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      Abstract: In this paper, an online multivariable identification 
approach has been developed based on an adaptive Takagi-
Sugeno fuzzy model. The approach utilizes an evolving rule-base 
structure and model parameters to adapt the identified fuzzy 
model to process dynamic changes. Two new schemes have been 
proposed to improve the rule-base structure evolution. The first 
scheme smoothes the rule generation in the initial uncertain 
commissioning period of the identification. The second scheme 
diagnoses 
the inactive generated rules by examining their past activation 
record to delete  them, leading to a more compact and efficient 
rule-base. A weighted recursive least squares (WRLS) algorithm 
is employed to estimate the rules consequent parameters. The 
proposed identification approach has been evaluated by a 
nonlinear distillation column benchmark to demonstrate its 
effectiveness to identify compact and accurate multivariable 
fuzzy models. 
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I. INTRODUCTION 
Many industrial processes are nonlinear multivariable systems 
with multiple inputs and multiple outputs, having complicated 
cross-coupling characteristics. Modeling of such complex, 
often poorly understood processes, is a substantial and crucial 
task and by no means routine. The conventional techniques of 
modeling, based on the so-called first principles models, are 
difficult or even impossible to apply for these practical 
engineering problems. A promising alternative is to employ 
data-driven identification approaches that rely only on 
processes input-output experimental data.  
Fuzzy rule-based modeling approaches have gained significant 
impetus due to their inherent flexibility to construct process 
model from experimental data, heuristic rules, or a 
combination of both. Among the different fuzzy methods, the 
Takagi–sugeno (TS) modeling techniques have attracted most 
attention [1] because of its computational and interpretation  
efficiency. The TS fuzzy model consists of if-then rules with 
fuzzy antecedents and mathematical functions in the 
consequent parts.  
Thus, the task of TS fuzzy model identification is to determine 
both the nonlinear parameters of the antecedent membership 
functions  (i.e., model structure) and the linear parameters of 
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the rule consequents  (i.e., parameters). 
There are two general approaches to identify both the TS 
fuzzy model structure and parameters. The classical approach 
employs the human experts to formulate this required 
knowledge. However, this approach is often inefficient 
because human cannot sense all the information underlying 
details. The recent tendency in the fuzzy model research 
community is focused on the data-driven techniques in which 
the non-linear dynamic fuzzy models can be learned from 
input-output measurement data without human involvement. 
On-line learning of the TS fuzzy models requires a recursive 
identification approach for both the model structure and the 
consequent parameter estimation. Because, the whole set of 
input-output data is not available at the start of the training 
procedure.  
[2] presents an online identification approach in which the 
model structure and parameters evolve gradually, without a 
priori information, starting from the first input-output data 
sample. This interesting evolving Takagi-Sugeno (eTS) 
identification feature makes the approach an effective 
modeling mechanism to adapt itself with process time-varying 
dynamics due to aging, wearing, change in operation mode 
and environmental conditions. So far, little attention has been 
devoted to the fuzzy model identification of multi-input, multi-
output (MIMO) industrial processes, from input-output data. 
In this paper, an online fuzzy model identification for MIMO 
processes will be presented based on the modification of the 
approach given in [2].  
 

II. MIMO TS FUZZY MODEL 
The TS fuzzy model consists of a set of if-then rules with 
fuzzy antecedents and crisp mathematical functions in the 
consequent part. The TS fuzzy rules are usually defined as: 
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model. TT
e xx ]1[=  is the extended input vector which 

accommodates the free bias coefficient ia0 . 
Ti

n
iii aaa ],...,,[ 10=π  indicates the column vector of 

parameters for the consequent part of the ith rule. iy  is the 

output of the ith local linear sub-models.  j
iA  denotes the 

antecedent fuzzy set of the jth input (j=1,…,n) in the ith rule.  
For a given input, x, the output of TS model is computed by 
weighted averaging of individual rules contribution: 
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is the degree of activation or fulfillment of the ith rule, defined 
as the Cartesian product of respective fuzzy sets for this rule. 
µ  represents the following Gaussian-like antecedent fuzzy set 
by which the activation degree of each rule is determined: 
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Where *ix  denotes the center (focal point) of the ith rule and 
24 r=α  defines the influence zone of the rule which can be 

