
Modeling Concept Drift from The Perspective of
Classifiers

Bai Su, Yi-Dong Shen
Institute of Software, Chinese Academy of Sciences

Beijing, China
subai@ios.ac.cn, ydshen@ios.ac.cn

Wei Xu
NEC Laboratories America, Inc.

Cupertino, CA 95014, USA
xw@sv.nec-labs.com

Abstract—The problem of concept drift is of increasing impor-
tance to data mining as more and more data is organized in the
form of data streams rather than static database, and it is rather
unusual that concepts and data distribution stay stable over time.
In this paper, we model the concept drift as the changes of the
optimal parameters of the discriminative model. By employing
the extended Kalman filter to track the optimal parameters in
this model, we get a dynamical classifier with adaptability to the
dynamics of concept drift. The empirical results in both synthetic
and real data sets indicate that the proposed algorithm is an
effective and efficient solution to classification for evolving data
streams.

Index Terms—Data Streams, Classification, Concept Drift.

I. INTRODUCTION

As there is a growing number of emerging applications
of data streams, such as sensor data, network data, and web
click streams, mining data streams is becoming increasingly
important. As a major mining task, classification on data
stream has been extensively studied in recent years.

The classification tasks in data streams are different from
traditional ones at least in two aspects. First, data streams often
grow without limit. Since it is impossible to cache all historical
data, classifiers running in an online and one-pass style are
often preferred. Second, in a system where time is a variant,
the underlying mechanism that generates the data may change
over time, which is referred to as concept drift. If we only
build a static model in the presence of concept drift, it would
cause a high error rate in classification.

So far, most of efforts [6], [7], [8], [9] were put on
devising a suitable strategy or heuristic method to explore the
capabilities of existing static classifiers for mining concept-
drifting data streams. However very few efforts [5] concern a
dynamical classifier suitable for the concept-drifting scenario
and still few [7] concern modeling concept drift. In this paper,
by modeling concept drift explicitly, we devise a classifier
which can dynamically adjust its parameters to adapt to
concept-drifting data stream.

Generally, we can identify three distinct approaches to the
classification problem. The simplest involves constructing a
discriminant function that directly assign each input x to a
specific class. Most existing data streaming mining works
belong to this category. In some situations, however, it is
more desirable to model the conditional probability distribution
p(Ck|x) and then subsequently to use this distribution to make

optimal classifications. There are two different approaches
to determining the conditional probabilities p(Ck|x). One is
to model the class-conditional densities given by p(x|Ck),
together with the prior probabilities p(Ck) from the classes
and then compute the required posterior probabilities using
Bayes’ theorem. Alternatively, we can model them directly for
example by representing them as parametric models and then
optimizing the parameters using a training set. Approaches that
model the posterior probabilities directly are called discrimina-
tive models. In this paper, we will focus on the third approach,
i.e., the discriminative model.

In order to minimize the influence of concept drift on
the performance of classifier, first we need to investigate
the reasons for concept drift from the perspective of data
distribution. In [4], all four possible cases of concept drift have
been summarized based on changes in probability distribution.
However, since a discriminative model only concerns the
conditional probability, we argue that from the perspective of
discriminative models, we only need to consider one specific
case of concept drift, i.e., the changes in the posterior distri-
bution p(Ck|x).

The rest of the paper is organized as follows. We briefly
describe the problem of streaming data classification in the
next section. Related work is given in Section III. We intro-
duce an dynamical probabilistic model for concept drift in
the section IV. Section V discusses how to estimate some
parameters in this model. We give an algorithm for training
the dynamical classifier in Section VI. Experimental results are
given in Section VII, followed by conclusion in Section VIII.

II. PROBLEM DEFINITION AND ANALYSIS

The streaming data classification problem is generally de-
fined as follows. A set of N training example of the form
(xt, yt) is given with a unique time stamp at each example,
where N is an arbitrarily large integer, yt is a discrete target
variable which represents class label and xt is a vector of
D attributes. Our goal is to produce from these examples a
discriminative model P (y = ci|x) = f(x, wt) that will predict
the probability that an arbitrary x belongs to ci at time t.

In this paper, we focus on the problem that the underlying
process behind the streaming data may not be static, i.e., it
may change over time. We call such changes concept drifts.

