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Abstract—This paper is concerned the robust stability 

analysis problem for genetic regulatory networks with time-
varying delays. By utilizing a Lyapunov-Krasovskii functional, 
we show that the addressed genetic regulatory networks are 
robustly, asymptotically stable if a convex optimization problem 
is feasible. A stability criterion is derived and formulated by 
means of the feasibility of a linear matrix inequality (LMI), which 
can be effectively solved by some standard numerical packages. A 
numerical example is given to demonstrate the usefulness of the 
proposed robust stability criterion. 
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I. INTRODUCTION 
In our post-genomic era, regulatory networks have become 

an important new area of research in the biological and 
biomedical sciences and been investigated [1,2,4,11,13,14]. A 
genetic regulatory network (GRN) consists of a number of 
genes that interact and regulate the expression of other genes 
by the gene derivatives, i.e. proteins. The change in expression 
of a gene is controlled by the stimulation and inhibition of 
proteins in transcriptional, translational and post-translational 
processes. Genetic networks are biochemically dynamical 
systems, and it is natural to model genetic networks by using 
dynamical system models, which provide a powerful tool for 
studying gene regulation processes in living organisms. 

Up to now, several simple genetic networks have been 
successfully constructed by means of experiments, for example, 
genetic switches [7], repressilator [10], and a single negative 
feedback loop network [3]. In the differential equation models, 
the variables describe the concentrations of gene products, such 
as mRNAs and proteins, as continuous values of the gene 
regulation systems. The results in these experiments show that 
mathematical models can be a powerful tool for discovering 
higher order structure of an organism and for gaining deep 
insights into both static and dynamic behaviors of genetic 
networks by extracting functional information from observation 
data. On the other hand, there is no doubt that time delay play 
important role in dynamics of genetic networks, and theoretical 
models without consideration of these factors may even 
provide wrong results. To have the accurate results, time delay 
should be considered in the biological systems or artificial 
genetic networks due to the slow processes of transcription, 
translation, and translocation or the finite switching speed of 

amplifiers. However, the dynamics will be more complicated 
due to the incorporation of the time delay in the genetic 
networks. In [3], the authors designed and constructed simple 
gene circuits consisting of a regulator and transcriptional 
repressor modules in Escherichia coli and they showed the gain 
of stability produced by negative feedback. In [6], the authors 
studied the stability of a general genetic network model with 
time delays by using local stability analysis and characteristic 
equation analysis. Although the method of characteristic 
equation analysis can provide an accurate local stability region, 
it is difficult to be verified, especially for large-scale genetic 
networks with time delays. It is known that genetic networks 
are usually large-scale. In [4], a nonlinear model for GRNs 
with SUM regulatory functions was presented. The cases of 
genetic networks with time-varying delays and stochastic 
perturbations were studied and sufficient conditions of stability 
were derived in terms of LMIs. In [5], the authors investigated 
the robust asymptotical stability issues of the GRNs with time-
varying delays and norm bounded uncertainties. The method 
combing Lyapunov stability theory and Lur’e system approach 
was adopted to study these issues and sufficient conditions 
were also given in terms of LMIs. 

Based on the above discussion, the main purpose of this 
paper is to analyze the stability of genetic networks in the 
forms of differential equations. The stability analysis of the 
genetic networks are based on the Lyapunov method and the 
Lur’e system approach, and the results are represented in terms 
of linear matrix inequalities (LMIs) [12], which are easy to be 
verified by convex optimization techniques, e.g., the interior 
point method [12], and by software packages, e.g., the 
MATLAB LMI Toolbox.  

Notations: The notations are quite standard. Throughout 
this paper, n  and n n×  denote, respectively, the n-
dimensional Euclidean space and the set of all n n×  real 
matrices. The superscript " "T  denotes matrix transposition and 
the notation X Y≥  (respectively, X Y> ) where X  and Y  are 
symmetric matrices, means that X Y−  is positive semi-
definite (respectively, positive definite). nI  is the n n×  identity 
matrix. | |⋅  is the Euclidean norm in n . The shorthand 

1 2{ , ,..., }ndiag M M M  denotes a block diagonal matrix with 
diagonal blocks being the matrices 1 2, ,..., nM M M . The 
notation  always denotes the symmetric block in one 



         

symmetric matrix. Sometimes, the arguments of a function or a 
matrix will be omitted in the analysis when no confusion can 
arise. 

