
Fast Image Segmentation using Region Merging
with a k-Nearest Neighbor Graph

Hongzhi Liu∗†, Qiyong Guo∗, Mantao Xu†, I-Fan Shen∗
∗Department of Computer Science and Engineering

Fudan University, Shanghai, China
Email: flamephenix@gmail.com, {qyguo, yfshen}@fudan.edu.cn

†Global R&D Center, Carestream Company, No.27, New Jinqiao Road, Shanghai, China.
Email: mantao.xu@carestreamhealth.com

Abstract—A fast region merging method is proposed for
solving the image segmentation problem. Rather than focusing on
the global features of the image, our attention is drawn to local
relationship between neighbor pixels with the goal that all similar
pixels should be segmented in the same region. In this paper,
the image segmentation problem is treated as a region merging
procedure. To solve the problem, an initial oversegmentation is
performed on the image and a k-Nearest Neighbor (k-NN) Graph
whose vertexes denote regions is built. A new region similarity
measure function is also proposed and the region similarity is
assigned to the edge as its weight, which can make use of pixel
intensity, edge feature, texture and so forth in a unit form. In
k-NN graph, each vertex chooses exactly k nearest neighbors to
connect. With it, the computation complexity of merging process
can be reduced to O(τN log2 N); here, τ denotes the number
of nearest neighbor updates required at each iteration while N
denotes the number of the initial regions. Implementation of the
proposed algorithm is introduced, and some experiment results
are given to prove our method’s robustness and efficiency.

I. INTRODUCTION

Image segmentation is one of the basic problems in image
processing and computer vision. The segmentation accuracy
determines the eventual success or failure of many existing
techniques for image description and recognition [1], [2], im-
age visualization [3], [4], and object based image compression
[5], [6]. The goal of image segmentation is to subdivide an
image into its constituent regions (sets of connected pixels) or
objects, such that each region is homogeneous itself whereas
different regions are heterogeneous with each other.

The segmentation problem can be approached by finding
boundaries between regions according to discontinuities or
using threshold based on the distribution of pixel properties [7].
Many techniques also solve the problem in the way of finding
the partitions directly [8], namely region-based segmentation.
Its drive is to detect regions which satisfy certain predefined
homogeneity criteria. Normally, the input image is first tes-
sellated into a set of homogeneous primitive regions. Then
an iterative merging process is applied, within witch similar
neighboring regions are merged according to certain decision
rules [9]. The key of this method is the region homogeneity
definition, usually determined by hypothesis testing [10].

The algorithm proposed in this paper could be considered
as one kind of techniques based on regions, which consists of
two steps: initial oversegmentation and region merging. Nowa-

days, many algorithms in morphologic have been proposed
to get the primitive regions and most of them are based on
watershed transform [11], [12]. However, the results are still
not satisfactory enough since the number of initial regions is
always too more. Therefore, a good region merging algorithm
is needed to compromise the drawback. There are three key
points in the merging algorithm design: (a) how to measure the
homogeneity between regions; (b) how to merge the regions
fast; (c) how to terminate the merging process. Our attention
is mainly paid to the first two points. The region homogeneity
is commonly defined by global features [10]. Nevertheless,
if the image is not in color homogeneity, the results will be
very poor with this definition. To overcome this drawback,
we define the region similarity by the properties of the pixels
along region edge. This is a local definition that can make use
of kinds of features in a unit form. As a result, different kinds
of images can be segmented in the same framework. Though
we only implement the algorithm with color and edge features,
the results still indicate a remarkable improvement. In merging
process, we use a k-nearest neighbors (k-NN) graph proposed
by Pasi in [13]. It can reduce the complexity of region merging
to O(τN log2 N). Finally, a rule to stop the merging process
can be adopted for unsupervised segmentation.

The rest of the paper is organized as follow: Section II gives
a segmentation problem formulation, and outlines our proposed
algorithm. In section III, we first present our new region
similarity definition, and then demonstrate the description of
the fast region merging method using a k-NN graph. The image
oversegment method and how to construct the k-NN graph is
introduced in section IV. At last the experimental results and
conclusions are shown in section V and section VI respectively.