One popular option to meet both the online processing

978–1–4244–1674–5/08/$25.00 c© 2008 IEEE CIS 2008

requirement and the requirement of keeping the model up-
to-date is the sliding window scheme. However, it suffers
from two major drawbacks. First, the optimal size of sliding
windows is hard to determined. One fixed window size L
will not be appropriate for every type of concept drift. It
may be beneficial to dynamically change L during a run. For
example, it may make sense to shrink L in response to a rapid
change of concept to exclude the outdated data. Similarly,
some applications may benefit from an increase in L when the
concept is stable - a good time to learn a more detailed model.
Second, a model learned from a sliding window is vulnerable
to over-fitting due to the limited data in a sliding window.

Another approach to dealing with the problem of concept
drift is based on detecting methods. In this approach, we only
need to change the model when the detecting system indicates
the occurrence of concept drift. An obvious idea of detecting
concept drift is to monitor the error rate in classification. If
it exceed a user-defined threshold, we are convinced that a
concept drift is really happening. But this method requires
that a part of training examples are allocated to determine the
error rate, which could aggravate the over-fitting problem. In
addition, this approach is questionable when facing smooth
changes of concept which generally tend to incurs low error
rate. The third flaw naturally related to this approach is that
when detecting the occurrence of concept drift, a new model
has to be learned from scratch, which always incurs high error
rate at the beginning of the learning phase.

To avoid these difficulties, we propose a different approach
which dynamically adjusts model parameters based on a feed-
back mechanism. In this approach, the model is updated every
time a new labeled example arrives. In essence, we adjust
parameters of the discriminative model according to the label
of each incoming example. If the label of incoming example at
time t agrees with the prediction that the model made, we tend
to believe that the model is right; if it is against the prediction,
we get the opposite information. In both cases, the parameters
of the model can be adjusted by incorporating new information.
One may doubt that there is no “free lunch” and this model
could suffer from the outdated history data because it does not
explicitly divide the outdated data from the new data as the
sliding window scheme does. But since the adjustments of the
model only involve parameters and the model does not include
complex structures like the nodes in decision trees, the model
could easily be adapted to the new concept as shown by the
experiment results. Furthermore, the learning rate of the model
could also be adjusted according to the data distribution.

III. RELATED WORK

There is much work in the area of data stream classification.
The CVFDT [5] tries to eliminate the influence of concept drift
based on a sliding window scheme and adaptively change the
decision tree by growing alternative subtrees in questionable
portions of the old tree. When the accuracy of the alternative
subtree outperforms the old subtree, the old one is replaced.
The On-Demand-Stream classifier [8] focuses on the issue of
how to choose the best window size by storing a series of

micro-clusters in a geometric time frame and then choosing
the best time window according to the best performance.
The weighted classifier ensemble [6] represents the effort of
boosting the classifiers based on their accuracy.

The following work is closely related to ours. The K-
ADWIN [11] algorithm is also a sliding window scheme in
which a Kalman filter is employed to estimate the average
of data. When two sub-windows exhibit distinct averages,
one can deduce the existence of concept drift and the older
sub-window is dropped. The RePro algorithm [9] models
concept drift as a first-order Markov chain and maintains a
concept history to predict the next concept. Wang, et. al. [7]
proposed to model concept drift as a hidden Markov model and
assume the dynamics of concept drift is a Poisson process. We
model concept drift as changes of the optimal parameters in a
discriminative model and get different results.

IV. OUR APPROACH

To investigate the nature of the problem, first we build a
dynamical probabilistic model as follows

wt = g(wt−1) + s (1)

p(Ck|xt) = f(wt) + v (2)

where f(·) is the optimal discriminative model and by optimal
we mean it has a optimal parameter vector w; v is a random
variable which represents the uncertainty in the posterior
distribution p(Ck|xt); g(·) denotes the relationship between the
value of parameter vector w at time t−1 and the one at time t;
s is a random variable which represents the uncertainty in this
relationship. Since the evidence of concept drift exists only in
the changes of its parameter vector from the perspective of
the optimal discriminative model, g(·) and s together define
the dynamics of concept drift. The distributions of s and v
can be varied over time, but for simplicity we just assume
they are stable. Note that the parameter vector wt is a hidden
variable of the model and p(Ck|xt) can be viewed as an
indirect measurement of wt.

