
MRPlanner: An Agent-Based MMRP Constraint
Programming System*

Junwei Yang
Dept. Equip. Remanufacture Eng.

Academy of Armored Force Engineering
Beijing 100072, China
yangjunwe@sina.com

Xiaojing Huo
M&E Engineering College

Hebei Agricultural University
Baoding 071001, China

xjhuojxteng@yahoo.com.cn

Zhongxiang Hu, Xiaojun Shi
Nat. Key Lab. Remanufacturing

Academy of Armored Force Engineering
Beijing 100072, China

troopzhu@163.com

Abstract—Manufacturing material resource planning (MMRP)
increasingly involves complex sets of objectives and constraints;
therefore traditional approaches typically result in a large mono-
lithic model that is difficult to solve, understand, and maintain.
The paper presents a multiagent-based constraint programming
system, namely MRPlanner, which is aimed to solving large,
particularly combinatorial, problems in MMRP. The system uses
an asynchronous team (A-Team) architecture in which multiple
problem solving agents cooperate with each other by exchanging
results to produce a set of non-dominated solutions that show the
tradeoffs between objectives. The agent-based approach employed
in the system significantly improves the performance, reliability,
intelligence and automation of constraint programming.

I. INTRODUCTION

Dealing with ever-increasing product complexity, agility,
and speed, today’s manufacturing material resource planning
(MMRP) increasingly involves complex sets of objectives and
constraints, and variations of uncertainty and randomicity.
Traditional approaches to modeling MMRP (e.g., mathematical
programming techniques) typically result in a large monolithic
model that is difficult to solve, understand, and maintain.

Constraint programming is an emergent software technol-
ogy for declarative description and effective solving of large,
particularly combinatorial, problems especially in areas of
planning and scheduling [1]. It has been successfully applied
in numerous domains include operations research, database
systems, electrical engineering and circuit design. Recent re-
searches reveal that many artificial intelligence (AI) techniques
have been integrated to enhance its capability to represent and
automatically enforce diverse and complex constraints inherent
in large, real-world applications [2].

We propose here an agent-based constraint programming
system for solving various MMRP constraint satisfaction
problems (CSP). The multi-agent system, namely MRPlanner,
employs and extends asynchronous team (A-Team) [3], [4],
an architecture in which multiple problem solving agents
cooperate with each other through a population of solutions.
Figure 1 gives an overview of the system, which contains the
following six types of agents:

*Supported in part by grants from National Natural Science Foundation (No.
50235030 and No. 513270102) and National Grand Fundamental Research 973
Program (No. 2006BAF02A19) of China.

Algorithm library

Predefined
solution library

Domain-specific
library

Destroyers

Population of solutions

Relaxers

Schedulers

Specializers

Constructors

Improvers

Fig. 1. The fundamental structure of MRPlanner

• Scheduler: the users that act agents by proposing initial
problems (empty solutions) or by modifying existing
solutions.

• Specializers: the agents that build CSP specifications for
empty solutions.

• Constructors: the agents that select algorithms to generate
initial solutions according to separated CSP specifications.

• Improvers: the agents that take existing solutions from the
population and modify them to produce better solutions.

• Relaxers: the agents that take infeasible or over-
complicated solutions from the population and relax some
constraints for the problem.

• Destroyers: the agents that remove infeasible, inefficient,
or redundant solutions from the population.

The remaining of the paper is structured as follows: Section
2 gives a brief introduction of CSP and A-Team architecture,
sufficient to understand the paper; Section 3 provides a detailed
description of the problem solving process in MRPlanner,
which is illustrated with a case study of a simple material
transportation problem in Section 4; Section 5 concludes with
some discussion.

978–1–4244–1674–5/08/$25.00 c© 2008 IEEE CIS 2008

II. PRELIMINARIES

An instance of the CSP is described by a set of variables, a
set of possible values for each variable, and a set of constraints
between the variables. It is formally defined as follows [5]:

Definition 1(constraint satisfaction problem) A CSP is a
triple (X , D, C), where

• X is a finite set of variables {x1, x2,. . . , xn};
• D is a function which maps each variable in X to its

domain of possible values, of any type, and Dxi is used
to denote the set of objects mapped from xi by D;

• C is a finite, possibly empty, set of constraints on an
arbitrary subset of P (X), or the powerset of X .

