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Abstract—Usually, a new exploit for a single vulnerability can 
readily be turned into worms which compromise hundreds of 
thousands of machines within only a few minutes. In order to 
protect the host from malicious attacks, we propose a new 
approach for automatic defense mechanism: Dataflow Analysis 
for Known Vulnerability Prevention System (shortly for DA-
VPS), which has properties with easy deployment, accurate 
detection and low overhead. In our paper, we present the 
principle, architecture, implement, and deployment of DA-VPS. 
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I.  INTRODUCTION 
With the rapidly developing of computer technology, the 

security of the host system hasn’t been strengthened. At most, 
it just compensates the increasing degree of security threat as 
the result of the complexity of computer application 
environment. Moreover, it is possible that the appearance of 
new technologies will make the security of computer system 
more brittle. 

Via theory analysis, the main reason why attack behaviors, 
such as computer virus, malicious code, and network invade, 
can bring great threat to the computer system is that there exists 
many vulnerabilities during the course of designing, 
developing, and maintaining system or application software. A 
new exploit for a single vulnerability can readily be turned into 
worms which compromise hundreds of thousands of machines 
within only a few minutes. Hence, a good defense system 
should take a rapid response after new vulnerability discovered 
and repair the vulnerability before attackers exploit it. 

At present, both scholar and organization are doing great 
research on decreasing, detecting and defending vulnerability.  
They have proposed several approaches to detect 
vulnerabilities when a program is exploited. Most of these 
previous mechanisms, such as StackGuard [1], PointGuard [2], 
full-bounds check [3], LibsafePlus [4], FormatGuard [5], and 
CCured [6], require source code or special recompilation of the 
program. Some of them also require recompiling the libraries 
[3], or modifying the original source code, or are not 
compatible with some programs [2, 6]. These constraints hinder 
the deployment and applicability of these methods, especially 
for commodity software whose source code are often 
unavailable, and the additional work required (such as 
recompiling the libraries and modifying the original source 
code) makes it inconvenient to apply these methods to a broad 

range of applications. Note that most of the large-scale worm 
attacks to date are attacks on commodity software. 

Thus, a good defense system needs to meet several goals 
simultaneously [7]:  

1) Fast defense development and deployment. There is 
often very little reaction time, especially when the exploit 
comes in the form of a fast propagating worm.  

2) No requirement for source code. Many vulnerable 
programs are commodity software for which the source code is 
proprietary. To respond quickly to new vulnerabilities, we need 
to develop a defense mechanism without access to source code.  

3) High accuracy and effectiveness. The defense 
mechanism should protect against the vulnerability and should 
not have any undesirable side effect on normal execution.  

4) Low performance overhead. The defense mechanism 
should have low performance overhead, so a vulnerable host 
deploying the defense mechanism can still provide critical 
services with little performance degradation. 

In this paper, we propose Dataflow Analysis for Known 
Vulnerability Prevention System (shortly for DA-VPS): a new 
approach for automatic defense which has properties with easy 
deployment, accurate detection and low overhead. DA-VPS 
can protect the target system effectively and ensure the target 
program in its normal execution while it is in danger of 
malicious attacks. 

II. APPROACH: DATAFLOW ANALYSIS FOR KNOWN 
VULNERABILITY PREVENTION SYSTEM 

In our paper, we propose a new defense mechanism: 
Dataflow Analysis for known Vulnerability Prevention System 
(shortly for DA-VPS), which is implemented on DynamoRIO 
[8].  

The principle of our DA-VPS is: firstly, using dataflow 
analysis technology, DA-VPS traces the data coming from the 
untrusted source of input, and diagnoses whether it is the 
tainted. Secondly, DA-VPS examines the spread path of tainted 
in a backward manner to determine which instructions 
propagate the tainted and log them. Thirdly, according to 
vulnerability context and the spread path of tainted, DA-VPS 
generates the vulnerability filter and its hot patch. Before the 
next exploit reaches the exploit point, using the vulnerability 



         

filter, DA-VPS can detect the exploit and then applies the 
related hot patch to repair this vulnerability. 

Figure 1 shows the overall architecture of DA-VPS. Our 
architecture contains four components: TaintedTracker, 
Vulnerability Analyzer, Hotpatch Generator and Vulnerability 
Repair. 
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Figure 1.  The arcchitecture of DA-VPS 

In Figure 1, we assume the sample exploits address to the 
known vulnerabilities. 

III. DESIGN AND IMPLEMENT 
In this part, we illustrate the implement of our DA-VPS. 

A. TaintedTracker 
Usually, an attacker is trying to change the execution of a 

program illegitimately. So he must cause a value that is 
normally derived from a trusted source to instead be derived 
from his own input. For example, values such as jump 
addresses and format strings should usually be supplied by the 
code itself, not from external untrusted inputs. However, an 
attacker may attempt to exploit a program by overwriting these 
values with his own data. 