In classification tasks, our goal is to infer the value of the
optimal parameter wt. To achieve this goal in an tractable way,
we continue to make some assumptions about this model. With
no prior knowledge of concept drift, which usually happens
in practice, we can safely assume that the expectation of
parameter w at time t−1 is just the same as the one at time t.
For simplicity we can assume that s and v follow zero mean
normal distributions with isotropic covariance. Then we have

wt = wt−1 + s (3)

s ∼ N(0, aI) (4)

v ∼ N(0, r) (5)

where I is the identity matrix and a is a single value which
controls the variance of the parameter vector w. Note that all
the information we have in this data stream classification task
is the previous measurements and the current measurement. So

the problem of inferring the value of w is also called filtering
problem in machine learning literatures [2][10].

Having been widely used in the area of control and nav-
igation, the Kalman filter [1] is an optimal recursive data
processing algorithm in that it minimize the posterior estimate
error covariance. One of its assumption is linear model. But
the optimal discriminative model for classification is usually
nonlinear in practice. So, in order to apply the kalman filter
scheme, in this paper, we use one of its nonlinear forms: the
extended Kalman filter [1] to infer the value of the parameter
vector wt. The main idea of the extended Kalman filter is to
approximate the nonlinear model using its Taylor expansion.
As such, we expand f(wt) by Taylor series around wt−1 and
truncate it and use terms up to the first order, then (2) changes
to

p(Ck|xt) = f(wt−1) + Ht(wt − wt−1) + v (6)

Ht =
∂f

∂wt

∣∣∣∣
wt−1

(7)

The extended Kalman filter addresses the problem of esti-
mating the hidden variable wt by using a form of feedback
control: the filter first estimates its value at some time and then
obtains feedback in the form of measurement p(Ck|xt) with
certain measurement noise v. As such, it is common to split
the computation steps into two groups: “predict” equations and
“correct” equations. The predict equations are responsible for
projecting forward the current value of the hidden variable and
error covariance of estimates to obtain a priori estimates for
the next time step. The correction equations are responsible
for incorporating a new measurement into a priori estimate
to obtain an improved posterior estimate. By applying the
extended Kalman filter to solving the filter problem in our
model, we can have the following equations

w−
t = w+

t−1 (8)

P−
t = P+

t−1 (9)

Kt = P−
t Ht(HT

t P−
t Ht + r)−1 (10)

w+
t = w−

t + Kt

(
p(Ck|xt) − f(w−

t)
)

(11)

P+
t = (I − KtH

T
t)P−

t (12)

where w−
t is the priori estimate for wt; P−

t is the priori
estimate for the covariance of wt; w+

t is the posterior estimate
for wt; P+

t is the posterior estimate for the covariance of
wt; Kt is called the Kalman gain matrix. (8) and (9) are the
“predict” equations while (10), (11) and (12) are the “correct”
equations.

Theoretically, any type of discriminative model with con-
tinuous parameters is the candidate of f(·). In this paper,
we choose the well-known logistic regression as the specific
model, although the same idea applies to other discriminative
model as well. In the case of two-class classification, the
logistic regression model is given by

f(w) = σ(wT x) (13)

where σ(·) is the logistic sigmoid function[2]. In the case of
multiclass classification, it takes the form

fk(w) =
exp(wT

k x)∑
k exp(wT

k x)
(14)

where k is the index of class.
For the simplicity in illustration, we consider two-class clas-

sification problem. Note that Ht = σ(wt−1)(1 − σ(wt−1))xt.
Thus the “correct” equations are updated to

Kt =
P−

t σ(wt−1) (1 − σ(wt−1)) xt

(σ(wt−1) (1 − σ(wt−1)))
2
xT

t P−
t xt + r

(15)

w+
t = w−

t + Kt

(
p(Ck|xt) − σ(w−

t)
)

(16)

P+
t = (I − σ(wt−1)(1 − σ(wt−1))Ktx

T
t)P−

t . (17)

In the case of two-class problems, we use binary represen-
tation in which there is a single target variable y ∈ {0, 1} such
that y = 1 represents class C1 and y = 0 represents class C2.
We can interpret the value of y as the probability that the class
is C1, with the values of probability taking only the extreme
values of 0 and 1. As a result, we have p(Ck|xt) = yt in
(16). For the problem of multiclass, the similar scheme can be
adopted.