In [6] we also formally define aggregation, normal combi-
nation, and orthogonal combination of CSP, on top of which
problems can be specified, proved correct, and composed
together in such a way to preserve their intra-properties as
well as inter-relations.

A-Team is an agent based architecture in which multiple
problem solving methods (agents) cooperate to produce a set
of non-dominated solutions, i.e., no feasible solution is better
than a solution in the set in all the objectives. An agent in an
A-Team typically consists of the following four components
that enable him to participate into the teams and assist in the
population evolution:

• A requester that requests notification of system events and
determines if the agent has become relevant to the current
situation.

• A selector that picks zero or more solutions as input to
the optimization operator.

• An operator that runs and produces zero or more result
solutions and passes them to the distributor.

• A distributor that filters the results and adds them to the
output population.

The A-Team architecture has the capability to combine
multiple solution approaches for scheduling and constraint
programming. The selection of agents to run and some of the
algorithms used by the agents are probabilistic. The key to
getting good results is to select a divers set of algorithms and
to run the A-Team until the marginal rate of improvement falls
below a threshold or the available time has been exhausted.
Although the results can not be guaranteed theoretically, em-
pirical results suggest that this approach produces[7].

III. SOLUTION APPROACH

In MRPlanner, there are fives states for an MMRP solution
during the problem solving process, as illustrated in Fig. 2.

A. CSP Specification Construction

The system provides a drag-and-drop user interface for the
schedulers to define MMRP problems, which are composed of
objectives, variables and their domains, and constraints. When
a scheduler proposes an initial problem, an empty solution is
created and sent to the solution space (population).

Taking an empty solution from the population, the special-
izer extracts the part of the initial problem whose objectives

Empty Pending

Concrete

InfeasibleDiscarded

Constructor

Scheduler

Destroyer

Relaxer

Improver

Specializer
Constructor

Fig. 2. The state diagram of CSP solution in MRPlanner

and constraints fall into his domain-specific category. The
specializer then uses the domain-specific library to build a CSP
specification for the problem part, writes the sub-specification
into the solution, and sends it back to the population. Here
we call a problem part together with its sub-specification as
a “pending sub-solution”. The specializers of other domain-
specific categories continually build sub-specifications for the
solution until all parts of the initial problem is built into pend-
ing sub-solutions, that is, the whole empty solution becomes
a pending solution.

Currently MRPlanner implements 27 types of specializers,
whose domain-specific categories can be further divided into
four sections: the materials section, the resource section, the
life cycle section, and the environment section, which are
orthogonal to each other. As partly illustrated in Table 1,
each section contains a group of MMRP templates, and each
template is formally described using the structure in Definition
1. Nearly every integrated MMRP problem can be viewed as
an intersection of these sections.

B. Problem Solving

A constructor takes a pending solution from the population,
traverses all the pending sub-solutions and picks out those
whose CSP specifications are subject to his problem-solving
tactics. The constructor then tries one of his concrete algo-
rithms to solve the sub-CSP; if successful, the pending sub-
solution becomes a concrete sub-solution. Constructors with
other tactics continually try their algorithms to solve pending
sub-problems remaining in the solution. If all pending sub-
solutions become concrete, the whole pending solution itself
becomes a concrete one. After being passed by the constructors
with all of the solving statics, if the solution still has any
pending sub-solution, it becomes an infeasible solution.