II. PROBLEM DESCTIPTION 
In [1,6], a genetic regulatory network model was described 

as follows: 
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where ( ), ( )i iM t P t ∈ are the concentrations of mRNA and 
protein of the thi node. In this network, there is one output but 
multiple inputs for a single node or gene. A direct edge is 
linked from node j to i if the transcriptional factor or 
protein j regulates gene i . In (1), ia and ic are the degradation 
rates of the mRNA and protein, id is a constant, and ( )iG ⋅ is the 
regulatory function of the thi gene, which is generally a 
nonlinear function of the variables 1 2( ( ), ( ),..., ( )),np t p t p t but 
has a form of monotonicity with each variable. 

Generally, A GRN consists of a number of genes that 
interact and regulate the expression of other genes by proteins 
(the gene derivatives). The change in expression of a gene is 
controlled by the stimulation and inhibition of proteins in 
transcriptional, translational, and post-translational processes. 
The gene activity is tightly controlled in a cell, and gene 
regulation function ( )iG ⋅ plays an important role in the 
dynamics. The form of may be very complicated, depending on 
all biochemical reactions involved in this regulation. Typical 
regulatory logics include AND-like gates and OR-like gates 
[11,13,14] for ( )iG ⋅ . In this paper, we focus on the case that 
each transcription factor acts additively to regulate the thi gene. 
The regulatory function is of the 
form 1 2( ( ), ( ),..., ( ))i nG P t P t P t =  

1
( ( )),n

ij jj
G P t

=∑ which is also 
called SUM logic [11]. This SUM logic does exist in many 
natural gene networks. 

The function ( ( ))ij jG p t is a monotonic function of the Hill 
form [9]. If transcription factor j is an activator of gene i , then  
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where H is the Hill coefficient, jβ  is a positive constant, 
and ijb is the dimensionless transcriptional rate of transcription 
factor j to gene i , which is a bounded constant. Hence, Eq.(1) 
can be rewritten into the following form: 
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i ijj I

B b
∈

=∑ and iI is 

the set of all the j which is a repressor of gene i , 
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In compact matrix form, Eq.(2) can be rewritten as 
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P t CP t DM t t

δ
τ
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where 1 2( ) [ ( ), ( ),..., ( )] ,T
nM t M t M t M t= 1 2( ) [ ( ), ( ),...,P t P t P t=  

( )] ,T
nP t 1 1 2 2( ( ( ))) [ ( ( ( ))), ( ( ( ))),...,g P t t g P t t g P t tδ δ δ− = − −  

( ( ( )))] ,T
n ng P t tδ− 1 2( ( )) [ ( ( )), ( ( )),...,M t t M t t M t tτ τ τ− = − −  

( ( ))] ,T
nM t tτ− 1 2[ , ,..., ] ,T

nB B B B= 1 2{ , ,..., },nA diag a a a=

1 2{ , ,..., },nC diag c c c= 1 2{ , ,..., }.nD diag d d d= * *( , )T T TM P are 
said to be an equilibrium point of the system (3) if they satisfy 

* *( ) 0,AM Wg P B− + + = and * * 0.CP DM− + =  

For convenience, we will always shift an intended 
equilibrium point of the system (3) to the origin by letting 

*( ) ( ) ,m t M t M= − *( ) ( ) .p t P t P= − Hence, system (3) can be 
transformed into the following form: 
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From the relationship of ( )f ⋅ and ( )g ⋅ , we know 
that ( )f ⋅ satisfies the sector condition 

( )
0 i

i
f x

k
x

≤ ≤                 (5) 

 

which is equivalent to the following condition 



         

( )( ( ) ) 0.i i if x f x k x− ≤                (6) 

Recall that a Lur’e system is a linear dynamic system, 
feedback interconnected to a static nonlinearity that satisfies a 
sector condition (6) [8].Hence, the genetic networks (3) can be 
seen as a kind of Lur’e system, which can be investigated by 
using the fruitful Lur’e system method in control theory [9]. 
Motivated by the above discussion, we consider robust stability 
for genetic networks with time-varying delays as following: 

( ) ( ) ( ( ( ))),
( ) ( ) ( ( )),

M t AM t Wf P t t
P t CP t DM t t

δ
τ

 = − + −


= − + −              (7) 

where ( )tδ , ( )tτ are the are the time-varying delays satisfying 

0 ( )tδ δ≤ ≤ , 0 ( )tτ τ≤ ≤ , ( ) dtδ δ≤ and ( ) dtτ τ≤ respectively, 
where δ andτ are positive constants. 

Before ending this section, we give the following lemmas 
that are useful in deriving our LMI-based stability criterion in 
the next section. 