V. ESTIMATE FILTER PARAMETERS

In the actual implementation of our model, the measurement
noise variance r and aI which is the initial value of P−

t need
to be estimated from data. To obtain an on-line algorithm,
we take an approximate approach. We treat yt as a binary
sample drawn from a Bernoulli distribution with occurrence
probability σ(wT

t x), then we have r � σ(1 − σ).
The random variable s in our model expresses the uncer-

tainty of the relationship, which is caused by concept drift,
between the optimal parameter vectors at two neighborhood
time points, whose covariance aI indicates the degree of
concept drift. One way to think about it is that when P−

t

approaches zero, which indicates that the concept is stable,
K weights the residual less heavily in (16). Therefore, by
estimating the value of a we can adjust the learning rate of
the model. Let’s consider the following equation

p(yt = 1) =
∫

p(yt = 1|wt)p(wt) dwt (18)

where p(yt = 1|wt) = σ(wT
t xt) and p(wt) = N(wt, aI).

(18) represents the convolution of a Gaussian with a logistic
sigmoid function. According to [2], we have

p(yt = 1) � σ
(
κ

(
axT

t xt

)
wT

t xt

) ≡ h(a) (19)

κ(xt) = (1 + πxt/8)−1/2 (20)

Because yt ∈ {0, 1}, we have

p(yt) = h(a)yt (1 − h (a))1−yt (21)

p(Y) =
N∏

t=1

p(yt) (22)

so p(Y) is a function of a. By maximize the evidence p(Y)
we can find the desired a, which is an nonlinear optimization
problem with the constraint condition a > 0. We propose to
solve a using the method of preconditioned conjugate gradients
[3]. Finally, we have

a = argmax
a

ln (p(Y)) (23)

VI. ALGORITHM

In this section, based on the proposed methods, we describe
an algorithm for training the dynamical classifier.

At the initial stage, the algorithm uses the iterative re-
weighted least squares (IRLS) method [2] to train a logistic
regression classifier based on a off-line data set. Then we
use the parameter vector of the initial classifier as the initial
value of wt. Based on the same data set, the initial value
of covariance of the measurement noise and parameter vector
can also be estimated. With these parameters, we can use the
methods described in Section IV and V to adjust the parameter
vector of the classifier online. Because the covariance of wt

which denotes the degree of concept drift could change over
time, we estimate its value based on a length-fixed buffer
when it is filled with new examples and then update the
related equations periodically. Notice that although we use a
time-related buffer here, the purpose is totally different from
previous work which use the data in sliding window to train
a new classifier. In addition, the performance of our classifier
is quite stable when the size of the buffer is varied as shown
in experiments.

Input: S: a dataset from the incoming stream
C: a off-line dataset for evaluating the initial
value of parameters
K: a size-fixed buffer for estimating a

Output: wt: a series of parameter vector of classifier for
each time stamp

learn the initial parameter vector wt from C using the
IRLS method;
estimate the value of a from C using (23);
while S not empty do

get an instance xt from S;
compute the prior estimate for wt and Pt using
(8).(9);
compute the posterior estimate for wt and Pt using
(15), (16), (17);
output the posterior estimate of wt;
if the buffer K is full then

estimate the value of a from K using (23);
P−

t = aI;
empty K;

end

Algorithm 1: Training the Dynamical Discriminative
Model

TABLE I
PARAMETERS FOR THE DATA SET.

Symbol Meaning
fc Concept drift frequency (per records)
d The intensity of concept drift
D The number of dimension of data sets
pnoise The level of noise

The algorithm for classification is straightforward, and it
is omitted here. Basically, given a test case xt, the logistic
regression classifier σ(wt) is applied on it.

The main computational load of our algorithm involves
(15), (16), and (17) whose complexity is O(D) where D is
the number of dimension. So the computational complexity of
our algorithm is O(nD) which makes it suitable for fast and
high-dimensional streaming data classification.

VII. EXPERIMENTS

We conducted an empirical study to examine the per-
formance of our proposed algorithm. The experiments were
conducted on an Intel Pentium 4 PC (1.66GHz) with 1G main
memory, running Windows XP Professional.

A. Data sets

There are two data sources in our experiments. The first is
a synthetic data generator using a rotating hyperplane, which
is a popular concept drifting data streams generation method
having be used by [4], [5], [6], [7], [8], [9]. A D-dimensional
hyperplane can be viewed as a set of points which satisfy

D∑
i=1

wiai = w0 (24)

where ai is the coordinate of the ith dimension. We can treat
the vector < a1, a2, . . . , aD > as a data record, where ai

is the value of attribute Ai. The class label v of the record
can be determined by the following rule: if

∑D
i=1 wiai > w0,

it is assigned the positive label; otherwise, it is assigned the
negative label. By randomly assigning the value of ai in a
record, an infinite number of data records can be generated
in this way. One can regard wi as the weight of Ai. The
larger wi is, the more dominant is the attribute Ai. Therefore,
through rotating the hyperplane to some degree by changing
the magnitude of wi, the underlying data distribution changes,
which is equal to concept drift. In our experiments, we set w0

to 0 and restrict the value of wi in [−1, 1]. We increase the
value of wi with +0.1d or −0.1d once every fc records. After
it reaches either −1 or +1, it then changes in the opposite
direction. While generating the synthetic data, we also inject
noise into the data. With the probability pnoise, the data is
arbitrarily assigned to the class labels. In Table I, we collect the
parameters used in the synthetic data sets and our experiments.

