
978-1-4244-1674-5/08 /$25.00 ©2008 IEEE CIS 2008

Dataflow Analysis for Known Vulnerability
Prevention Systemi

Lifang Qin1, Yichao Li2, Cao Yue3

School of Computer Science and Engineering
University of Electronic Science and Technology of China

Chengdu, China
lifang_qin@sina.com.cn1 richardlyc@uestc.edu.cn2 yuecao@uestc.edu.cn3

Abstract—Usually, a new exploit for a single vulnerability can
readily be turned into worms which compromise hundreds of
thousands of machines within only a few minutes. In order to
protect the host from malicious attacks, we propose a new
approach for automatic defense mechanism: Dataflow Analysis
for Known Vulnerability Prevention System (shortly for DA-
VPS), which has properties with easy deployment, accurate
detection and low overhead. In our paper, we present the
principle, architecture, implement, and deployment of DA-VPS.

Keywords—vulnerability, dataflow analysis, malicious attack
detection

I. INTRODUCTION
With the rapidly developing of computer technology, the

security of the host system hasn’t been strengthened. At most,
it just compensates the increasing degree of security threat as
the result of the complexity of computer application
environment. Moreover, it is possible that the appearance of
new technologies will make the security of computer system
more brittle.

Via theory analysis, the main reason why attack behaviors,
such as computer virus, malicious code, and network invade,
can bring great threat to the computer system is that there exists
many vulnerabilities during the course of designing,
developing, and maintaining system or application software. A
new exploit for a single vulnerability can readily be turned into
worms which compromise hundreds of thousands of machines
within only a few minutes. Hence, a good defense system
should take a rapid response after new vulnerability discovered
and repair the vulnerability before attackers exploit it.

At present, both scholar and organization are doing great
research on decreasing, detecting and defending vulnerability.
They have proposed several approaches to detect
vulnerabilities when a program is exploited. Most of these
previous mechanisms, such as StackGuard [1], PointGuard [2],
full-bounds check [3], LibsafePlus [4], FormatGuard [5], and
CCured [6], require source code or special recompilation of the
program. Some of them also require recompiling the libraries
[3], or modifying the original source code, or are not
compatible with some programs [2, 6]. These constraints hinder
the deployment and applicability of these methods, especially
for commodity software whose source code are often
unavailable, and the additional work required (such as
recompiling the libraries and modifying the original source
code) makes it inconvenient to apply these methods to a broad

range of applications. Note that most of the large-scale worm
attacks to date are attacks on commodity software.

Thus, a good defense system needs to meet several goals
simultaneously [7]:

1) Fast defense development and deployment. There is
often very little reaction time, especially when the exploit
comes in the form of a fast propagating worm.

2) No requirement for source code. Many vulnerable
programs are commodity software for which the source code is
proprietary. To respond quickly to new vulnerabilities, we need
to develop a defense mechanism without access to source code.

3) High accuracy and effectiveness. The defense
mechanism should protect against the vulnerability and should
not have any undesirable side effect on normal execution.

4) Low performance overhead. The defense mechanism
should have low performance overhead, so a vulnerable host
deploying the defense mechanism can still provide critical
services with little performance degradation.

In this paper, we propose Dataflow Analysis for Known
Vulnerability Prevention System (shortly for DA-VPS): a new
approach for automatic defense which has properties with easy
deployment, accurate detection and low overhead. DA-VPS
can protect the target system effectively and ensure the target
program in its normal execution while it is in danger of
malicious attacks.

II. APPROACH: DATAFLOW ANALYSIS FOR KNOWN
VULNERABILITY PREVENTION SYSTEM

In our paper, we propose a new defense mechanism:
Dataflow Analysis for known Vulnerability Prevention System
(shortly for DA-VPS), which is implemented on DynamoRIO
[8].