Lemma 1. For any vectors , na b ∈ , the following inequality  
12 T T Ta b a a b b−≤ +D D  

holds, in which 0>D is any positive define matrix. 
Lemma 2. For any constant matrix n nM ×∈ , 0TM M= > , a 
scalar 0ρ > , vector function : [0, ] nω ρ → such that the 
integrations are well defined, the following inequality holds: 
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III. STABILITY CONDITION OF GENETIC 
NETWORKS WITH TIME-VARYING DELAYS 

In this section, we will perform robust stability analysis of 
the genetic network with time-varying delays described by (7) 
by using the Lyapunov-Krasovskii stability theorem. We have 
the following main theorem which can be expressed as the 
feasibility of a linear matrix inequality. 

Theorem 1. System （7） is robustly asymptotically stable 
for any 0 ( )tδ δ≤ ≤ and 0 ( )tτ τ≤ ≤ , if there exist symmetric 
positive definite matrices , ( 1,2,3),i iR S i = and K , and positive 
scalar λ  such that the LMI holds: 
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where 1 1{ , ,..., }.nK diag k k k=  

Proof. To obtain the result, the Lyapunov-Krasovskii 
functional of system (7) is defined by: 
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Now we give some inequalities which will be used in the 
following proof. An application of Lemma 1 yields 
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The inequalities follow from Lemma 2 
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Noting the sector condition (5), we can get 
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Calculating the time derivative of ( )V t along the system (7), 
then we have 
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Substituting (9)-(12) in (13), we get 
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Hence for ensuring negativity of ( )V t for any possible state, it 
suffices to require ,Ξ Σ be a negative definite matrix. This 
implies that the equilibrium point of genetic regulatory network 
(7) is robustly asymptotically stable. The proof is completed. 

IV. ILLUSTRATIVE EXAMPLE 
In this section, we illustrate the effectiveness and 

correctness of our result with the genetic networks composed 
of three nodes with time-varying delays. 

Example 1. Consider the dynamics of repressilator, which has 
been theoretically predicted and experimentally investigated in 
Escherichia coli [10]. The repressilator is a cyclic negative-
feedback loop comprising three repressor genes (lacl, tetR, and 
cl) and their promoters. The kinetics of the system are 
determined by six coupled first-order differential equations 

,
1

( ),

i i n
j

j j i

m m
p

p p m

α

β

 = − + +
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Where , , ;i lacl tetR cl= , , .j cl lacl tetR= im and jp are the 
concentrations of the three mRNAs and repressor-proteins, and 

0β > denotes the ratio of the protein decay rate to mRNA 
decay rate. Taking into account the transcriptional time delay, 
we rewrite the above equations into vector form with adjusting 
some parameters: 
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δ
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{3,4,5},A diag=  {5,4,5},C diag=  {0.3,0.2,0.4},A diag=  
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2 2( ) / (1 ),i i i ig P P P= + which means 2, 2.5n α= = in the above 
equations, where n is the Hill coefficient. It is easy to know that 
the maximal value of the derivative of ( )i ig p less than 

0.65,k = which means {0.65,0.65,0.65}.K diag=  Let 
( ) 0.4 0.4sin( ),t tτ = + ( ) 0.2 0.2cos( ).t tδ = +  Obviously, we 

have ( ) 0.8,tτ τ≤ = ( ) 0.4,dtτ τ≤ = ( ) 0.4tδ δ≤ = and
( ) 0.2.dtδ δ≤ = Using Matlab LMI Control Toolbox, by our 

Theorem 1, we can find that the feasible solution of LMI (8) is 
obtained as 
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19.2003.λ =  

Figure 1 shows the trajectories of variable ( )iM t and ( )iP t with 
the following initial condition (16), respectively. 

1 2 3

1 2 3

( ) 0.2, ( ) 0.4, ( ) 0.6 ( [- ,0]),
( ) 0.1, ( ) 0.2, ( ) 0.3 ( [- ,0]).

m m m
p p p

θ θ θ θ τ
φ φ φ φ δ

= = = ∈
 = = = ∈           (16) 
Hence, the genetic regulatory networks (15) with time-varying 
delays is robustly, asymptotically stable. In the meanwhile, we 
can get that the unique equilibrium point of this network is 

* [0.7930 0.6225 0.5077]Tm = , * [0.2476 0.2811 0.2406]Tp = . 
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Figure 1.  Transient response of ( )iM t and ( )( 1, 2,3).iP t i =  

V. CONCLUSIONS 
In this paper, we have dealt with the problem of robust 

stability analysis for a class of genetic regulatory networks with 
time-varying delays. A new stability criterion has been 
presented to guarantee that genetic regulatory networks are 
robustly, asymptotically stable, and the stability criterion has 
been given in terms of linear matrix inequality (LMI). A 
numerical example has also been used to demonstrate the 
usefulness of the main result. 
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