The second data source is the sensor data[12] collected from
a drilling process in a petroleum well with 20000 records
arranged according to the depth. Each example includes 18
attributes with a class label as either bit balling or strong

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time stamp

P
ar

am
et

er
 v

al
ue

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time stamp

P
ar

am
et

er
 v

al
ue

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time stamp

P
ar

am
et

er
 v

al
ue

0 20 40 60 80 100
−1

−0.5

0

0.5

1

Time stamp

P
ar

am
et

er
 v

al
ue

optimal
algorithm

optimal
algorithm

optimal
algorithm

optimal
algorithm

Fig. 1. The Changes of Parameters in the First Four Dimensions

rock, which indicates the current status of the bit body. As
the drilling pipe goes deeper into the ground, the geological
conditions around will change a lot, which causes the changes
in data distribution of sensor data. We ran principal compo-
nents analysis on that data set, saving only the top ten principal
components as the attributes of the data record.

In all experiments, we allocated 50% data to be the test
data.

B. Accuracy

The first experiment show how closely our algorithm can
approximate to the optimal classifier by monitoring the de-
viation between the parameters of optimal classifier and the
parameters of our classifier.

In this experiment, we set fc = 200, pnoise = 0.1, D =
10, and d = 1. The optimal parameters are defined by the
parameter vector of the hyperplane as < w0, w1, . . . , wD >.
For the convenience of illustration, we normalize this vector
each time after we change it.

To illustrate the result of our algorithm, Figure 1 depicts the
evolutions of parameters in the first four dimensions, where the
blue solid lines represent the changes of optimal parameters
and the red cross markers represent the estimated values of
the parameter in the corresponding dimension just before each
time concept drift happens. The concept drift happened for
100 times in the experiment. Note that the trend of parameters
appears to be curve instead of straight line because they are
normalized after we change their values each time. The curves
show our algorithm can track the optimal parameters in each
dimension very closely.

Figure 2 depicts more detailed local changes of parameters
in one dimension over 1000 time stamps, where blue line repre-
sents the optimal parameter and red cross markers represent the
output of our algorithm in each time stamp. As we can see, the
occurrence of concept drift each time can cause the vibration of
the approximate value in output but it eventually approximated
to the optimal parameter closely after being adjusted at each
time stamp.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time stamp

P
ar

am
et

er
 v

al
ue

optimal
algorithm

Fig. 2. The local changes of parameters in one dimension

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time stamp
E

rr
or

 r
at

e

On−demand
Our algorithm
Naive Bayesian

Fig. 3. The error rate in classification

We also compare our algorithm with the On-Demand-
Stream classifier [8], which is based on the rule of the nearest
neighborhood and use an adaptive sliding window scheme, and
a naive Bayesian classifier with a size-fixed sliding window.
Table II records the average accuracy of both algorithm in
seven synthetic data sets with the same parameter setting. The
error rate in classification for the sensor data set is illustrated
in Figure 3. As we can see, our algorithm achieves higher
classification accuracy in all data sets.

C. Sensitivity

In this part, we show the influences of the frequency
of concept drift and the intensity of concept drift on the
performance of our algorithm.

Seven data sets with increasing intensity of concept drift
and other seven data sets with increasing frequency of con-
cept drift are generated with the same setting. Table III and
Table IV give the average classification accuracy on each data
set. Both results show no significant decline in classification
accuracy with different setting of concept drift, which means
our classifier can be adapted to concept drift very well.

To show the influence of the buffer size on the performance,
we set different buffer size to compare the classification
accuracy in the above 14 synthetic data sets. Table V shows
that the performance is stable when the size of buffer is varied.