II. PROBLEM FORMULATION AND ALGORITHM OUTLINE

Let R = {p1, p2, . . . , pN} represents the set of the entire
image region, and pi(1 < i < N) represents the image pixels.
We may view the segmentation problem as a process that
partitions R into K subregions, R1, R2, . . . , RK , such that

(a) R =
K⋃

k=1

Rk,

(b) Ri ∩ Rj = Ø, ∀i, j ∈ {1, 2, . . . , K}, i �= j,
(c) P (Rk) = TRUE, ∀k ∈ {1, 2, . . . , K},
(d) P (Ri ∪ Rj) = FALSE, ∀i, j ∈ {1, 2, . . . , K}, i �= j.

(1)

978–1–4244–1674–5/08/$25.00 c© 2008 IEEE CIS 2008

(a) (b) (c) (d)

Fig. 1. Example of segmentation stages. (a) Manual noisy image. (b) Edges detected in (a). (c) Primitive regions with watershed transform (103 regions). (d)
Final segmentation (σ1 = 1, σ2 = 0.7, 7 regions).

Here, P (Ri) is a logical predicate defined over the pixels in
set Ri and Ø is the null set.

Cond. (a) indicates that the segmentation must be complete,
or each pixel must be in a region while Cond. (b) suggests that
regions must be disjoint with each other. Cond. (c) and Cond.
(d) guarantee that all pixels in a segmented region Ri have the
same properties, but different regions Ri and Rj are at least
different in the sense of one predicate P .

Normally the term �K(R) = {R1, R2, . . . , RK} is defined
to denote the segment procedure with K denoting the number
of the regions in �K(R). In the proposed algorithm, an over-
segmentation is performed on the image first of all to obtain
an initial image partition �K0(R). It is assumed that there
exists a sequence of region merges that transforms �K0(R)
to the true partition �K∗(R), here K∗ is the number of the
regions in �K∗(R) and K0 ≥ K∗. This can be regarded as that
each Region RK∗

i in �K∗(R) is a union of certain regions in
�K0(R). To get the sequence, a novel region merging method
using a k-NN graph is applied on the initial partitions �K0(R).
At each step of the merging process, the most similar pair of
regions is merged and finally the true partitions �K∗(R) is
obtained.

Fig. 2 shows the flow of the proposed segmentation algo-
rithm. And Fig. 1(a) from [14], which is piecewise constant
image with white Gaussion noise, is taken as an example to
show the algorithm visually. The aim of the first stage is to
prepare for the following processing. In this stage an edge
detection process is applied and other preprocessing can also
be performed if needed. For example, Fig. 1(a) is filtered in
practice to get the smooth image before further process. Fig.
1(b) shows the edge image of Fig. 1(a), and the use of the edge
image will be explained in the next section. The second stege
oversegments the filtered image to get the primitive partitions
as described above. Watershed transform is adopted To Fig.
1 and the result is shown in Fig. 1(c). However, region-based
algorithm may also be used to achieve oversegmentation. Both
the two algorithms will be described in section IV. In the
third stage k-NN graph is built based on the output of the
initial partitions obtained in the second stage. In this stage a
new region similarity measure function using local features
along region edges is also computed as being introduced in

Fig. 2. Flow chart of the segmentation algorithm

section III. The implementation of k-NN graph construction is
demonstrated in section IV. The final stage is region merging
process using the k-NN graph. Two keys about the merging rule
and stopping rule in this stage are discussed in the next section.
Fig. 1(d) shows the final result of the proposed segmentation
algorithm. Totally 7 regions are segmented in this process.

III. FAST REGION MERGING USING k-NN GRAPH

Our drive is to assign similar pixels in the same region,
and get our expected segmentation by region merging. To
achieve this, the definition of similarity between pixels and
regions, the way to merge the region and the stopping rule to
terminate the region merging process are the most important
points. Therefore, in this section we will discuss all of this and
demonstrate some of our ideas.