The principle of our DA-VPS is: firstly, using dataflow
analysis technology, DA-VPS traces the data coming from the
untrusted source of input, and diagnoses whether it is the
tainted. Secondly, DA-VPS examines the spread path of tainted
in a backward manner to determine which instructions
propagate the tainted and log them. Thirdly, according to
vulnerability context and the spread path of tainted, DA-VPS
generates the vulnerability filter and its hot patch. Before the
next exploit reaches the exploit point, using the vulnerability

filter, DA-VPS can detect the exploit and then applies the
related hot patch to repair this vulnerability.

Figure 1 shows the overall architecture of DA-VPS. Our
architecture contains four components: TaintedTracker,
Vulnerability Analyzer, Hotpatch Generator and Vulnerability
Repair.

Target
binary

program

vulnerable
program

Strengthened
program

Sample
exploits

TaintedTra
cker

Vulnerability
Analyzer

Vulnerability
Repair

Hotpatch
Generator

Malicious
Attacks

spead
path

Release
Hotpatch

Vulnerability context

Vulnerability filter

Apply Hotpatch

Fail !
Succeed

Figure 1. The arcchitecture of DA-VPS

In Figure 1, we assume the sample exploits address to the
known vulnerabilities.

III. DESIGN AND IMPLEMENT
In this part, we illustrate the implement of our DA-VPS.

A. TaintedTracker
Usually, an attacker is trying to change the execution of a

program illegitimately. So he must cause a value that is
normally derived from a trusted source to instead be derived
from his own input. For example, values such as jump
addresses and format strings should usually be supplied by the
code itself, not from external untrusted inputs. However, an
attacker may attempt to exploit a program by overwriting these
values with his own data.

 As the first part of DA-VPS, TaintedTracker is a new
detector, which can detect attacks such as buffer overflow or
format strings exploit. In our paper we refer to data that
originates or is derived arithmetically from an untrusted input
as being tainted. The responsibility of TaintedTracker is to
mark input data derived from untrusted sources as tainted, and
then monitor the execution of program, which can trace how
the tainted attribute propagates (i.e., what other data becomes

tainted). TaintedTracker also checks when tainted data is used
in dangerous ways. For example, using tainted data as jump
addresses or format strings often indicates an exploit of a
vulnerability such as a buffer overrun or format string
vulnerability.

 TaintedTracker performs dataflow analysis on a program
by running the program in its own emulation environment.
Specially, we implement DA-VPS Using DynamoRIO [8, 9], a
dynamic binary instrumentation tool. Actually, James
Newsome and Dawn Song referred the dataflow analysis as
dynamic taint analysis [10]. Similar to their TaintCheck, our
TaintedTracker is consisted of three parts: TaintMarking,
TaintTracing, and TaintAssert.

1) TaintMarking

 TaintMarking marks any data that comes from an
untrusted source of input as tainted. Here, an untrusted source
is the input which may bring any attacker's data. By default,
TaintMarking considers input from network sockets to be
untrusted, since for most programs the network is the most
likely vector of attack. By an extended policy, other sources
inputs e.g. input data from certain files or stdin can be
considered as untrusted sources.

 Taint Marking uses shadow memory to mark tainted.
Shadow memory is a memory mapping technology which maps
one memory address to another. Each byte of memory,
including the registers, stack, heap, etc., has a four-byte shadow
memory that stores a pointer to a Taint data structure if that
location is tainted, otherwise a NULL pointer if it is not. We
use a page-table-like structure to ensure that the shadow
memory uses very little memory in practice. TaintMarking
examines the arguments and results of each system call, and
determines whether any memory written by the system call
should be marked as tainted or untainted according to the
policy. When the memory is tainted, TaintMarking allocates a
Taint data structure that records the system call number, a
snapshot of the current stack, and a copy of the data that was
written. The shadow memory location is then set to a pointer to
this structure. This information can later be used by the
VulnerabilityAnalyzer when an attack is detected. Optionally,
logging can be disabled, and the shadow memory locations can
simply store a single bit indicating whether the corresponding
memory is tainted.