Currently MRPlanner implements 11 types of constructors,
each contains a group of concrete algorithms. As shown Fig.
3, the algorithm library is organized with a taxonomic tree [8],
which contains three top-level tactics including mathematical
programming (sub-tactics include integer programming, linear
programming, and dynamic programming), global search (sub-
tactics include the backtrack, breadth-first search, width-first
search, and bound-and-branch), and local search (sub-tactics

TABLE I
DOMAIN-SPECIFIC SECTIONS AND TEMPLATES IN MRPLANNER

Section Type Properties

Material Ferrous metal iron-carbon, cast iron, alloy steel ...
Non-ferrous metal aluminum alloy, copper alloy, bearing alloy ...
Macromolecular covalent bond, molecule bond, hydrogen bond ...
Ceramic materials glass, ceramics, glass-ceramic...
Composite materials fiber reinforcement, particulate reinforcement, layered materials...
Natural materials rubber, graphite, asbestos, quartz ...
Functional materials electrical functions, magnetic functions, acoustic functions ...
Other types chemical pipes, metal hoses, powder metal ...

Resource Human resource analyst, driver, technician, repairer ...
Materiel construction machines, truck, cargo plane, cargo ship ...
Equipments measurement, machining, testing, maintenance ...
Establishments storehouse, workshop, dork, platform ...
Oils gasoline, diesel oil, engine oil ...
Carries packaging, load/unload, storage ...
Computer resources application, document, database, network ...

Life cycle Analysis feasibility anal., economic anal., deployment anal. ...
Planning main, risk, quality-assurance ...
Implementation design, production, acquisition, sub-contract ...
Monitoring quality tracing, risk control, counter plan ...
Disposal rebirth, abandon, demise, convey...
Feedback call back, recording, update...

Environment Pollution gaseous/liquid/solid waste...
Energy consumed nuclear, wind, solar...
Resource consumed mines, oils, industrial water...
Rebirth circulation, decomposition...
Hazard Life, animals, plants...
Relief catalyst, bio-preparation, absorption...

……

Mathematical programming

……

CSP

Integer
programming

Dynamic
programming

Linear
programming

0-1
programming

Normal
DP

Stochastic
DP

Random
DP

Global search Local search

Breadth
-first

Width
-first

Backtrack
Bound
-and-
branch

Breadth-
first with
backtrack

Width-
first with
backtrack

Greedy
algorithm
Simulated
annealing

Genetic
algorithm

hill-
climbing

Steepest
hill-
climbing

Fig. 3. The organization of the algorithm library

include the greedy algorithm, hill-climbing algorithm, simu-
lated annealing algorithm, and genetic algorithm). In particular,
global search and local search do not always guarantee the
optimal solutions since their main concern is to quickly find
an acceptable, sub-optimal solution for combinatorial problems
in a reasonable time.

When filtering a pending sub-solution, the constructor
decides whether its solving tactics fits for the problem by
estimating the constraint complexity and strength and objective
complexity of the CSP, as illustrated by the flowchart in Fig.
4.

The pre-defined solution library saves optimal solutions for
typical CSP. When encountering a problem that is same or
isomorphic to a library problem, instead of re-solving it from
scratch, the constructor simply uses the library solution or
builds a isomorphic solution [9]. After successfully solving
a new CSP, the constructor or the improver can also add the

concrete solution to the pre-defined library.

C. Solution Improving, Relaxing, and Destroying

There two types of improvers in MRPlanner: one takes sin-
gle concrete sub-solution as input and try to improve it in one
or more objectives; the other reallocates the resource between
sub-solutions and try to improve one or more objectives for the
whole concrete solution. The global constraints optimization
is achieved mainly by constraint propagation [10], feasibility
reasoning and optimality reasoning [11].

Each solution has two marks: RelaxLevel (ranging from
0 to 2) that represents the level of allowable constraints
relaxation for the problem, and RelaxCount that saves the
times the solution has been relaxed. Policies for solution
relaxation include [4]:

• For an infeasible solution whose RelaxLevel is 1 or
2, the relaxer heuristically violates some problem con-

Constraint complexity
analysis

threshold

Mathematical
programming

Objective complexity
analysis

threshold Global search

Constraint strength
analysis

Global search with
constraint propagation

threshold

<

>

<

>

<

>

Local search

Fig. 4. The heuristic algorithm selection flow

straints based on constraint sensitivity analysis, increases
its RelaxCount, and sends it back to the population. The
solution and all its relaxed sub-solutions become pending.

