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Abstract—Nonverbal behavior during human-human close en-
counters is critical to the accomplishment of natural interaction.
For this reason, humanoid robots trying to achieve natural
interactions with humans should be able to understand and
synthesis nonverbal behavior in a way that mimics the human
use of it. One of the most important situations during natural
human-robot interactions is the explanation scenario in which
the human is explaining a task to the robot using natural verbal
and nonverbal behavior. This situation occurs frequently in many
HRI applications and is critical to the success of the Robots
as Knowledge Media project suggested by the authors. In this
paper the implementation of a humanoid robot that can show
human like gaze control during explanation settings based only
on reactive processing is presented. The software of the robot is
based on the EICA architecture designed to combine autonomy
with interactivity in the lowest level of the system. The details of
the implementation and analysis of the naturalness of behavior
and the effect of noisy input is presented in this paper.

Index Terms—Gaze Control, Reactive HRI

I. INTRODUCTION

The robot envisioned in this work is a knowledge transfer
agent that can listen to expert explanations of a given task and
then conveys this knowledge to novice humans when they have
a need for such knowledge transfer ([9]). More details can be
found in [5], [7].

To achieve this goal, the robot needs to give the expert a
natural explanation experience during knowledge acquisition.
In this paper a minimalist implementation of such a natural
listener is presented in the knowledge blind case (see [7] for
details) in which the robot do not understand the verbal content
of the explanation.

In [3] Kidd and Breazeal compared a robot and a computer-
graphic agent and found that subjects felt the robot to be more
informative and credible than the computer-graphic agent for
communication concerning real-world objects like manipulat-
ing color objects on a table. Many other experiments showed
the effectiveness of utilizing facial expression, gaze and ges-
tures for communication purposes [8]. Mutual Attention was
discussed by many researchers as a mutual body movement
essential for natural communication in HRI [13], [14] and [9].

Some researchers focused on natural listening behavior
in human robot interactions. In [11] Ogawa and Watanabe
studied the concept of speech driven embodied robots using
two robots that play the role of the listener and the speaker.
Two models were incorporated: one is a listener’s action model

in which nodding, blinking and the motions of head, arms
and body are estimated by the hierarchical moving average
(MA) model of the burst-pause (ON-OFF) of speech to the
nodding; the other is a speaker’s action model in which the
motions of head, arms and body are estimated by its own
MA model of the ON-OFF of speech to the head motion. By
the sensory evaluation and behavioral analysis in human-robot
interaction, the effectiveness of this InterRobot’s interaction
was demonstrated. Although [11] focused on the temporal
aspect of natural listening, [2] focused on both temporal
and spatial cooperativeness in a route guiding scenario using
communication units and customizable firing rules for them.

In [10] a Bayesian network was employed to implement
natural listening behavior in a demonstration scenario similar
to the explanation scenario demonstrated in this paper. The
authors designed four communication modes for the speaker
and used nonverbal cues to decide the current communication
mode. This decision is then employed to guide the nonverbal
behavior of the robot in a probabilistic framework. In this paper
a similar behavior is investigated that utilizes very simple state
machines that depend directly on the row sensor information
and combined using the EICA architecture to generate complex
natural behavior comparable to the reported human-human
natural listening in close encounters.

The following section briefly explains the EICA architecture
used to develop the software of the robot followed by a detailed
explanation of the current implementation in section III. In
section IV preliminary results showing the applicability of the
proposed approach are presented then the paper is concluded.

