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Abstract— In this paper, we present a framework for 3D 
reconstruction based on uncalibrated Images taken from widely 
separated views. Our method starts from scale-invariant key 
points being detected and described, then several schemas to 
improve the key points matching results being adopted. 
Consequently, with the fundamental matrix estimated from the 
key point correspondences, the epipolar geometry constraints 
between each view are recovered. We refine correspondence 
result by epipolar line and affine-invariant constraints. As a 
result, the refined correspondences will improve the fundamental 
matrix estimation. With the recovered fundamental matrix and 
epipolar, the sparse projective 3D point cloud of the scene could 
be recovered. After that, a globally nonlinear optimal procedure 
combined with Interval Analysis technique is performed to 
upgrade the projective 3D points to metric structure. The 
experimental results show our framework is effective for 3D 
reconstruction task. 
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I.  INTRODUCTION  
3D reconstruction from uncalibrated images is an important 

issue in computer vision. In the traditional version of the 
problem, baselines between cameras are assumed to be small 
for the sake of feature matching problem. However, the 
applications where two images of a same scene may be taken 
from very different points of view, namely wide baseline case, 
have drew great interest of researchers in the last few years 
[1,2,3]. To perform 3D reconstruction from wide baseline 
images has several advantages including greater precision, 
wider application and fewer input images etc. However, the 
feature correspondence and self-calibration in wide baseline 
case are still open problems. We need more efficient and 
appropriate strategies to solve the problems.  

In this paper, we present a framework for automatic 3D 
reconstruction from uncalibrated Images taken from widely 
separated views. Our method starts from scale-invariant key 
points being detected and described, then several schemas such 
as affine-invariant constraint to improve the key points 
matching results being adopted. Consequently with the 
fundamental matrix F estimated from the key point 
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correspondences, the epipolar geometry constraints between 
each view are recovered and then the key point matching result 
is refined by the constraint. The new correspondences are used 
again to improve the estimation of F. With the recovered F and 
epipoles, the sparse projective 3D point cloud of the scene 
could be recovered. After that, a globally nonlinear optimal 
procedure combined with Interval Analysis (IA) is performed 
to upgrade the projective 3D points to metric structure. Fig. 1 
shows the flowchart of our reconstruction procedure. 

II. KEY POINTS EXTRACTION AND DESCRIPTION 
The first step of 3D reconstruction is to extract key points 

from uncalibrated images and take them as the skeleton points 
of the final sparse 3D structure. To establish the sparse 3D 
point cloud is equivalent to recover the depth information of 
the points and the depth recovery relies on the correspondences 
of key points of images taken from different point of view. 
Therefore, we need to detect key points in images firstly and 
describe them for the following correspondence task. 

 
Figure 1.  Flowchart of reconstruction procedure 
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A wide variety of detectors and descriptors have been 
proposed in the literature [4, 5, 6]. For the wide baseline task, 
we need the extracted features to be invariant with respect to 
geometrical variations such as translation, rotation, scaling and 
affine transformation, and photometric variations such as 
illumination and intensity change. SIFT [5] has been proven to 
be the most robust local invariant feature detector and 
descriptor among the others with respect to geometrical 
changes [6]. Therefore, we choose SIFT as our key points 
extraction tool. The work is divided into following three main 
steps: 

1) Build octave pyramids with different Gaussian smooth 
factors as the scale space. 

2) Search in the scale space with DoG (Differential of 
Gaussian) operator for DoG extrema (maxima and minima), 
and take extremum pixels as key point locations which will be 
further refined to a subpixel precision level. 

3) Represent the neighborhood of every key point as a 
feature vector which describes the orientation histogram 
around the neighborhood. 

Fig. 2 shows an image with key points detected by the DoG 
operator.  

 
Figure 2.  Key points detected by DoG operator 

III. KEY POINTS MATCHING AND FUNDAMENTAL MATRIX 
ESTIMATION 

With efficient descriptors for the key points extracted from 
images, the correspondence among key points is replaced with 
the correspondence among the descriptors. One of the matching 
strategies is using Euclidean distances between different 
descriptors as the similarity metric, which means that two key 
points are matched if their Euclidean distance in descriptor 
space is smaller than a threshold. According to the strategy, a 
key point could possibly have more than one match. So, we 
adopt an alternative matching strategy based on the nearest 
neighbor of a given key point. Following the strategy, two key 
points are matched when the ratio between their distance and 
the distance to the second nearest neighbor is smaller than a 
threshold. This approach generates only one correct match for a 
given key point and the precision is higher than the 
threshold-based strategy. 