2) TaintTracing

 Because other data in the memory may be tainted when
manipulating tainted data, we need to trace how the tainted
propagates in the program. Therefore, TaintTracing will track
each instruction that manipulates data in order to determine
whether the result is tainted. The type of Instructions traced by
TaintTracing mainly includes data movement instructions (like
LOAD, STORE, MOVE, PUSH, POP, etc.) and arithmetic
instructions (ADD, SUB, XOR, etc.). For data movement
instructions, the data at the destination will be tainted if and
only if any byte of the data at the source location is tainted. For
arithmetic instructions, the result will be tainted if and only if
any byte of the operands is tainted. While arithmetic
instructions also affect the processor’s condition flags, we do
not track whether the flags are tainted, because it is normal for

untrusted data to influence them. Note that for both data
movement and arithmetic instructions, literal values are
considered untainted, since they originate either from the
source code of the program or from the compiler.

 In order to track the propagation of tainted data,
TaintTracing adds instrumentation before each data movement
or arithmetic instruction. When the result of an instruction is
tainted by one of the operands, TaintTracing sets the shadow
memory of the result to point to the same taint structure as the
tainted operand. Optionally, TaintTracing can instead allocate a
new taint structure with information about the relevant
instruction including the operand locations and values, and a
snapshot of the stack, which points back to the previous taint
structure. When an attack is detected, the
VulnerabilityAnalyzer can follow this chain of Taint structures
backwards to determine how the tainted data propagated
through memory.

3) TaintAssert

 By marking data as tainted correctly and tracking its
propagation at run time, we can detect malicious behavior.
TaintAssert checks whether tainted data is used in ways that its
policy defines as illegitimate. TaintAssert’s default policy is
designed to detect format string attacks, and attacks that alter
jump targets including return addresses, function pointers, or
function pointer offsets. When Taint Tracker detects that
tainted data has been used in an illegitimate way, signaling a
likely attack, it invokes the Vulnerability Analyzer to further
analyze the attack.

 TaintAssert checks Jump addresses, format strings, and
system call argument. By default, TaintAssert checks whether
tainted data is used as a jump target (such as a return address,
function pointer, or function pointer offset) or as a format string
argument to the print family of standard library functions.
Many attacks attempt to overwrite one of these in order to
redirect control flow either to the attacker’s code, to a standard
library function, such as exec, or to another point in the
program (possibly circumventing security checks). Hence,
firstly, for Jump addresses, by having Taint Tracker place
instrumentation before each jump instruction we can ensure
that the data specifying the jump target is not tainted. Secondly,
for format strings, TaintAssert can check whenever tainted data
is used as a format string, even if it does not contain malicious
format specified for attacks. This could be used to discover
previously unknown format string vulnerabilities. Thirdly not
the lastly, for system call argument, TaintAssert can check
whether particular arguments to particular system calls are
tainted, though this is not enabled in TaintAssert’s default
policy. This could be used to detect attacks that overwrite data
that is later used as an argument to a system call.

B. Vulnerability Analyzer
When tainted data is asserted to be misused, TaintTracker

provides some useful information about how the exploit
happened, and what the exploit attempts to do. These are very
help for identifying vulnerabilities and for generating exploit
signatures. And then we call Vulnerability Analyzer to make
further analysis.

 Information logged by TaintTracker shows the relevant
part of the execution path in between tainted data’s entry into
the system, and its use in an exploit. By back-tracing the chain
of Taint structures, the Vulnerability Analyzer provides
information including the original input buffer that the tainted
data came from, the program counter and call stack at every
point the program operated on the relevant tainted data, and at
what point the exploit actually occurred. The Vulnerability
Analyzer can use this information to help determine the nature
and location of a vulnerability quickly, and to identify the
exploit being used.

 Optionally, the Vulnerability Analyzer can allow an attack
to continue in a constrained environment after it is detected.
We currently implement an option to redirect all outgoing
connections to a logging process. This could be used to collect
additional samples of a worm, which can be used to help
generate a signature for that worm.

C. Hotpatch Generator
Hotpatch Generator component includes two type

instructions: tainted spread path instructions and tainted data
misused instructions. Additionally, tainted spread path
instructions contain data movement instructions and arithmetic
instructions. Generator gets the execution path information of
exploit for specified vulnerability from TaintTracker, traces in
a backward manner from the exploit point, and generates the
Hot-Patch.