  As the first part of DA-VPS, TaintedTracker is a new 
detector, which can detect attacks such as buffer overflow or 
format strings exploit. In our paper we refer to data that 
originates or is derived arithmetically from an untrusted input 
as being tainted. The responsibility of TaintedTracker is to 
mark input data derived from untrusted sources as tainted, and 
then monitor the execution of program, which can trace how 
the tainted attribute propagates (i.e., what other data becomes 

tainted).  TaintedTracker also checks when tainted data is used 
in dangerous ways. For example, using tainted data as jump 
addresses or format strings often indicates an exploit of a 
vulnerability such as a buffer overrun or format string 
vulnerability.  

  TaintedTracker performs dataflow analysis on a program 
by running the program in its own emulation environment. 
Specially, we implement DA-VPS Using DynamoRIO [8, 9], a 
dynamic binary instrumentation tool. Actually, James 
Newsome and Dawn Song referred the dataflow analysis as 
dynamic taint analysis [10]. Similar to their TaintCheck, our 
TaintedTracker is consisted of three parts: TaintMarking, 
TaintTracing, and TaintAssert. 

1) TaintMarking 

  TaintMarking marks any data that comes from an 
untrusted source of input as tainted. Here, an untrusted source 
is the input which may bring any attacker's data. By default, 
TaintMarking considers input from network sockets to be 
untrusted, since for most programs the network is the most 
likely vector of attack. By an extended policy, other sources 
inputs e.g. input data from certain files or stdin can be 
considered as untrusted sources. 

  Taint Marking uses shadow memory to mark tainted. 
Shadow memory is a memory mapping technology which maps 
one memory address to another. Each byte of memory, 
including the registers, stack, heap, etc., has a four-byte shadow 
memory that stores a pointer to a Taint data structure if that 
location is tainted, otherwise a NULL pointer if it is not. We 
use a page-table-like structure to ensure that the shadow 
memory uses very little memory in practice. TaintMarking 
examines the arguments and results of each system call, and 
determines whether any memory written by the system call 
should be marked as tainted or untainted according to the 
policy. When the memory is tainted, TaintMarking allocates a 
Taint data structure that records the system call number, a 
snapshot of the current stack, and a copy of the data that was 
written. The shadow memory location is then set to a pointer to 
this structure. This information can later be used by the 
VulnerabilityAnalyzer when an attack is detected. Optionally, 
logging can be disabled, and the shadow memory locations can 
simply store a single bit indicating whether the corresponding 
memory is tainted. 

2) TaintTracing 

  Because other data in the memory may be tainted when 
manipulating tainted data, we need to trace how the tainted 
propagates in the program. Therefore, TaintTracing will track 
each instruction that manipulates data in order to determine 
whether the result is tainted. The type of Instructions traced by 
TaintTracing mainly includes data movement instructions (like 
LOAD, STORE, MOVE, PUSH, POP, etc.) and arithmetic 
instructions (ADD, SUB, XOR, etc.). For data movement 
instructions, the data at the destination will be tainted if and 
only if any byte of the data at the source location is tainted. For 
arithmetic instructions, the result will be tainted if and only if 
any byte of the operands is tainted. While arithmetic 
instructions also affect the processor’s condition flags, we do 
not track whether the flags are tainted, because it is normal for 



         

untrusted data to influence them. Note that for both data 
movement and arithmetic instructions, literal values are 
considered untainted, since they originate either from the 
source code of the program or from the compiler.  

  In order to track the propagation of tainted data, 
TaintTracing adds instrumentation before each data movement 
or arithmetic instruction. When the result of an instruction is 
tainted by one of the operands, TaintTracing sets the shadow 
memory of the result to point to the same taint structure as the 
tainted operand. Optionally, TaintTracing can instead allocate a 
new taint structure with information about the relevant 
instruction including the operand locations and values, and a 
snapshot of the stack, which points back to the previous taint 
structure. When an attack is detected, the 
VulnerabilityAnalyzer can follow this chain of Taint structures 
backwards to determine how the tainted data propagated 
through memory. 

3) TaintAssert  

  By marking data as tainted correctly and tracking its 
propagation at run time, we can detect malicious behavior. 
TaintAssert checks whether tainted data is used in ways that its 
policy defines as illegitimate. TaintAssert’s default policy is 
designed to detect format string attacks, and attacks that alter 
jump targets including return addresses, function pointers, or 
function pointer offsets. When Taint Tracker detects that 
tainted data has been used in an illegitimate way, signaling a 
likely attack, it invokes the Vulnerability Analyzer to further 
analyze the attack. 