A. Region Similarity

Normally the difference of two regions’ feature is computed
to measure the similarity of them. For ease, global features are
often extracted. i.e. the mean value of the pixels in a region
Ri, spacial distance of two regions’ centroid can be used to
achieve this goal [15]. But the global feature may bring false
merge. For example, if two big regions have a sharp difference
along their edge while their global intensity means are almost
the same, the algorithm will usually pick the two to merge. To
overcome the drawback of global features, we propose a new
region similarity based on the pixel’s similarity.

We take a brightness image for example. For pixel pi and
pj in image I, we define their similarity as:

ωij =

e

−
‖Ii − Ij‖2

σ2
1

−
Edge2(i, j)

σ2
2 ‖Xi − Xj‖ ≤ r

0 ‖Xi − Xj‖ > r

(2)

where Xi and Ii denote the coordinate and intensity of pi

respectively, Edge(i, j) is the maximum value on the line
connecting pi and pj in the edge image, which denotes the
probability of an edge exists between pi and pj . Its definition
is demonstrated in the next section. σ1 and σ2 is the parameter
to modify the force of intensity and edge features in ωij . We
also set a radius parameter r. If two pixels are too far away, or
their distance is more than r, we directly set ωij = 0. Here we
just use intensity and edge feature, and use spatial distance to
control the effective neighbors’ range of pi. If we want to use
other features, we only need to define a function in the form
like Edge feature and make ωij multiply with the defined item.

Let di =
∑

j ωij be the total connection from pi to all
other pixels. With the pixel similarity ωij and di, the similarity
between region A and B is defined as:

W (A, B) =

∑
i∈A,j∈B

ωij

√
(
∑
i∈A

di)(
∑
i∈B

di)
(3)

The region similarity is the sum of the pixel similarity between
pixels from region A and B. To avoid the preference of
merge between big regions, we make the sum divided by the
normalized item, square root of the product of

∑
i∈A di and∑

i∈A di.
∑

i∈A di and
∑

i∈A di can be regarded as the volume
of region A and B. Different from other definition, disjoint
regions may have high similarity value in our definition. This
can improve the detail parts, especially the small disjoint part
of the segmentation. Besides, we can control the influence
range of the region according to modification of the pixel
similarity radius r. If r is small, similarity between two regions
can be decided mainly by a part of pixels along their edge.
According to the above formulation, the most similar pair of
regions is the ones which have the high value of (3).

B. Merging using k-nearest neighbor graph

The traditional data structure for representing partitions
is the region adjacency graph (RAG) [16]. The RAG of K-
partition is defined as an undirected graph, and each graph
node represent a region. If regions Ri and Rj are adjacent, a
corresponding edge exists between node i and j.

There is no limit that edges must exist between adjacent
regions in our region similarity definition (3), so every region
may have more neighbors. As a result we choose a k-nearest
neighbor (k-NN) graph proposed in [13] instead of RAG. k-
NN graph is a weighted directed graph G = (V, E, W). Same
as RAG, V is the set of nodes representing regions and E
is the set of edges representing pointers from a region to its
neighbor regions. Every node has exactly k edges to the k
nearest regions. All the regions similarities are computed and

Fig. 3. Illustration of the double linked list structure for k-NN graph node
(k = 2).

assigned to the corresponding edges as weight. In RAG, the
search for the most similar pair of regions is repeated several
times per iteration and every search requires O(N) region
similarity computation. The graph is utilized so that the search
is limited only to the regions that are directly connected by
the graph structure. This reduces the time complexity of every
search from O(N) to O(k). The parameter k affects the quality
of the final segmentation results and the running time. If the
number of neighbors k is small, significant speedup can be
obtained. And Pasi in [13] has proven that a small k can get
a good approximated result.