No matter which type of descriptor and matching approach 
are adopted, the existence of false matches is inevitable. We 
use affine-invariant constraint to remove the outliers in 

RANSAC framework [7]. After obtaining a relatively reliable 
match list, we estimate fundamental matrix from it and refine 
the matches further using the recovered epipolar line constraint. 
The following section shows algorithms for false match 
removing and fundamental matrix estimation.  

Algorithm for false match removing： 
Input: key point match list L sorted by similarity metric 
Output: believable key point match list BL after removing 

false matches 
Begin 

Do RANSAC 
1. For i=1 to 4 

Random select in the match list L four of the 
most reliable matches noted by ( )i i
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3. For all X∈L 
Calculate the distance between X and HX, 
which is noted by d (X, HX), and remove the 
X from L if d (X, HX) is above a given 
threshold T. 

4. Take the L which has the largest size as the BL. 
Until the RANSAC time is satisfied 

End 
Fig. 3 shows the epipolar geometry that encoded in 

fundamental matrix. The corresponding point x’ in another 
view of an image point x lies on a line l which is called 
epipolar line. So, two views of the same rigid scene taken from 
different view points are related through the epipolar geometry. 
We can describe the epipolar line of a point x by l=Fx where 
the F obviously encodes the whole epipolar line geometry. 
More details are available in [8]. 



 

         

 
Figure 3.  Multiple 3D points create a pencil of epipolar lines centered in the 
epipoles. The intersections between the different epipolar lines determine the 

epipoles e and e’. 

Algorithm for Fundamental Matrix estimation: 
Input: believable key point match list BL 
Output: Fundamental Matrix F, Epipolar e2 and refined BL 

 Begin 
Do RANSAC 

1. Random select 8 points from the BL. 
2. Perform the Eight-point algorithm [8] on the 

random-selected 8 points and obtain the initial F. 
3. Remove the outliers and add more inliers using 

the recovered epipolar line constraint. 
4. Update the BL using previous result.  
5. Estimate F again using updated BL and select the 
F minimizing the energy function 

∑
∈

+=
BL)'x,x(

T22 ))x'F,x(dFx),x'((dE , 

where d(*) denotes the Euclidian distance. 
Until the RANSAC time is satisfied 

End 

IV. DEPTH RECOVERY 

A. Retrieving the projection matrices s 
It has been shown by [8] that given a set of fundamental 

matrices satisfying the constraints, the corresponding 
projection matrices can be determined up to an unknown 
projective ambiguity. Based on the projection matrices, the 
coordinates of the 3D points in the projective frame can be 
computed easily. 

We deduce one of the approaches to retrieve the projection 
matrices (as shown in the following). Algorithm for retrieving 
projection matrices: 

Algorithm for retrieving projection matrices: 
Input: Fundamental matrix F 
Output: projection matrices P1, P2 of the first and the second 

view respectively 
Begin 

1. Calculate the epipolar e2 of the second view by FTe2=0, 
where e2 can be solved linearly. 

2. Assume that the first projection matrix P1=[ A1 | a1 ] 
and the second one P2 has the form [ A2 | a2 ], we have 
[8]: 
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Here λ , µ  are arbitrary positive factors and i=1, j=2 in 
our case. 

3. Suppose P1=[ I | 0 ], and substitute it into (1), then we 
obtain 
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4. We take P1=[ I | 0 ] and [ ][ ]222 e|FeP ×=  as the 
final results for further purpose. 

End 
This approach for retrieving projection matrices totally 

depends on the fundamental matrix that calculated in previous 
phases. So it is more robust and stable than other methods. The 
projective reconstruction is equivalent to recover the metric one 
up to an unknown homography of the projective space. To 
compute this homography from assumptions on the cameras 
and projective results is called a self-calibration problem. 

B. Self-calibration 
Self-calibration problem is equivalent to recovering the 

unknown intrinsic parameters of the cameras. A great deal of 
work has been devoted to the problem in the last few decades. 
The solution to self-calibration can be mainly divided into three 
groups: 

 (1) The Kruppa equations [9]. 

 (2) The stratified approach [10, 11]. 

 (3) To compute the upgrading homography of 
projective-to-metric directly [12].  