II. EICA ARCHITECTURE

The software of the robot presented in this paper is built us-
ing the EICA architecture proposed by the authors to combine
autonomy with natural interactivity. The theoretical founda-
tions of the EICA (Embodied Interactive Control Architecture)
can be found in [4] and [6]. Only a brief account of this
foundation and implementation details of the architecture are
given here followed by a discussion of its features that make
it suitable for implementing natural listening behavior. As
shown in Fig. 1, the EICA system consists of a set of type
specifications that can be realized either by software objects
or hardware dedicated circuits, processors, or microcontrollers.
The set of customizable active components are:
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Fig. 1. L0EICA

• Processes: Active components that run continuously. Ev-
ery process has an attentionality attribute that determines
how frequent it checks its inputs. Processes can create,
drop, communicate, and change the attentionality of other
processes or motor plans. Processes can also manage the
intentionality of registered motor plans. Normal processes
cannot generate actions that affect the robot’s behavior
directly.

• Reflexes: Special type of processes that have fixed maxi-
mum attentionality and that can produce actions that go
directly to the actuators overriding any bending actions
in the action integrator. Note that only reflexes and motor
plans can generate actions in EICA

• Motor Plans: Reactive processes that along with atten-
tionality have an intentionality attribute that determine the
relative priority of their generated actions.

• Executers: Active components that can execute actions
directly on the robot.

Along with those customizable action components, EICA
has a single process called the Action Integrator that combines
the actions generated by active motor plans and reflexes to
generate the final behavior of the robot. The key features of
L0EICA that makes it appropriate for implementing natural
listening behavior are:

1) Sound intention modeling: EICA is based on the inter-
active model of intention and intention communication
proposed by the authors in [4]. This model of intention
is based on sound theoretical foundations from neuro-
science and experimental psychology [4] that facilitates
implementing natural interactive behavior and facilitates
debugging and incremental adding of behaviors.

2) Flexible action selection\integration: EICA utilizes a
two-levels action integration mechanism that allows it to

generate behaviors ranging from Behavior Level Selec-
tion to Action Level Combination based on the attributes
given to the intentions and actions which are under the
control of the developer.

3) Flexible relation between deliberation and reaction:
L0EICA imposes no restrictions on the relation between
deliberation and reaction so the robot design can be
built in a pure reactive mode and then deliberation can
be added as the task complexity supported increases.
This is useful for implementing natural listening as the
final behavior will not depend only on the nonverbal
reactive behavior that is the focus of this paper but also
on deliberative behavior based on natural language and
context processing.

III. REACTIVE GAZE CONTROL

Natural listening is a complex process that requires both
reactive and deliberative processes. In the current paper only
the nonverbal reactive behavior is considered assuming that the
robot has no access to the meaning of the explanation or the
contents of the environment in which it is immersed.

As a proof of concept a simulation study of the listen-
ing behavior of the robot using a minimalist approach was
employed. The robot simulated in this study is a Robovie II
humanoid robot with 11 degrees of freedom (3 for the head
and 4 for every arm). The goal of this simulation was to check
the applicability of the EICA architecture in this domain, and
to realize a behavior pattern that can be objectively compared
with the human-human known behavior in close encounters.
As test behaviors mutual gaze, and gaze toward instructor
were chosen because of the availability of objective human-
human data [1],[9], their relative simplicity, and the important
role in natural interactions [14]. Mutual attention behavior of
the simulated robot was also studied although human-human



Fig. 2. EICA Processes and motor plans for the Reactive Gaze Controller

behavior data was not available due to the important role of
mutual attention in natural listening.

As a minimal design, only the head of the virtual robot was
controlled during the simulation. This decision was based on
the hypothesis accepted by many researchers in the nonverbal
human interaction community that gaze direction is one of
the most important nonverbal behaviors involved in realizing
mutual attention [1]. The processes and motor plans involved
in implementing natural listening behavior in this simulation
are shown in Fig. 2.

The analysis of the chosen behavior requirements showed
the need of three processes. Two processes to generate an
approach-escape mechanism controlling looking toward the
human operator which is inspired by the Approach-avoidance
mechanism suggested in [1] in managing spatial distance in
natural human-human situations. Those processes were named
Look-At-Human, and Be-Polite. A third process was needed
to control the realization of the mutual attention behavior. This
process was called Mutual-Attention. A fourth setup process
that generates all the other processes and motor plans was used
for technical reasons but did not affect the results.