• For a concrete solution whose RelaxLevel is 2, the
relaxer tries to violate problem constraints and tests
the result: if some slight violations yield significant
improvement on one or more objectives, increases its
RelaxCount, and sends it back to the population; other-
wise remains the solution unchanged.

• For a concrete solution whose RelaxLevel is 1 and
whose RelaxCount is not zero, the improver tries to
remove the constraint violations through iterative repair
[12].

• For an infeasible solution whose RelaxLevel is zero,
or whose RelaxCount exceeds a per-defined limit, the
destroyer removes it from the population, that is, the
solution becomes discarded.

In addition, the destroyers can detect redundant solutions
where there are same solutions or better solutions for the same
problem.

IV. A SIMPLE MATERIAL TRANSPORTATION PROBLEM

Now we use a simple transportation problem to illustrate the
behavior of A-Team agents in our architecture. The problem
deals with transporting raw material from the sources (namely
A1 and A2) to the destinations (namely E1, E2, and E3)
through the network shown in Fig. 5. The edges are labeled
with distances, and the source and destination vertices are
labeled with quantities of supply and demand respectively.

At the first stage, the scheduler proposes the unactuated
solution whose RelaxLevel is 2, and then the specilizers
transform it into a pending solution which contains seven sub-
problems, including the chief sub-problem defined in Table 2
and six sub-problems summarized as follows:

• P1: MIN-f = PATH(A1, E1)
• P2: MIN-f = PATH(A1, E2)
• P3: MIN-f = PATH(A1, E3)

• P4: MIN-f = PATH(A2, E1)
• P5: MIN-f = PATH(A2, E2)
• P6: MIN-f = PATH(A2, E3)
At the second stage, some constructors with the dynamic

programming algorithm and Dijkstra algorithm independently
work out the concrete sub-solutions for P1 ∼ P6 as follows:

• P1: MIN-PATH(A1, E1) = 12 (A1–B1–C1–D1–E1)
• P2: MIN-PATH(A1, E2) = 11 (A1–B1–C2–D2–E2)
• P3: MIN-PATH(A1, E3) = 28 (A1–B1–C2–D2–E3)
• P4: MIN-PATH(A2, E1) = 13 (A2–B1–C1–D1–E1)
• P5: MIN-PATH(A2, E2) = 11 (A2–B3–C3–D2–E2)
• P6: MIN-PATH(A2, E3) = 28 (A2–B3–C3–D2–E3)

Now all the orthogonal sub-problems of P0 are solved, and
then a constructor with the simplex algorithm works out the
concrete sub-solution for P0 (as shown in Table 3), and the
whole solution becomes a concrete one.

At the third stage, since the RelaxLevel of the solution
is 2, a relaxer performs simplex sensitivity analysis on P0,
relaxes its constraint according to RELAXATION defined in
Table 2, and works out a solution that yields a saving of 340,
as shown in Table 4.

V. CONCLUSION

Constraint programming is capable of handling large and
combinatorial CSP, and therefore has been successfully applied
in areas of planning and scheduling. In combination with agent
techniques, its capability to represent complex constraints and
its intelligence in problem solving can be improved tremen-
dously.

The paper reports MRPlanner, an agent-based constraint
programming system for solving large, particularly combi-
natorial, problems in MMRP. It uses an A-Team architec-
ture in which multiple problem solving agents cooperate
with each other by exchanging results to produce a set of
non-dominated solutions. MRPlanner features separation of
concerns in specifications, domain-specific optimization, and

A1

A2

B1

B2

B3

C1

C2

C3

E1

E2

E3

D1

D2

2
4

3

3
6

1

6
4

8

7

4

11

5

2

4

7

3

8

3

1

4

4

2

18

19

[300]

[200]

[130~170]

[180~220]

[130~170]