tuned by r as a leverage for a trade-off between the model 
complexity and precision. 
Now, consider a MIMO process with in  input and on  
outputs. The process model can be represented by a collection 
of coupled multi-input, single-output (MISO) discrete-time 
fuzzy models. The Nonlinear AutoRegressive with eXogenous 
input (NARX) model is frequently used with many nonlinear 
identification methods. The resulting fuzzy NARX model 
establishes a nonlinear functional relation (f (.)) between the 
past input-output and the predicted output, as: 
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Where n and m are the number of delays in output and input, 
respectively. 
The MISO fuzzy models are assumed to be of the input-output 
NARX type, represented by: 
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Where the regression vector  )(kzl  is given by: 
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Where the notation {.} represents an ordered sequence of 
delayed samples of a signal, defined as: 
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yn  and un  denote matrices with the number of delays in each 

output and input, respectively, and dn  is the matrix with the 

numbers of pure delays from each input to the output. yn  is 

an 00 nn ×  matrix, and un , dn  are inn ×0  matrices. lf  are 
rule-based fuzzy models of the TS type. With the antecedent in 
the conjunctive form, the rules are: 
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Where
il

x is an element from the regression vector (7), i
lA  is 

the antecedent fuzzy set of the ith rule, i
lβ  and i

lγ  are 

polynomials in 1−q , i.e. the backward shift operator 

))1()(( 1 −=− kykyq , inRU ∈  and onRU ∈ are input and output 

vectors,  respectively and i
lθ  is the bias term. lm  denotes the 

number of rules in the lth model. 
 

III. ONLINE MIMO FUZZY MODEL IDENTIFICATION 
BASED ON AN EVOLVING STRATEGY 

The MIMO fuzzy model identification procedure based on the 
evolving strategy consists of two distinct steps. In the first, 
fuzzy rules and fuzzy sets are determined by an online 
potential clustering approach [2]. In the second step, called as 
on-line adaptation of the TS fuzzy model, the consequence’s 
parameters of the generated fuzzy rules are adapted by a 
weighted recursive least squares (WRLS) method. 
 
A.Online Potential Clustering Approach 
      The on-line clustering procedure starts with the first data 
point established as the focal point of the first cluster. 
Following the procedure with the next data point onwards, the 
potential of the new  
data points, )(kzl , is calculated recursively as 
follows: 
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Where ))(( kzP llk  denotes the potential of the data point 

)(kzl calculated at time k corresponding to lth MISO model. 
j

k
j

i
j

lik zzd −=  indicates projection of the distance between two 

data points at different sample times i, k on the axis of lz . 
This function is monotonic and inversely proportional to the 
distance and enables updating the coordinates of the focal 
points of the existing clusters by the following recursive 
equation: 
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Where ( )*i
lkl zP  is the potential of the existing ith rule center, 

which is updated for each MISO fuzzy model at time k. 
The evolution of the MIMO fuzzy model structure (rule-base) 
is then conducted by the following two basic principles, based 
on the comparison of the new data potential to the updated 
potential of the existing rule centers. for each MISO fuzzy 
model: 
 
(a)-Rule generation criterion: 
If the potential of the new data point is higher than the 
potential of the centers of the existing clusters, i.e., 
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Then, the new data point is accepted as a new center and a 
new rule is added to the rule-base with the following 
characteristics: 
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(b)-Rule replacement criterion 
If in addition to the condition expressed by 
Eq.(12), the new data point is close to an old existing rule 
center, i.e., 
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replaces the closest center using the following substitutions: 
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Where *h
lz  denotes the closest center. 

 
B. Online Consequent Parameter Estimation Using a WRLS    
    Approach 
     As discussed in the previous subsection, the MIMO fuzzy 
model structure evolves gradually. This affects all the existing 
data and hence the straight forward application of the WRLS 
is not applicable. A proper resetting of the covariance matrices 
and parameters initialization is needed at each time a rule is 
added to the rule base. The estimation of consequent 
parameters is conducted by the WRLS algorithm using the 
following recursive procedure: 
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               Where Ω  is a user specified initial covariance value. 
2.  Form the new regressor vector T

lkϕ  at each sample     
        time. 
3.  Evaluate the kalman gain vector: 

        
)1()1()1(

)1()1(

−−−

−−

+
==

klkl
T

kllk

klkl
lklklk C

C
CK

ϕϕλ
ϕ

ϕ         (16)                                             

         Where lkC denotes the covariance matrix,  

         and 10 ≤< klλ  is a  forgetting factor. 
        4.    Update the consequent parameters: 
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  5.    Update the covariance matrix: 

               

lkkl
T

kllk

klkl
T

kllk

kl
T

klkl
kllk

CKI

C
CC

CC

λϕ

ϕϕλ
ϕ

)1()1(

)1()1()1(

)1()1()1(
)1(

][ −−

−−−

−−−
−

−=

+
−=

       (18)  

The execution of the WRLS algorithm continues for the next 
time-step from step 2 in the above procedure. 
 