We use the double linked algorithm of k-NN graph to im-
plement the merging process. Fig.3. shows the node structure
of k-NN graph. For each node Ra, we maintain two lists: the
k-NN list containing the pointers to its k nearest neighbors
and another list containing the back pointers which point to
the regions taking Ra as one of their k nearest neighbors.
For example, in Fig.3, there are five regions that take region
c as their nearest neighbors. All of them appear in the back
pointer lists of c(a,d,e,f,g). Using back pointers is to accelerate
the process of searching the nodes whose nearest neighbor is
the current one in merging process. We store the k nearest
neighbors in descendent order so that the nearest neighbor is
always the first one in the list. All nodes are stored in a heap
by their similarity with the nearest one neighbor.

Given the k-NN graph of the initial K-partition, the
merging process is instructed in the following algorithm.

Input:
Iteration:

Output:

k-NN graph of K-partition
For i = 0 to n − 1
Find the most similar pair (Ra, Rb) to be merged.
Merge the pair (Ra, Rb) → Rab.
Update the k-NN graph to (K − i− 1) partition.
k-NN graph of (K − n)-partition

In each merging iteration, finding the most similar pair of
nodes takes constant time while the merging and updating pro-
cess is more time consuming. After that, the node Ra and Rb

are merged into one node Rab. We select the k nearest neigh-

bors from the 2k neighbors of the previously merged nodes Ra

and Rb to keep the computation complexity reasonable. This
means that the accuracy of the k-NN graph is compromised
and, thus, the graph becomes an approximated nearest neighbor
graph. It may also happen that the number of neighbors for the
cluster Rab can become smaller than k. At last the node Ra is
replaced by R(ab) and the second node Rb is removed from the
k-NN graph. We recompute the similarity with the neighbors
of Rab, which is a double process. In other words, we need
compute both the edges from Rab and the edges pointed to
Rab. At the same time, insertion sort is applied and no more
than k nearest neighbors are kept. With the back pointer link,
this procedure requires O(τ +τ/k·log2(‖�K(R)‖)) [13], here
τ denotes the number of nearest neighbor updates required at
each iteration. Another action in graph updating is to update
the heap. Deleting a node and modifying a node’s position both
need O(log2(‖�K(R)‖)) time. The merging step iterates no
more than K times, so the merging procedure totally requires
O(τK log2(K)) time.

C. Stop Condition

Predefining a K∗ is the simplest way to stop the merging
iteration. As long as the number of regions is K∗, the iteration
stops automatically. But this need interaction and different
images may need different K∗. Another way to stop the
iteration is using the region similarity. If the global maximum
region similarity value (3) is smaller than a certain threshold,
the merging process will be terminated. This threshold can be
set directly by user or be determined automatically by using the
knowledge on the noise distribution (hypothesis testing)[17].

IV. INITIALIZATION AND GRAPH CONSTRUCTION

In this section, we mainly discuss the initialization and
implementation of our algorithm.

A. Initial Oversegmentation

Oversegmentation is the foundation of our algorithm. In our
proposal, there are two requirements to the oversegmentation
algorithm: (a) it must be simple, in other word, it must be
implemented simply and get results quickly; (b) the primitive
regions obtained should be appropriate, that is to say, the
number of the primitive regions should be in a certain range,
the size of regions should be appropriate, and the property in
a region should be consistent which satisfies Cond. (c) in (1).
Either one of watersheds or region growing method can be
used under this consideration.

1) Watersheds-based Segmentation: The watershed algo-
rithm proposed by Gauch [18] is a morphological method
which overcomes the problem of disconnected contours and
false edges. In the proposed algorithm, the fast watershed
detection algorithm proposed by Vincent and Soille [12] is
adopted. Let I be a digital brightness image. Watersheds
are defined as the lines separating the so-called catchment
basins with different minima of the image intensity. The
catchment basin C(M) is a set of pixels, which satisfies
that, all water falling at the region inside C(M), will flow

down to the minimum M . The watersheds transform algorithm
used here is based on immersion simulations [12], that is,
on the recursive detection and fast labelling of the different
catchment basins use queues. The algorithm consists of two
steps: sorting and flooding. At the first step, the image pixels
are sorted in ascendent order according to their intensities.
With the image intensity histogram, a hash table is allocated
in memory, where the i-th entry points to a list containing
the image locations of intensity i. After that, the hash table
is filled by scanning the image. Therefore, sorting scans the
image twice while uses only constant memory. In the flooding
step, the pixels are quickly accessed in ascendent intensity
order (immersion) using the sorted image and labels are
assigned to catchment basins. The label propagation is based
on queues constructed using neighborhoods [12]. The output
of the watershed algorithm is one-pixel wide watersheds and
catchment basins (regions), so the watersheds line must be
assigned to corresponding regions to obtain the real primitive
partitions.