  TaintAssert checks Jump addresses, format strings, and 
system call argument. By default, TaintAssert checks whether 
tainted data is used as a jump target (such as a return address, 
function pointer, or function pointer offset) or as a format string 
argument to the print family of standard library functions. 
Many attacks attempt to overwrite one of these in order to 
redirect control flow either to the attacker’s code, to a standard 
library function, such as exec, or to another point in the 
program (possibly circumventing security checks). Hence, 
firstly, for Jump addresses, by having Taint Tracker place 
instrumentation before each jump instruction we can ensure 
that the data specifying the jump target is not tainted. Secondly, 
for format strings, TaintAssert can check whenever tainted data 
is used as a format string, even if it does not contain malicious 
format specified for attacks. This could be used to discover 
previously unknown format string vulnerabilities. Thirdly not 
the lastly, for system call argument, TaintAssert can check 
whether particular arguments to particular system calls are 
tainted, though this is not enabled in TaintAssert’s default 
policy. This could be used to detect attacks that overwrite data 
that is later used as an argument to a system call. 

B. Vulnerability Analyzer 
When tainted data is asserted to be misused, TaintTracker 

provides some useful information about how the exploit 
happened, and what the exploit attempts to do. These are very 
help for identifying vulnerabilities and for generating exploit 
signatures. And then we call Vulnerability Analyzer to make 
further analysis.  

  Information logged by TaintTracker shows the relevant 
part of the execution path in between tainted data’s entry into 
the system, and its use in an exploit. By back-tracing the chain 
of Taint structures, the Vulnerability Analyzer provides 
information including the original input buffer that the tainted 
data came from, the program counter and call stack at every 
point the program operated on the relevant tainted data, and at 
what point the exploit actually occurred. The Vulnerability 
Analyzer can use this information to help determine the nature 
and location of a vulnerability quickly, and to identify the 
exploit being used. 

  Optionally, the Vulnerability Analyzer can allow an attack 
to continue in a constrained environment after it is detected. 
We currently implement an option to redirect all outgoing 
connections to a logging process. This could be used to collect 
additional samples of a worm, which can be used to help 
generate a signature for that worm. 

C. Hotpatch Generator 
Hotpatch Generator component includes two type 

instructions: tainted spread path instructions and tainted data 
misused instructions. Additionally, tainted spread path 
instructions contain data movement instructions and arithmetic 
instructions. Generator gets the execution path information of 
exploit for specified vulnerability from TaintTracker, traces in 
a backward manner from the exploit point, and generates the 
Hot-Patch. 

  Hotpatch is the regulation for discovering, filtering, and 
repairing the vulnerability. Hotpatch Generator changes all 
instructions of the Hotpatch into memory space addresses, 
which are used to monitor the execution of the program. 

D. Vulnerability Repair 
Vulnerability Repair monitors the running instructions and 

memory address related to the Hotpatch. When the terminal 
defense system receives the Hotpatch sent from remote services 
center, Vulnerability Repair detects whether there exists the 
specified vulnerability in the local system. If there exists, it 
applies the Hotpatch and repairs the vulnerability.  

Since the Hotpatch is the form of instructions, the 
instruction list and the instruction position to exploit point, 
Vulnerability Repair can detects the exploit once it appears. 
And before attack reaches the exploit point, Vulnerability 
Repair applies the method associated to Hotpatch to rewrite the 
code-flow of program so that attacker fails the exploit in a new 
environment. 

IV. DEPLOYMENT  
Our DA-VPS has satisfied three important goals: Fast 

vulnerability filter generator, accurate detection, and low 
performance overhead, which ensure our DA-VPS can protect 
target host from the threat of network attacks. 

  Figure 2 shows the deployment of DA-VPS. 



         

 

 
Figure 2.  The deployment of DA-VPS  

Terminal net hosts have installed DynamoRIO and our DA-
VPS system. 

Through Honeypot or vulnerability release website, 
Emergency center can collect the sample exploits for latest 
vulnerability of program, and then submit them to 
Vulnerability Analysis. 

DA-VPS can generate vulnerability filter, and issues 
Hotpatch to terminal users. 

V. CONCLUSION 
In this paper, we point out the limitations of current 

detection mechanism. Then we propose a new approach for 
automatic defense: Dataflow Analysis for Known Vulnerability 
Prevention System (DA-VPS), which has a rapid reaction when 
a new vulnerability is discovered. We give its overall 
architecture in part 2 and describe the detail of its implement in 
part 3. The deployment of DA-VPS is also illustrated in part 4. 
To sum up, DA-VPS can protect the target system effectively 
and ensure the target program in its normal execution while it 
is in danger of malicious attacks. 
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