TABLE II
CLASSIFICATION ACCURACY

Classifier Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7
Ours 0.9341 0.9436 0.9430 0.9536 0.9441 0.9366 0.9511

On-Demand 0.8707 0.8808 0.8844 0.8783 0.8809 0.8614 0.8774
Naive Bayesian 0.8241 0.8201 0.8457 0.8433 0.8503 0.8277 0.8394

TABLE III
SENSITIVITY TO THE INTENSITY OF CONCEPT DRIFT

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7
intensity 1.0000 1.6667 2.3333 3.0000 3.6667 4.3333 5.0000
accuracy 0.9727 0.9712 0.9606 0.9648 0.9688 0.9614 0.9560

TABLE IV
SENSITIVITY TO THE FREQUENCY OF CONCEPT DRIFT

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7
frequency 350 300 250 200 150 100 50
accuracy 0.9679 0.9387 0.9545 0.9294 0.9126 0.9505 0.9476

TABLE V
SENSITIVITY TO THE SIZE OF BUFFER

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7
intensity 1.0000 1.6667 2.3333 3.0000 3.6667 4.3333 5.0000

200 0.9727 0.9712 0.9606 0.9648 0.9688 0.9614 0.9560
400 0.9729 0.9737 0.9645 0.9644 0.9681 0.9621 0.9476
600 0.9679 0.9787 0.9745 0.9694 0.9726 0.9555 0.9576
800 0.9679 0.9745 0.9695 0.9695 0.9696 0.9705 0.9621

1000 0.9739 0.9784 0.9545 0.9794 0.9586 0.9505 0.9676
buffer size

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6 Dataset7
frequency 350 300 250 200 150 100 50

200 0.9679 0.9387 0.9545 0.9294 0.9126 0.9505 0.9476
400 0.9678 0.9387 0.9561 0.9360 0.9244 0.9612 0.9431
600 0.9682 0.9325 0.9578 0.9263 0.9124 0.9435 0.9596
800 0.9519 0.9355 0.9574 0.9216 0.9282 0.9568 0.9419

1000 0.9636 0.9362 0.9498 0.9272 0.9309 0.9544 0.9436
buffer size

VIII. CONCLUSION

The main contribution of this paper is having proposed a
framework of modeling concept drift explicitly as the changes
of the optimal parameters in a dynamical probabilistic model.
With this probabilistic model, we transform the training prob-
lem into a filtering problem. We then approximate the optimal
parameters by using the extended Kalman filter method. Under
this framework, we can use different discriminative models and
give them adaptability to concept drift by combining Kalman
filter scheme. As evidenced by the empirical results, the
proposed method is able to track the optimal parameters very
closely and achieves high accuracy with low time complexity.
In addition, it is robust to the intensity and frequency of
concept drift.

IX. ACKNOWLEDGMENTS

This work is supported in part by NSFC grants 60673103
and 60721061.

REFERENCES

[1] Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical
report, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA, (1995)

[2] Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-
Verlag, Berlin Heidelberg New York (2006)

[3] Coleman, T.F., Li, Y.: An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds. SIAM Journal on Optimization, Vol.
6. (1996) 418-445

[4] Gao, J., Fan, W., Han, J., Philip, S.Yu.: A General Framework for Min-
ing Concept-Drifting Data Streams with Skewed Distributions. SIAM
International Conference on Data Mining. (2007)

[5] Hulten, G., Spencer, L., Domingos, P.: Mining Time-Changing Data
Streams. ACM SIGKDD. (2001)

[6] Wang, H., Fan, W., Philip, S.Yu., Han, J.: Mining Concept-Drifting Data
Streams Using Ensemble Classifiers. ACM SIGKDD. (2003)

[7] Wang, H., Yin, J., Pei, J., Philip, S.Yu., Jeffrey, X.Yu.: Supressing Model
Overfitting in Mining Concept-Drifting Data Streams. ACM SIGKDD.
(2006)

[8] Aggarwal, C.C., Han, J., Philip, S.Yu.: On Demand Classification of
Data Streams. ACM SIGKDD. (2004)

[9] Yang, Y., Wu, X., Zhu, X.: Combining Proactive and Reactive Predictions
for Data Streams. ACM SIGKDD. (2005)

[10] Jordan, M. (ed.): Learning in Graphical Models. MIT Press, Cambridge,
MA (1999)

[11] Albert Bifet, Ricard Gavald: Kalman Filters and Adaptive Windows for
Learning in Data Streams. 29-40, Proc. Discovery Science. (2006)

[12] Arash Aghassi: Investigation of Qualitative Methods for Diagnosis
of Poor Bit Performance Using Surface Drilling Parameters. Thesis,
Louisiana State University. (2003)