2) Region Growing: As its name implies, region growing is
a procedure that groups pixels or subregions into larger regions
based on predefined criteria. We use a simple algorithm in our
paper. Same to watersheds, first we do a sorting on the image
pixel by their intensity. Our algorithm will use a stack and
predefine a threshold, namely color deviation σ. The algorithm
starts with the smallest pixel, and set this pixel is the seed of
a new region, then search its 8-neighbors, if the difference
between the region and the neighbor’s intensity is smaller
than σ, label this pixel in the current region, push it in the
stack too, and update the regions mean intensity. After all the
pixel’s neighbors are compared, pop a new pixel from the stack
and repeat the process. If the stack is empty, search the next
smallest pixel which is not assigned to any exist regions and
create a new region. After all the pixels are assigned to certain
regions, the algorithm is terminated. Because the each pixel is
searched once, so the complexity of the algorithm is O(N).
And we can control the results according to modifying σ.

B. Edge Detection

Before creating the k-NN graph, an edge image E is drawn
using the method proposed in [19]. Kirschsmask (4) and
different rotations of it are applied to the brightness image,
and the raw edge image is thresholded to obtain the final edge
image E.

 5 5 5
−3 0 −3
−3 −3 −3

 (4)

The edge response Edeg(i, j) between pixel pi and pj in
(2) is defined on the edge image E as below:

Edge(i, j) = max
k∈line(i,j)

(Ek) (5)

where line(i, j) is the line connected pi and pj . (5) actually
denotes the maximum value on line(i, j) in E.

(a) (b) (c) (d)

Fig. 4. Segmentation of color homogeneous image. (a) Original image. (b) Edges detected in (a). (c) Primitive regions with region growing method (σ = 8,
97 regions). (d) Final segmentation (σ1 = 1, σ2 = 0.1).

(a) (b) (c) (d)

Fig. 5. Segmentation of image with texture. (a) Original image. (b) Edges detected in (a). (c) Primitive regions with watershed transform (156 regions). (d)
Final segmentation (σ1 = 1, σ2 = 0.5).

C. Creation of k-NN Graph

The pixels similarities are computed first and stored in an
array W for the use of computing region similarity. Similarly
di in (3) are pre-computed and stored in array D. After
oversegmentation, in the procedure of assigning pixels to
regions, we add di to the corresponding region to compute its
volume. All of this require O(r2N) time with N denoting the
number of the image, and r being the pixel similarity radius.

We use brute force to compute the region similarity
W (a, b). So it is more time consuming. Let �K0(R) be the
primitive segmentation. For a region Ra We define an array S
of size K0 to contain the similarity with other regions. All the
values in S are set to 0. We travel every pixel in Ra. If the
pixel has a neighbor in region Rb, we add the corresponding
pixel similarity to S[b]. Then we pick up all the value S[b]
more then 0 and divide them by the volume of Ra and Rb to
obtain the W (a, b). We use insert sort to add Rb to the nearest
neighbor link of Ra. All of this need K2

0 travels, fortunately
the similarity definition is symmetric, so we can save half of
the time. After all the neighbors are computed, only k nearest
neighbors are kept in every node. At the same time, the back
pointer link is constructed. The whole procedure’s complexity
is O(K2

0). Finally apply a heap sorting on the k-NN graph
with the complexity of O(K0 log2(K0)).