IV. NEW ADAPTIVE RULE HANDLING SCHEMES IN 
THE DEVELOPED ONLINE MIMO FUZZY MODEL 

IDENTIFICATION 
In this section, two innovative schemes will be presented to 
improve the rule handling mechanism. 

 
A. A New Smoothing Scheme in Rule Generation 
It is natural that in the initial commissioning period of the 
identification algorithm, fuzzy rules have more chances to be 
produced with a high rate due to initial high model uncertainty 
and transient response fluctuations. This may lead to 
generation of unnecessary rules under the influence of high 
frequency noise. An exponential time-varying weight, )(kη , 
is included in Eq.(12), as follows: 
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Where 10 >lη  and lτ  are set by the user. This scheme makes 
the algorithm more cautious in the initial identification phase 
to add extra rules. Then, as the identification progresses and 
more dynamic knowledge are captured, the rule generation 
mechanism gets back to its original lower decision level. 
 
B. A New Rule Reduction Scheme 
When the identified MIMO model is more tuned, the rule base 
might end up with some inactive identified rules. Therefore, an 
improvement can be achieved by recognizing and deleting the 
generated inefficient rules. In order to identify the inactive 
rules, the firing level i

lλ  of each already generated rule can be 
selected as a measure to evaluate the rule activation. Thus, one 
simple approach is to compare this rule activation measure 
with a threshold value. When its value is less than the 
threshold value, the corresponding rule can be deleted. This 
method, however, may lead to oscillation in rule creation-
deletion procedure due to its instantaneous nature. A more 
rationalized scheme in the rule reduction is proposed which 
has memory to investigate the rule activation record in the 
past. This scheme can be formulated as follows: 
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Where )(kRAi
l

denotes the rule activation RA  of the ith rule 
corresponding to the lth MISO fuzzy model at time k. 

10 ≤< i
lγ  represents the related record forgetting factor and 

i
lλ  indicates the firing level of the ith rule. Thus, the proposed 

rule reduction criterion can be expressed by the following 
logic rule: 

If  l
i
l kRA ξ<)(  , then remove ith rule. 

Where lξ is the threshold value. To achieve smoother rule 
reduction procedure, )(kRAi

l  is reset to an initial value after 
each rule reduction task. 
 

V. ONLINE IDENTIFICATION OF A DISTILLATION 
COLUMN BENCHMARK CASE STUDY 

This simulation study is used to illustrate the advantages of the 
proposed identification method. The process to be identified is 
a simulated binary distillation column [3], which covers the 
most important effects for the dynamic of a real distillation 
column and is known to be strongly nonlinear. 
 

 
Fig.1. Distillation column 

 
A. Binary Distillation Column Description 
The process to be identified is a first-principle model of high-
purity binary distillation column, depicted in Fig.1. It is 
usually called as “column A” in the literature which consists 
of 39 trays, a reboiler and a condenser. The simulation model, 
developed by Skogestad [4] under the assumption for (i) 
equilibrium on all trays, (ii) total condenser, (iii) no vapor 
holdup and, (iv) linearized liquid dynamics. The model is a   

44×  “open-loop” (uncontrolled column) [4] with four 
manipulated variables (reflux flow rate, LT, boilup flow rate, 
VB, distillate product flow rate, D, bottom product flow rate, 
B) and four uncontrolled variables(top product composition, 
yD, bottom product composition, xB, condenser hold up,  MD, 
reboiler boilup, MB). Further 
details of the simulation model are described in [3].  
 