Fig. 5. The transportation network

TABLE II
SUB-PROBLEM P0

PROBLEM P0

ORTHOGONALIZING P1: c11#P1.OBJ(0)
P2: c12#P2.OBJ(0)
P3: c13#P3.OBJ(0)
P4: c21#P4.OBJ(0)
P5: c22#P5.OBJ(0)
P6: c23#P6.OBJ(0)

OBJECTIVES MIN: f =
∑2

i=1

∑3

j=1
cijxij

CONSTRAINTS C1: x11 + x12 + x13 = 300
C2: x21 + x22 + x23 = 200
C3: x11 + x21 = 150
C4: x12 + x22 = 150
C5: x13 + x23 = 200
C6: ∀(0 < i ≤ 2, 0 < j ≤ 3)xij ≥ 0

RELAXATIONS C3: ±20, C4: ±20, C5: ±20

TABLE III
THE CONCRETE SOLUTION FOR P0

E1 E2 E3 Supply
A1 150 0 150 300
A2 0 150 50 200
Demand 150 150 200 500
Result 9050

TABLE IV
THE REVISED CONCRETE SOLUTION FOR P0

E1 E2 E3 Supply
A1 150 150 0 300
A2 0 20 180 200
Demand 150 170 180 500
Result 8710

automatic generation of high-performance and reliable so-
lutions. The system has been successfully applied in real-
world problem solving and has demonstrated its contribution
to the significant improvement of the MMRP efficiency and
effectiveness. Ongoing efforts including adding a workshop
domain-specific section to enable materials scheduling within
the process of manufacturing, and investigating more adaptive
behaviors of the system agents.

REFERENCES

[1] S. Bistarelli, “Semirings for Soft Constraint Solving and Programming,”
Lecture Notes in Computer Sciences , vol. 2962, pp. 1-20, 2004.

[2] K. M. Alguire, and C. P. Gomes, “Technology for Planning and Schedul-
ing under Complex Constraints,” in Proceedings of Society for Optical
Engineering, Boston, USA 1997.

[3] S. N. Talukdar, P. Souza, and S. Murthy, “Organization for computer-
based agents,” Engineering Intelligent Systems , vol. 1, no. 2, pp. 75-87,
1993.

[4] Y. J. Zheng, L. L. Wang, and J. Y. Xue, “An A-Team Based Architecture
for Constraint Programming,” Lecture Notes in Computer Science , vol.
4088, pp. 552-557, 2006.

[5] E. P. K. Tsang, Foundations of Constraint Satisfaction, Academic Press,
London, UK, 1993.

[6] Y. J. Zheng, L. L.Wang, and J. Y. Xue, “A Constraint Programming
Framework for Integrated Materiel Logistic Support,” Journal of Nanjing
University , vol. 40, no. s10, pp. 30-35, 2005.

[7] R. Akkiraju, P. Keskinocak, S. Murthy, and W. Frederick, “An Agent-
Based Approach for Scheduling Multiple Machines,” Applied Intelligence
, vol. 14, no. 2, pp. 135-144, 2001.

[8] D. R. Smith, “oward a Classification Approach to Design,” Lecture Notes
in Computer Sciences, vol. 1101, pp. 62-84, 1996.

[9] Y. J. Zheng and J. Y. Xue, “MISCE: A Semi-Automatic Development
Environment for Logistic Information Systems,” in Proceedings of 1st
IEEE International Conference on Service Operations and Logistics, and
Informatics, Beijing, China, pp. 1020-1025, 2005.

[10] P. Pepper and D. R. Smith, “A High-level Derivation of Global Search
Algorithms (with Constraint Propagation),” Science of Computer Program-
ming, vol. 28, special issue on FMTA (Formal Methods: Theory and
Applications) pp. 247-271, 1996.

[11] F. Focacci, A. Lodi, and M. Milano, “Optimization-Oriented Global
Constraints,” Constraints , vol. 7, no. 3-4, pp. 351-365, 2002.

[12] M. Zweben, B. Daun, E. Davis, and M. Deale, “Scheduling and
rescheduling with iterative repair,” Intelligent Scheduling (eds. Zweben,
M. and Fox, M.S.), Morgan Kaufman, pp. 241-255, 1994.