V. EXPERIMENTAL RESULTS AND DISCUSSION

The images(130 × 130, 8 b/pixel) shown in Fig. 4 and
images(278 × 202, 8 b/pixel) shown in Fig. 5 are used in
order to illustrate the stages of the segmentation algorithm and
visually assess the quality of the segmentation results. From

left to right, Fig. 4(a) and Fig. 5(a) are the inputs. Fig. 4(a) is
color homogeneous with high contrast fore- and back-ground.
But the right top part in background has a brown region the
same as the color of the boy’s hair, which could disturb the
segmentation if only color feature is used. Fig. 5(a) has the
noise of little texture in the road and flower bed.

At the beginning, edge detection is performed on the two
source images and the obtained edge images are shown in
column (b) of Fig. 4 and Fig. 5 respectively. Different initial
oversegmentation algorithms are used to compare the rusults.
To Fig. 4, we adopt region growing method directly since the
color is homogeneous. We set color deviation σ = 8 and
get 97 regions after the oversegmentation. Fig. 4(c) shows
the oversegmentation results. To reduce the noise’s influence,
watershed transform is performed on Fig. 5 just like Fig. 1.
Fig. 5(c) shows the watershed detected in Fig. 5(a). Totally
156 regions are partitioned in this process.

The initial partitions are used for the construction of k-
NN graph, and the merging process begins. The number of
regions obtained in initial oversegmentation determines the
computational and memory requirements for the construction
and processing(merging) of the k-NN. In the process of com-
puting the pixel similarity, we set σ1 = 1, σ2 = 0.1 for Fig.
4 and σ1 = 1, σ2 = 0.5 for Fig. 5 respectively since Fig. 5
has noise of texture. The final segmentation results are shown
in Fig. 4(d) and Fig. 5(d). The boy and the garden are both
segmented from the background.

Fig. 6 shows two application examples. Fig. 6(a) is a natural
grayscale image (250 × 250, 8 b/pixel) from Matlab’s image
database, namely cameraman. We use region growing method

(a) (b)

(c) (d)

Fig. 6. Two application examples. (a) A natural image. (b) A retinal image.
(c) Segmentation result of (a) (19 regions). (d) Segmentation result of (c) (10
regions).

to get the initial partitions. In our computer (CPU: AMD athlon
64bit 3000+, Memory: 2G), it takes 17 seconds to obtain the
final results. We get 19 regions and show the regions contour in
Fig. 6(c). The main background was segmented whereas some
building was also extracted from background. Fig. 6(b) is a
colorful retinal image (700 × 605, 24 b/pixel) for detecting the
hard exudates of diabetes patients. The hard exudates (small
yellowwhite patches in the middle of the image) normally
have no regular shape, and are distributed like liquid. Normal
segmentation algorithm often cannot segment them. However,
with special enhancement [19], our algorithm can extract the
hard exudates exactly in Fig. 6(d) due to our local region
similarity definition. In Fig. 6(d), some of the regions are
even disjoint. This proves that, our algorithm can improve the
segmentation detail as our expectation.

VI. CONCLUSION

A fast image segmentation method using region merging is
presented which integrates color and edge features in a unit
framework via the oversegmentation algorithm. The algorithm
can handle colorful or grayscale image and obtain the output of
the partition regions of the image. It can be the input of many
further image processing tasks. The output of our algorithm
can also be one-pixel wide contours/surfaces according to a fast
extraction based on the partition regions. In our proposal, the
new region similarity definition based on local pixel similarity
can use kinds of image features in a unit form. Regions are
merged according to the pixels similarity along their edge
instead of the global mean feature distance. In this way,
the drive of assigning similar pixels in the same region can
be actually realized. Furthermore, a k-NN graph is used to

accelerate the merging process and kinds of stop conditions
can be used to determine the termination of the merge iteration.