Four reactive motor plans were designed that encapsulate
the possible interactive actions that the robot can generate,
namely, looking around, following the human face, following
the salient object in the environment, and looking at the same
place the human is looking at. Each of which is implemented
as a simple state machine

The algorithms of the three processes controlling the simu-
lated robot’s behavior are shown in Algorithms 1,2,3 and can
be explained as follows:

Algorithm 1 Look-At-Human
procedure LAH . attracts the robot to the human

loop
ang ← ∠ (Hhead, Rhead)
if wrn

= max
i

(wri
) < λw AND

thuman−speaking > τs then
if confirming then

Iff ← Iff + εffµc‖ang‖
else

Iff ← Iff + εff
end if
Ifo = Ifo − εfo‖ang‖
Ifg = Ifg − εfg‖ang‖
Ila = Ila − εla‖ang‖

end if
end loop

end procedure

Algorithm 2 Be Polite
procedure BP . repulses the robot from the human

loop
ang ← ∠ (Hhead, Rhead)
if tlooking−at−human > τp then

if confirming then
Iff ← Iff −

^
εff‖ang‖

else
Iff ← Iff −

^
εffµc‖ang‖

end if
end if

end loop
end procedure

Algorithm 3 Mutual Attention
procedure MI. attracts the robot to the direction of gaze

loop
if arg max

i
(wi) = arg max

i
(wri

) AND

thuman−speaking > τma then
if confirming then

Ifg ← Ifg + _
εfg

else
Ifo ← Ifo −

_
εfo

end if
end if

end loop
end procedure

1) Look-At-Human: This process is responsible of generat-
ing an attractive virtual force that pulls the robot’s head



direction to the location of the human face. This process
first checks the Gaze-Map’s current modes and if their
weights are less than a specific threshold for more than
10 seconds, and if the human is speaking for more than 4
seconds , it increases the intentionality of the followFace
motor plan and decreases the intentionality of the other
three reactive motor plans based on the difference in
angle between the line of sight of the human and the
robot and the Confirming condition (if the human is
confirming the robot should look at him more as was
noted in [14]).

2) Be-Polite: This process works against the Look-At-
Human process by decreasing the intentionality of the
followFace motor plan in reverse proportion to the angle
between the line of sight of the human and the robot
depending on the period the human is speaking.

3) Mutual-Attention: This process increases the intention-
ality of the followObject or the intentionality of the
followGaze. The rate of intentionality increase is deter-
mined based on the confirmation mode.

Five perception processes were needed to implement the
aforementioned control processes and motor plans:

1) Human-Head, which continuously updates a list contain-
ing the position and direction of the human head during
the last 30 seconds sampled 50 times per second.

2) Robot-Head, which continuously updates a list contain-
ing the position and direction of the robot head during
the last 30 seconds sampled 50 times per second.

3) Gaze-Map, which continuously updates a representation
of the distribution of the human gaze both in the spatial
and temporal directions. The spatial distribution is stored
as a mixture-of-Gaussians like structure where the mean
µi represents the location of an important object and
the variance σi is a measure of the size of that object.
The weight wi represents the importance of the place
according to the gaze of the human. Those weights have
a self decay parameter β to focus the representation on
the currently important parts of the space. The temporal
evolution of the gaze direction is captured in the weights
wri

. Algorithm 4 shows the exact algorithm of this
process.

4) Speaking, uses the power of the sound signal to detect the
existence of human speech. The current implementation
simply assumes there is a human speech whenever the
sound signal is not zero. This was acceptable in the
simulation but with real world data a more complex
algorithm that utilizes Fourier analysis will be used.

5) Confirming, specifies whether or not the human is mak-
ing a confirming action. Currently an oracle is used to do
this operation although the algorithm proposed in [14]
can be used.

