above, we use the logic control to realize the steady 
control for affine nonlinear SISO system with known 
parameters after feedback-linearization. Here, we can easily see 
the vacuum point that because of precise linearization, and the 
control effect is not idealistic if only use the single proportional 
control.  

Based on (19) ，we make further simulation design for the 
above example, obtained the better control effect figure 
( 0 1, 0.1, 100Kα α= = = ) as Figure.6: 

 
Figure 6.  Simulation of stepped-up logical control  

V. CONCLUSION 
Logic control is based on the Pan-Boolean algebra which 

has strict control mode of thinking. Here we apply it into a 
class of general affine nonlinear systems and prove the general 
simple logic control can be achieved steady-state 
approximation control of nonlinear systems. Then based on this 
logic control we added to achieve a better control effect.  
    On basis of this issue, we face many problems that are urgent 
to be solved. For example, logic control problems for affine 
nonlinear systems control when the general parameters of 
uncertain; relatively simple logic control whether can achieve 
the effect of chaos logic control; the parameters of logic control 
and so on. 
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