However, the CMS (Critical Motion Sequences) are camera 
motions which will defeat any self-calibration algorithm. Fig. 4 
shows the generic critical motions for more than 2 views. Fig. 4 
(a) shows the situation that optical axes are parallel, namely, 
the motions of cameras are translating. Fig. 4 (b) shows that all 
camera optical axes coincide except at two locations (at most) 
where the cameras can be arbitrary oriented. Fig. 4 (c) shows 
that camera centers move on two conics, one is an ellipse and 
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the other is a hyperbola. The two conics lie on orthogonal 

 
Figure 4.  (a) Camera optical axes are parallel; (b) Camera centers are 

aligned; (c) Camera centers move on two conics. 

planes and camera optical axes lying on the corresponding 
support planes are tangent to the conics. 

Pollefeys [11] presented a self-calibration method which 
starts from solving a linearized version of the problem and then 
refine it by iterative non-linear optimization procedure. 
Unfortunately, the linearization will introduce more artificial 
CMS and fail both in case of small and wide baseline. Apart 
from it, the iterative nonlinear optimization is prone to falling 
in local minima. So we need a deterministic method for solving 
the nonlinear self-calibration problem which does not require 
an initial solution. 

Our formulation of the problem is: 

Let 















=

100
vfoc0
u0foc

K i
 be the intrinsic parameter matrix 

of the i-th camera, where foc is the focus length of the camera, 
(u, v) is the principal point of the image plane. According to 
the theory in computer vision (more details are available in 
[8]), we obtain that: 
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Then, our goal is to find the minimal optimization of the 
following cost function: 

*
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where || F(*)|| is the Frobenius norm. 
We adopt Interval analysis (IA) technique to directly solve 

the non-linear problem. Interval analysis is a technique for 
global optimization. An interval is denoted by x [ , ]x x= , where 

x  and x  are the lower bound and the upper bound of x∈IR 
respectively. An interval vector is denoted by 
X=[ , , i 1, ,n]iix x = , X∈IRn. Internal vectors are called boxes. 
More details about IA can be found in [13，15]. With a cost 
function f(X), X∈IRn and a list of boxes denoted by L for X , 
the basic schema for IA along with a branch and bound 
algorithm to find the minimal of f is: 

1) Initialize L using the initial search box of X. 

2)  Do 

Remove a interval box X from L. 

Processing (doing cut-off test, monotonicity test and 
concavity test). 

Bisect X and insert the derived box into L. 

Until L is empty 

We use GlobSol [14] to implement the IA technique. 
Combined with IA, we can solve equation (3) and obtain the 
focal length foc and the infinite plane ∞Π . Therefore, the final 

homography 
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structure from projective space to metric space, is retrieved. 

V. EXPERIMENTAL RESULTS 
In our experiment, we assume that the intrinsic parameters 

of cameras are constant. We tested our framework on some real 
images as shown in Fig. 5. Those 768×576 images are taken 
from very different point of views. If the principal point (u, v) 
of camera is supposed to be known, the number of images used 
for reconstruction can be reduced to two, otherwise, at least 
three of them are needed.  

We used our method described in section 2 to detect and 
describe key points in images automatically and used strategies 
reported in section 3 to obtain key point correspondences and 
in turn retrieve fundamental matrix. Subsequently, to obtain the 
projection matrices, we used algorithm presented in section 
IV.A. Next, taking the retrieved projection as the input, a 
global optimization procedure was carried out minimizing 
cost function proposed in (3) to obtain the final homography 
upgrading projective to metric structure. The starting interval of 
interval analysis was chosen as follows: initial interval for focal 
length is [300, 3000] and principal point (u, v) is 
[cx-W*20%,cy+H*20%], where (cx,cy) is the center of the 
image, W and H are image width and height respectively. 

 Table I shows the retrieved intrinsic parameters and Fig. 6 
shows the final recovered 3D metric point cloud in a 
perspective view. 
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Figure 5.   Some test images taken from wide separated views. 

TABLE I.  THE RETRIEVED INTRINSIC PARAMETERS 

focal-length (pixels) u (pixels) v (pixels) 
996 362 304 

 

 
Figure 6.  Recovered 3D metric point cloud in a perspective view 

VI. CONCLUSIONS 
We have presented a framework for 3D reconstruction from 

images taken from widely separated views. The wide baseline 
case introduces many new challenges such as feature 
correspondence and self-calibration. First, we detect the scale 
invariant key points from the images using DoG operator in 
scale space and match them with the affine-invariant and 
epipolar line constraints imposed on. The matching result is 
precise enough to estimate fundamental matrix and then 
retrieve the projection matrices. Finally, we adopt interval 
analysis to globally optimize the non-linear cost function which 
encodes parameters including camera focal length and infinite 

plane, and obtain the upgrading homograph from projective 
space to metric space. Experimental results show that our 
framework is feasible, flexible and efficient. 
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