B. Online Identification of MIMO Fuzzy Model 
The first step in the identification process is the selecting of 
the general NARX model structure in Eq.(6). It is assumed 

that the process under study can be represented with the 
following simple model structure: 
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Where )](),(),(),([)( 4321 kykykykyky =  and 
)](),(),(),([)( 4321 kukukukuku =  are the process output and 

input vectors at time k, respectively, and )(kyl

∧  represents the 
predicted lth fuzzy model output. Thus, the regression vector 

)(kzl  in Eq.(7) includes 12 variables as inputs to the NARX 
fuzzy model which have four outputs . 
The simulated distillation column is excited by four normal 
distributed random input changes in VB, LT, D and B around 
their steady-state values, given in [3]. As depicted in Figs.2-5 
the excitation signals have been chosen so that they could 
generate rich data without disturbing the product quality. The 
parameters r and  Ω  are initialized at r=0.5 and Ω =10000. 
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Fig.2. VB input                        Fig.3. LT input 
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Fig.4. B input                           Fig.5. D input 

     
a. Online Identification Using the Original Developed eTS    
    Approach 
Figs.6-9 illustrate the resulting distillation column outputs yD, 
xB, MD and MB due to input excitation signals. These figures 
include the estimated process outputs due to the online MIMO 
fuzzy model identification. 
 

0 50 100 150 200 250 300
0.9885

0.989

0.9895

0.99

0.9905

0.991

0.9915

0.992
out1(yD) and out-est1

 

 

out1
out-est1

  0 50 100 150 200 250 300
0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

 

 

out2
out-est2

 
   Fig.6. yD output                                   Fig.7. xB output 
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Fig.8. MD output                                  Fig. 9.  MB output 

 
 
As a measure of performance, the Root Mean Square Error 
(RMSE) is used as follows to evaluate the identified fuzzy 
model 
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Where N is the total number of data samples used in the 
identification, ly is the actual lth output and 

ly
^  is the estimated 

lth output. Fig.10 depicts the evolution of the generated rules 
during the online identification process. To demonstrate the 
performance of the fuzzy model parameter estimation by the 
WRLS algorithm, the resulted estimated parameters are shown 
in Figs.11-14. 
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Fig.10. Evolution of the rule base 
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b. Online Identification Using the Modified Developed  eTS   
    Approach 
  a) Smoothing scheme in rule generation  
The online fuzzy identification was repeated using the 
proposed smoothing scheme, given in Eq.(19-20). The tuning 
parameters were set to 05.10 =lη and 5Nl =τ ; where N 
denotes the number of data samples in the identification time 
interval. Fig.15 demonstrates the resulting time evolution of 
the generated rules. As depicted, the final rules have reduced 
from 14 to 3, which is a significant achievement. 
The resulting fuzzy model accuracy has been determined in 
terms of the calculated RMSE measure for each process 
output which has been summarized in Table1. 
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Fig.15.  Evolution of the                     Fig. 16.  Evolution of the 
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Fig.17.  Evolution of the rule base 

    
b) Inactive rule reduction scheme 
The online fuzzy identification was repeated using the 
proposed inactive rule reduction scheme, specified by 
Eq.(21). The resulting time evolution of the generated rules is 
illustrated in fig.16. As shown, the rules have converged to 
five final rules. 
The accuracy of the identified fuzzy MIMO model has been 
expressed in terms of the RMSE measures in table1. 
 

c) The combined rule smoothing and  reduction scheme    
The online fuzzy identification experiment was repeated with 
the combined schemes. The resulting rule time evolution has 
been depicted in Fig.17.  As shown, the number of rules has 
finally converged to three. The resulting model accuracy has 
been given in terms of the RMSE in Table1. Table1 gives a 
comparative result for the different online proposed fuzzy 
identification approaches with that of the original method [5]. 
The results demonstrate the superiority of the modified 
approaches in the number of generated rules and 
consequently in the speed of algorithm, while the total RMSE 
error has not been affected considerably. 
 
 



  

Table 1.  Number of rules and RMSE 
Method No. of  

Rules 
RMSE 

 Original scheme 14 4.5742e-4 
Smoothing scheme 3 5.7720e-4 
 rule reduction scheme 5 4.5984e-4 
 combined scheme 3 4.6245e-4 

 
IV. CONCLUSIONS 

In this paper, an online fuzzy model identification method has 
been developed for MIMO processes using an eTS approach. 
Two new schemes have been proposed to enhance the rule 
generation mechanism. The modified approach generates rules 
cautiously at the initial identification commissioning period. 
The second scheme investigates the activation record of 
already generated rules to recognize and delete the inactive 
rules. The performance of the resulting approach was 
demonstrated on a high-purity distillation column benchmark 
with 44 × dimension. The simulation results indicate that the 
proposed fuzzy MIMO identification approach leads to 
compact accurate dynamic models. 
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