We implement the algorithm and test it with kinds of
cases. The satisfactory results prove our method is robust
and computation efficient, the segmentation performance is
also encouraging. Nevertheless, the memory requirements are
relatively high due to storing the pixels similarity. Besides,
our algorithm has many parameters, this needs user to set the
parameters manually in partitioning different images or even
test them with interaction. In our current version, we only use
the color and edge features while there are still many other
features can be used in our segmentation framework, such as
gratitude, spacial distance and texture. So next we will try to
include more features. The future work will also be focused
on automatical parameter determination and merge process
acceleration. Of cause, the 3-D version of the algorithm is
also under consideration.

REFERENCES

[1] P. Suetens, P. Fua, and A. J. Hanson, “Computational strategies for object
recognition,” ACM Comput. Surv., vol. 24, pp. 5C61, Mar. 1992.

[2] P. Besl and R. Jain, “Three-dimensional object recognition,” ACM Com-
put. Surv., vol. 17, pp. 75-145, Mar. 1985.

[3] K. Hohne, H. Fuchs, and S. Pizer, 3D Imaging in Medicine: Algorithms,
Systems, Applications. Berlin, Germany: Springer-Verlag, 1990.

[4] M. Bomans, K. Hohne, U. Tiede, and M. Riemer, “3-D segmentation of
MR images of the head for 3-D display,” IEEE Trans. Med. Imag., vol.
9, pp. 253-277, June 1990.

[5] M. Kunt, M. Benard, and R. Leonardi, “Recent results in highcompression
image coding,” IEEE Trans. Circuits Syst., vol. 34, pp. 1306-1336, Nov.
1987.

[6] P. Willemin, T. Reed, and M. Kunt, “Image sequence coding by split and
merge,” IEEE Trans.Commun., vol. 39, pp. 1845-1855, Dec. 1991.

[7] N. Pal and S. Pal, “A review on image segmentation techniques,” Pattern
Recognit., vol. 26, pp. 1277-1294, 1993.

[8] M. G. Liu, J. Jiang and C.H. Hou, “Hybrid Image Segmentation Using
Watersheds and Adaptive Region Growing,” Visual Information Engineer-
ing, 7-9 July 2003, pp. 282-285, 2003.

[9] R. Beveridge et al., “Segmenting images using localized histograms and
region merging,” Comput. Vis., Graph., Image Process., vol. 2, pp. 311-
347, 1989.

[10] Z. Wu, “Homogeneity testing for unlabeled data: A performance eval-
uation,” CVGIP: Graph. Models Image Process., vol. 55, pp. 370-380,
Sept. 1993.

[11] F. Meyer and S. Beucher, “Morphological segmentation,” J. Vis. Com-
mun. Image Represent., vol. 1, pp. 21-46, Sept. 1990.

[12] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 13, pp. 583-598, June 1991.

[13] P. Franti, O. Virmajoki and V. Hautamaki, “Fast Agglomerative Clus-
tering Using a k-Nearest Neighbor Graph,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 28, pp. 1875-1881, Nov. 2006.

[14] K. Haris, S. N. Efstratiadis and K. Katsaggelos, “RHybrid Image
Segmentation Using Watersheds and Fast Region Merging,” IEEE Trans.
Img. Proc., vol. 7, no. 12, Dec. 1998.

[15] F. Abad, J. Garcia-Consuegra and G. Cisneros, “Merging regions based
on the VDM distance,” in Proc. IGARSS, vol.2, pp. 615-617, July 2000.

[16] X. Wu, “Adaptive split-and-merge segmentation based on piecewise
least-square approximation,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 15, pp. 808-815, Aug. 1993.

[17] K. Haris, “A hybrid algorithm for the segmentation of 2D and 3D
images,” Masters thesis, Univ. Crete, 1994.

[18] J. M. Gauch, “Image segmentation and analysis via multiscale gradient
watershed hierarchies,” IEEE Trans. Img. Proc., vol. 8, no. I, Jan. 1999.

[19] C. I. Sanchez, R. Hornero, M. I. Lopez and J. Poza, “Retinal Im-
age Analysis to Detect and Quantify Lesions Associated with Diabetic
Retinopathy,” in Proc. of the 26th Annual International Conference of
the IEEE EMBS, San Francisco, CA, USA, pp. 1624-1627, 2004.