 Hotpatch is the regulation for discovering, filtering, and
repairing the vulnerability. Hotpatch Generator changes all
instructions of the Hotpatch into memory space addresses,
which are used to monitor the execution of the program.

D. Vulnerability Repair
Vulnerability Repair monitors the running instructions and

memory address related to the Hotpatch. When the terminal
defense system receives the Hotpatch sent from remote services
center, Vulnerability Repair detects whether there exists the
specified vulnerability in the local system. If there exists, it
applies the Hotpatch and repairs the vulnerability.

Since the Hotpatch is the form of instructions, the
instruction list and the instruction position to exploit point,
Vulnerability Repair can detects the exploit once it appears.
And before attack reaches the exploit point, Vulnerability
Repair applies the method associated to Hotpatch to rewrite the
code-flow of program so that attacker fails the exploit in a new
environment.

IV. DEPLOYMENT
Our DA-VPS has satisfied three important goals: Fast

vulnerability filter generator, accurate detection, and low
performance overhead, which ensure our DA-VPS can protect
target host from the threat of network attacks.

 Figure 2 shows the deployment of DA-VPS.

Figure 2. The deployment of DA-VPS

Terminal net hosts have installed DynamoRIO and our DA-
VPS system.

Through Honeypot or vulnerability release website,
Emergency center can collect the sample exploits for latest
vulnerability of program, and then submit them to
Vulnerability Analysis.

DA-VPS can generate vulnerability filter, and issues
Hotpatch to terminal users.

V. CONCLUSION
In this paper, we point out the limitations of current

detection mechanism. Then we propose a new approach for
automatic defense: Dataflow Analysis for Known Vulnerability
Prevention System (DA-VPS), which has a rapid reaction when
a new vulnerability is discovered. We give its overall
architecture in part 2 and describe the detail of its implement in
part 3. The deployment of DA-VPS is also illustrated in part 4.
To sum up, DA-VPS can protect the target system effectively
and ensure the target program in its normal execution while it
is in danger of malicious attacks.

[1] Crispin Cowan, Calton Pu, Dave Maier, JonathonWalpole, Peat Bakke,

Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX Security
Symposium, January 1998.

[2] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle.
PointGuard: Protecting pointers from buffer overflow vulnerabilities. In
12th USENIX Security Symposium, 2003.

[3] Olatunji Ruwase and Monica Lam. A practical dynamic buffer overflow
detector. In Proceedings of the 11th Annual Network and Distributed
System Security Symposium, February 2004.

[4] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus:
Tools for runtime buffer overflow protection. In USENIX Security
Symposium, August 2004.

[5] Crispin Cowan, Matt Barringer, Steve Beattie, and Greg KroahHartman.
FormatGuard: automatic protection from printf format string
vulnerabilities. In Proceedings of the 10th USENIX Security
Symposium, August 2001.

[6] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-
safe retrofitting of legacy code. In Proceedings of the Symposium on
Principles of Programming Languages, 2002.

[7] James Newsome, David Brumley, Dawn Song. Vulnerability-Specific
Execution Filtering for Exploit Prevention on Commodity Software.
NDSS, 2006.

[8] Derek L. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. Electrical Engineering and Computer Science.
September, 2004.

[9] Dynamorio. http://www.cag.lcs.mit.edu/dynamorio/.
[10] James Newsome, Dawn Song. Dynamic Taint Analysis for Automatic

Detection, Analysis, and Signature Generation of Exploits on
Commodity Software. NDSS. May,2004.

[11] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, Yuanyuan
Zhou, James Newsome, David Brumley, Dawn Song. Sweeper: A
Lightweight End-to-End System for Defending Against Fast Worms.
Proceedings of the 2nd ACM SIGOPS EuroSys (EuroSys'07). March,
2007.

[12] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf
Zugenmaier. Shield: Vulnerability Driven Network Filters for
Preventing Known Vulnerability Exploits. In the Proceedings of ACM
SIGCOMM, Portland. August,2004.

i This research is partially supported by the National Information Security
242 Program of China under Grant No. 2007B30