The evaluation data was collected as follows:

1) Six different explanation scenarios were collected in
which a person is explaining the procedure of operat-
ing a hypothetical machine that involves pressing three

different buttons, rotating a knob, and noticing results
in an LCD screen in front of a Robovie II robot while
pretending that the robot is listening to the explanation.
The data was collected using the PhaseSpace Motion
Digitizer system [12] by utilizing 28 LED markers
attached to various parts of the environment and the
explainer as follows:
• 8 markers attached around the head of the explainer
• 4 markers attached around every wrest of the ex-

plainer
• 2 markers attached to both sides of the explainer’s

palm
• 1 marker attached to the index finger
• 1 marker in the location of every button (total 3

markers) and one marker in the location of the knob,
another in the location of the LCD and sixth marker
between the LCD and the knob locations.

The data was logged 460 times per second.
2) The logged data were used as the input to the robot

simulator and the behavior of the robot’s head was
analyzed.

3) For every scenario 20 new synthetic scenarios were
generated by utilizing 20 different levels of noise. The
error level is defined as the percentage of the mean value
of the noise term to the mean of the raw signal. The
behavior of the simulator was analyzed for every one of
the resulting 120 scenarios and compared to the original
performance.

It should be noted that in the current setup of the experiment
the speaker’s behavior cannot be assumed completely normal
because the robot is not actually executing natural listening
behavior which breaks the interaction loop. This is the reason
that in the current proof of concept experiment only the means
of the time of execution of various interaction behaviors are
compared to the known human-human means. It was assumed
that the effect of the inaccuracies resulted from not using a
human in the listener position will have smaller effect on the
means compared to its effects on the details of the behavior.
In the full scale experiment the listening robot will be actually
listening to the instructor using the software presented in this
paper and the interaction loop will be closed which will make
it possible to compare the details of the robot’s behavior to the
human-human case.

Fig. 3 shows the evolution of intentionality of the aforemen-
tioned four basic reactive motor plans under the control of the
three control processes used to implement natural interaction
in one case.

In the beginning the robot was scanning the environment for
salient features that require attention. The interaction with the
human started when the human directed his gaze to the robot
for a few seconds. The Look-At-Human process increased the
intentionality of the followFace motor plan while decreasing
the intentionality of the LookAround motor plan which ini-
tialized the eye contact that started the interaction. After a
while (25 seconds in average) the Be-Polite process takes over
reducing the intentionality of the followFace which along with



Algorithm 4 Gaze-Map Process
procedure GAZE-MAP . Builds a gaze map in the spatial and temporal dimensions

G = φ, i = 0
loop

g (i)← point of current humans gaze focus

if

∥∥∥∥∥g (i)−
i−1∑
j=0

(j + 1) g (j)/
i−1∑
j=0

(j + 1)

∥∥∥∥∥ < εforνsteps then

Hg ← 1
i+1

i∑
j=0

g (j) , ρ (Hg)←
m−1∑
k=0

wk

(2π)1.5σk
exp

(
− 1

2σ2
k (Hg −−→µk)T

I3 (Hg −−→µk)
)

if ρ (Hg) < δ0

∑
wk then

G← G ∩
{

w0,Hg, σ0,max
i

(wri
) + 0.5, now

}
else

n← arg max
k

(‖µk −Hg‖)
wn ← wn + η (‖µk −Hg‖) , wrn

← max
i

(wri
) + 0.5 , tn ← now

if ‖µn −Hg‖ < d0 then σn ← σn + ησ (‖µk −Hg‖)
elseµn = µn + ηµ (‖µk −Hg‖)
end if

end if
else

i← 0
end if
for all tuples in G do

wi ← wi (1− β)
end for

end loop
end procedure

Fig. 3. The Evolution of Intentionality of the four Basic Motor Plans Implementing Natural Listening Behavior



the increased intentionality of followGaze and followObject
results in breaking the eye contact. As the interaction goes the
robot will tend to look to the human for around 78.87% of the
time while attending to the shared objects of interest around
53.12% if the time.

IV. RESULTS AND DISCUSSION

TABLE I
COMPARISON BETWEEN THE SIMULATED AND NATURAL BEHAVIOR

Item Statistic Simulation H-H value
Mutual Gaze Mean 31.5% 30%

Std.Dev. 1.94% –
Gaze Toward Instructor Mean 77.87% 75%

Std.Dev. 3.04% –
Mutual Attention Mean 53.12% unknown

Std.Dev. 4.66% –

To analyze the applicability of EICA to the natural listening
behavior an objective evaluation criteria was selected. For the
three behaviors chosen the mean and standard deviation of the
time spent doing each of them were calculated and compared
with the known values in natural human-human interactions
when available.

Some of the results of numerical simulations of the listening
behavior of the robot are given in Table I. The table shows the
average value obtained from the simulated robot in comparison
to the known values measured in human-human interaction
situations as stated in [1]. As the table shows the behavior
of the robot is similar to the known average behavior in the
human-human case for both mutual gaze and gaze toward
instructor behaviors and the standard deviation in both cases
is less than 7% of the mean value which predicts robust
operation in real world situations. These results suggest that the
proposed approach is at least applicable to implement natural
listening behavior. It should be noted that the naturalness of
the behavior does not only depend on the averages specified
but on the detailed movements of the head and eye during the
interaction which will be measured in the final experiment with
the Robovie II robot. This simulation results, nevertheless, can
be considered a first step proof of applicability given that the
reported simulation statistics were not hard coded in any of
the processes controlling the robot.

Fig. 5 shows the effect of increasing the error level from
zero to 100% of the input on the percentage of time mutual
gaze, gaze toward instructor, and mutual attention behaviors
were recognized in the simulation. As expected the amount
of time spent on these interactive behaviors decreases with
increased error level although this decrease is not linear but
can be well approximated with a quadratic function.

To study this phenomenon further, an error term is defined
as: Error in behavior X is the difference in the mean time spent
in doing behavior X in the simulation and the reported human-
human mean relative to the reported human-human value.

Analysis of the effect of noise on the behavior of the
robot showed an advantage of using EICA in terms of the
robustness in the resulting behavior. In both mutual gaze and
gaze toward instructor the difference in the mean between

Fig. 6. Effect on the error level on the difference between mutual gaze mean
and the human-human case

Fig. 7. Effect on the error level on the difference between mean time of
gazing toward the instructor and the human-human case

the simulated behavior and the natural human-human reported
values is growing much slower than the error in the input to
the system. Regression Analysis revealed that in both cases
the effect on the mean time spent doing the studied behavior
grows with the square of the inverse SNR (Signal to Noise
ratio) as Fig. 8 shows for the mutual gaze behavior. As Fig. 6
and Fig. 7 suggests, the current implementation has excellent
noise rejection properties as long as the noise is less than 25%
of the original signal.

V. CONCLUSION

This paper reports a simulation study to test the applicability
of the EICA architecture to implement simplified natural
nonverbal listening behavior in humanoid robots. The results



Fig. 4. A synchronized view of the human instructor and the listener robot showing two interesting interactive behaviors. The behavior of the human was
recorded using the motion capture data and applied offline to the gaze controller proposed in this paper, the motion commands was then applied to the Robovie
to visualize the interactive behavior.

Fig. 5. Effect on the error level on the behavior of the robot

of this study suggest that the interaction between very simple
EICA processes can achieve a behavior comparable to the
human natural listening behavior. Moreover the study of the
effect of noise level on the final robot behavior revealed
that the EICA based implementation has good noise rejec-
tion properties. In the future a user study with an actual
implementation of this system on the Robovie II humanoid
robot will be conducted to test the subjective evaluation of the
listening behavior of the robot and compare this evaluation
with previous work in this area.
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